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The facts

Goal: Understanding how cells manage to respond properly to
noisy signals from its environment

I Extra-cellular information is transmitted through
cell-membrane receptors

I The receptors are activated or repressed by ligands
—hormones, neurotransmitters, growth factors. . .

I Receptors trigger complex time-dependent cascades of
internal cellular biochemical transformations

I These transformations lead to different cellular responses
—cell-cycle, cell arrest, cellular suicide, etc.



Motivation Spin models Convergence Example Proof I Proof II Proof III

The facts

Goal: Understanding how cells manage to respond properly to
noisy signals from its environment

I Extra-cellular information is transmitted through
cell-membrane receptors

I The receptors are activated or repressed by ligands
—hormones, neurotransmitters, growth factors. . .

I Receptors trigger complex time-dependent cascades of
internal cellular biochemical transformations

I These transformations lead to different cellular responses
—cell-cycle, cell arrest, cellular suicide, etc.



Motivation Spin models Convergence Example Proof I Proof II Proof III

The facts

Goal: Understanding how cells manage to respond properly to
noisy signals from its environment

I Extra-cellular information is transmitted through
cell-membrane receptors

I The receptors are activated or repressed by ligands
—hormones, neurotransmitters, growth factors. . .

I Receptors trigger complex time-dependent cascades of
internal cellular biochemical transformations

I These transformations lead to different cellular responses
—cell-cycle, cell arrest, cellular suicide, etc.



Motivation Spin models Convergence Example Proof I Proof II Proof III

The facts

Goal: Understanding how cells manage to respond properly to
noisy signals from its environment

I Extra-cellular information is transmitted through
cell-membrane receptors

I The receptors are activated or repressed by ligands
—hormones, neurotransmitters, growth factors. . .

I Receptors trigger complex time-dependent cascades of
internal cellular biochemical transformations

I These transformations lead to different cellular responses
—cell-cycle, cell arrest, cellular suicide, etc.



Motivation Spin models Convergence Example Proof I Proof II Proof III

The issue

I Signaling pathway: components linked by
activation/repression actions

I They must contain sophisticated control mechanisms
preventing inappropriate responses leading to diseases, like
cancer.

I Stability under noise in the external signal?
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The data

I Several signaling pathways databases are available
I Information is usually presented as an oriented graph:

I nodes: pathway components or group of components
I (oriented) edges: interaction like activation or repression

I Usually no detailed information about biochemical
mechanisms behind the interactions

I Each oriented edge may involve several different processes
(regulations of gene transcription/translation, protein
transformations, transport,. . . )
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The models

The qualitative continuous-time behavior of signaling networks
is well grasped by differential equations

These differential equations provide a general framework
—based on dynamical systems ideas— to analyze cellular
behavior

Key issue: derive these equations starting from models of
cellular processes.

The usual modeling approach —based in chemical kinetics—
involves too many assumptions impossible to check at present

We seek an alternative approach
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Our models

I Cellular biochemical network with k types of molecules
I Each type is in one of two states, ex. active or inactive
I There is a large number N of molecules of each type
I The collective state of the kN molecules evolves like a

continuous-time Markov process
I Asymmetric interactions between types (type A may be

triggered by type B but not conversely)
I Because of this asymetry the resulting spin-flip process is

not an usual finite-volume stochastic spin model
I Any molecule may interact with any other (consistent with

the biochemical motivation; “mean-field” character)

These are the type-dependent interaction models
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Main result

We focus on the (k-dimensional) density of active molecules

Its dynamics defines the so-called density-profile process:
I Random walk jump-processes in Rk

I Jumps of size 1/N

I Expected drift velocity V (x) does not depend on N

Main theorem:
The paths of such a process converge almost surely to the
trajectories of the dynamical system with velocity field V

The resulting dynamical systems can exhibit a very rich
behavior, including bifurcations
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Spin configurations

