Mathematical Image Analysis Group, Saarland University http://www.mia.uni-saarland.de

Minimally Stochastic Approach to Singular Diffusion Equations

Bernhard Burgeth¹, Joachim Weickert¹, and Sibel Tari²

¹ Saarland University, Germany
 ² METU, Turkey

Algorithms in Complex Systems

EURANDOM, TU/e, Eindhoven, September 24.-26. 2007

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

Motivation

- Popular in nonlinear diffusion filtering: Singular diffusivities (TV, BFB)
 - + good: parameter free models
 - bad: numerically challenging (\longrightarrow regularisation)
- TV-denoising without regularisation:
 - Guichard & Malgouyres, 1998
 - Dibos & Koepfler, 2000
 - Chambolle, 2004
 - K. Chen & R. Chan, 2005
 - • • • •
- Goal of this talk:

Stochastic approach to singular diffusion filtering with **intrinsic** regularisation, inspired by Ramjan & Ramakrishnan, 1999

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

Outline:

Д

Basic Setting of Nonlinear Diffusion Filters

- Given: Initial data $f: \Omega \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$
- \bullet f is evolved according to the PDE with Neumann boundary conditions:

$$\begin{array}{lll} \partial_t u &=& \operatorname{div} \left(g(\|\nabla u\|) \cdot \nabla u\right) & \operatorname{on} & \Omega \times (0, \infty) \,, \\ \\ u(x, 0) &=& f(x) & \qquad \text{for all } x \in \Omega \,, \\ \\ \partial_n u(y, t) &=& 0 & \qquad \text{for all } y \in \partial \Omega \times (0, \infty) \,, \end{array}$$

where ∂_n denotes outward normal derivative

- Creates more simplified variants $u(\cdot, t)$ of f the larger t
- g is nonnegative and decreasing function of |
 abla u|
- ullet Edge preservation and intra region smoothing possible via appropriate g

- In early diffusion filtering: g is bounded (Perona-Malik, Charbonier, Weickert...)
- Prominent unbounded diffusivities:

Total Variation (TV) (Andreu et al., 1998):

$$g(|\nabla u|) = \frac{1}{|\nabla u|}$$

Properties:

- + finite extinction time
- + shape-preserving qualities
- + equivalence results to TV regularisation (1D) available
- + no tuning parameter

Balanced Forward-Backward (BFB)

(Keeling & Stollberger, 2002):

$$g(|\nabla u|) = \frac{1}{|\nabla u|^2}$$

Properties:

- + edge-enhancement
- + no tuning parameter

Unbounded diffusivities