I Discrete set Λ of sites; |Λ| = N

I Finite set T = {1, . . . , k} of types

Configuration space
Each type i ∈ T present at each site ` ∈ Λ

Σ = {−1,+1}T ×Λ

If η ∈ Σ,

η(i, `) =
{

+1
−1

}
if particle of type i at site ` is

{
active
inactive

}
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Spin-flip rates

Only single spin flips are allowed

Rate for η → η(i,`) (type i flipped at site `)

c(i, `, η) = exp
{
−
[
Hi(η(i,`))−Hi(η)

]}
with

Hi(η) = −
∑
`∈Λ

( ∑
(j,n)∈T ×Λ

αji

|Λ|
η(j, n) η(i, `) + ai η(i, `)

)
.

I Mean-field interaction
I αji = strength of the influence of type j on type i

I ai = type-dependent external field
I Most interesting phenomena: α not symmetric
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Density profiles

Let x = (x1, . . . , xk) be the vector of empirical densities

xi(η) =
|{` ∈ Λ : η(i, `) = +1}|

N

Rate of activation of type i at an inhibited site

λi(x) = exp
{

2
(∑

j∈T
αji xj + ai xi

)}
Rate of inhibition of type i at an active site

µi(x) = exp
{
− 2
(∑

j∈T
αji xj + ai xi

)}
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Density profile process {mx0N
t }t≥0

Process followed by the empirical densities

Continuous-time jump-process in the hypercube
DN = (− 1

N , 1 + 1
N )k.

At each jump, a point x changes its i-th coordinate by 1/N or
−1/N with respective rates Nfi(x), Ngi(x):

fi(x) = (1− xi) λi(x)
gi(x) = xi µi(x)

for 0 ≤ xi ≤ 1

{mx0N
t }t≥0 = process starting at x0
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Dynamical system {xx0

t }t≥0

Let V : Rk −→ Rk
+ be the velocity field associated to {mx0N

t }t≥0:

V (x) = lim
t↓0

E(mxN
t − x)
t

= f(x)− g(x) ,

Let {xx0

t }t≥0 be the solution of the dynamical system

ẋt = V (xt)

starting at x0 ∈ (0, 1)k

[The global trajectory exists by the smoothness of the field V
and the flow does not leave (0, 1)k because Vi(0+) > 0 and
Vi(1−) < 0 for i = 1, . . . k]
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Main result
Convergence of the sequence of density profile processes
(mx0N

t )N to the trajectory xx0

t

For ε > 0 let τN
ε be the stopping time

τN
ε = inf

{
t ≥ 0 : |mx0,N

t − xx0

t | >
1

N
1
2
−ε

}
Write AT

Nε = {τN
ε < T}

Theorem
For any finite T , initial position x0 and ε > 0,

P
(
lim
N
AT

Nε

)
= 0

[For typical realizations there exists Nε,T s.t. for N > Nε,T

every {mx0N
t }t≥0 stays up to time T within N−1/2+ε of the

deterministic path {xx0

t }t≥0]
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Example: Cyclic-interaction model

Ingredients

I Think {1, . . . , k} as points on the circle
I c(i) = counter-clockwise nearest-neighbor of i

I αji = si J if j = c(i), 0 otherwise
I si ∈ {−1,+1} represents the signals, and J > 0
I ai = −J/2

Features

I For fixed {si}k
i=1 the only free parameter is J

I If si = 1, the rate for type i to flip from −1 to +1 increases
with xc(i): Type c(i) activates the production of type i

I If si = −1, type c(i) inhibits the production of type i.
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Bifurcations on the cyclic-interaction model

Dynamical system:

ẋi = esiJ(xc(i)− 1
2
) − xi

(
esiJ(xc(i)− 1

2
) + e−siJ(xc(i)− 1

2
)
)

(4.1)

I J small: single stable eq. point at 1
2 = (1

2 , . . . , 1
2) ∈ Rk, ∀si

I J large: behavior depends on the sign of s = Πk
i=1si

I For s = −1 (frustrated): Hopf bifurcation for J ≥ Jc(k)
I For s = +1: behaves as the Curie-Weiss model
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Formal bifurcation result

Theorem
For the system (4.1) with k ≥ 3
(a) If s = 1, there is a bifurcation at Jc = 2: the fixed point 1

2
looses stability and two stable points appear for J > Jc.

(b) If s = −1, there is a Hopf bifurcation at Jc = 2/ cos(π/k).

For instance, if k = 3 and all interactions are antiferromagnetic
(si = −1 for i = 1, 2, 3), the dynamical system has stable orbits
for J > Jc = 4

The convergence result, implies that, within any finite time
interval, the density-profile process evolves as close to this orbit
as wished, for N sufficiently large.
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Main mathematical steps in the proof

(i) A coupled simultaneous construction of density-profile
processes for different N .

(ii) An auxiliary process {m̂x0,N
t }t≥0 with independent flips

(but time-dependent rates) which shadows the
deterministic dynamical system

(iii) A coupling between auxiliary and density-profile processes
keeping both processes as close as possible:

I Instants where they move further apart define a process of
discrepancies

I Bounds on the rate of these discrepancies yield the
convergence theorem
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First step: Auxiliary process {m̂x0,N
t }t≥0

Independent spins flips but time-dependent rates

Ingredients

I kN independent Markov chains with state space {−1,+1}
I Each type of a spin at i flips

−1 → +1
+1 → −1

with rate
λi(xx0

t )
µi(xx0

t )

I Chains initialized with the uniform distribution on
configurations with profile m(η0) = x0

I {m̂x0,N
t }t≥0 is the corresponding density-profile process
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Features

I Total number of spins of type i fixed and equal to x0
i

I Independent initial densities m1(η0), . . . ,mk(η0)
I Each pt(i, n) = P (ηt(i, n) = +1) satisfies Kolmogorov’s

ṗt(i, n) = [1− pt(i, n)]λi(xx0

t )− pt(i, n) µi(xx0

t )

I Therefore, as p0(i, n) = (x0)i:

pt(i, n) = (xx0

t )i ∀t ≥ 0
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Convergence of {m̂x0,N
t }t≥0

We are interested in following the actual empirical densities

Lemma
For δ > 0 there exists c > 0 such that, for t ≥ 0

P
(∣∣m̂x0,N

t − xx0

t

∣∣ > N δ−1/2
)

< exp(−cN δ)

[Proof uses another auxiliary process defined as {m̂x0,N
t }t≥0 but

initial spins chosen independently with P (η0(i, n) = +1) = (x0)i]

To prove the theorem: show that m̂x0,N
t and mx0,N

t remain close

We couple both evolutions through a graphical construction
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Step II: Graphical construction

I At each site y: 2k independent Poisson processes

N i+
t (y)

N i−
t (y)

with rate
fi(y)
gi(y)

I Marks associated to N i+
t (y) (N i−

t (y)) instruct jumps in the
positive (negative) i coordinate direction

I Resulting open paths determine process {gx0,N
t }t≥0

I As rates differ by N : mx0,N
t = gx0,N

Nt

[density-profile time t ↔ graphical-construction time Nt;
graphical-construction time is slower by a factor N ]



Motivation Spin models Convergence Example Proof I Proof II Proof III

Step II: Graphical construction

I At each site y: 2k independent Poisson processes

N i+
t (y)

N i−
t (y)

with rate
fi(y)
gi(y)

I Marks associated to N i+
t (y) (N i−

t (y)) instruct jumps in the
positive (negative) i coordinate direction

I Resulting open paths determine process {gx0,N
t }t≥0

I As rates differ by N : mx0,N
t = gx0,N

Nt

[density-profile time t ↔ graphical-construction time Nt;
graphical-construction time is slower by a factor N ]



Motivation Spin models Convergence Example Proof I Proof II Proof III

Step II: Graphical construction

I At each site y: 2k independent Poisson processes

N i+
t (y)

N i−
t (y)

with rate
fi(y)
gi(y)

I Marks associated to N i+
t (y) (N i−

t (y)) instruct jumps in the
positive (negative) i coordinate direction

I Resulting open paths determine process {gx0,N
t }t≥0

I As rates differ by N : mx0,N
t = gx0,N

Nt

[density-profile time t ↔ graphical-construction time Nt;
graphical-construction time is slower by a factor N ]



Motivation Spin models Convergence Example Proof I Proof II Proof III

Main coupling

We couple mx0,N
t and m̂x0,N

t through the graphical construction

Properties of the coupling

I The relative distance of processes kept whenever possible
I As rates are different, asynchronous moves take them apart
I Coupling designed so to minimize this asynchrony

Sketch of its construction

I Several Poissonian mark-processes at each site, updated at
asynchronous moves

I Successive times of these moves: stopping times τn, n ≥ 1
I Recursive definition within time intervals [τn−1, τn)

I Construction defines gx0,N
t and ĝx0,N

t [= mx0,N
t/N and m̂x0,N

t/N ]
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Initial stage of the coupling

For each site y and type i define six types of marks:
I For the transition y → y + ei

N ,
I With rate

ûi,+
t (y) = min

{
(1− yi)λi(y) , (1− yi)λi(xx0

t/N )
}

both gx0,N
t and ĝx0,N

t jump

I With rate
(1− yi) λi(y)− ûi,+

t (y)
(1− yi) λi(xx0

t/N )− ûi,+
t (y)

only
gx0,N

t

ĝx0,N
t

jumps

I For jumps y → y − ei
N use rates yi µi(y) and yi µi(xx0

t/N )
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ûi,+
t (y) = min

{
(1− yi)λi(y) , (1− yi)λi(xx0

t/N )
}

both gx0,N
t and ĝx0,N
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Initial stage of the trajectory

I Start with gx0

0 = ĝx0

0 = x0

I Stop at the first discrepancy:

gx0,N
τ1 = x1 , ĝx0,N

τ1 = x1 + ∆1

(defines τ1 and ∆1)
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Second stage of the coupling

New marks
I For the transition y → y + ei

N ,
I With rate

ûi,+
t (y, ∆1) = min

{
(1− yi) λi(y) , (1− yi −∆l

i) λ(xx0

t/N )
}

both gx0,N
t and ĝx0,N

t jump

I With rate
(1− yi) λi(y)− ui,+

t

(1− yi −∆l
i)λ(xx0

t/N )− ui,+
t

only
gx0,N

t

ĝx0,N
t

jumps

I For y → y − ei
N compare yi µi(y) and (yi + ∆l

i) µ(xx0

t/N )
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Second stage of the trajectory

I Start with gx0,N
τ1 = x1, ĝx0,N

τ1 = x1 + ∆1

I Stop at first new (=second) discrepancy:

gx0,N
τ2 = x2 , ĝx0,N

τ2 = x2 + ∆2

(defines τ2 and ∆2)
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Discrepancy process

The construction is continued, for each trajectory, until t = NT

This involves, almost surely a finite number of stages

The counting of discrepancies defines a discrepancy process Dt:

{Dt ≥ l} = {τl ≤ t}

As each discrepancy brings an additional separation of 1/N ,

∣∣mx0,N
t − m̂x0,N

t

∣∣ ≤ DNt

N
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Conclusion of the proof

Technical part: It involves a bound on discrepancy rates

Lemma
Let Rl

t be the instantaneous rate of the level-l discrepancy
process Dl

t, t ∈ [τl, τl+1]. Then, almost sure,

Rl ≤ N δ−1/2 +
A l

N

for N large
Finally

Lemma
For any ε > 0 and 0 ≤ t ≤ T ,

P
(
lim
N

{
DNT ≥ N ε+1/2

})
= 0 .
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Final (obvious) questions

I Application to actual signaling networks?
I Use as a simulation tool of differential equations?
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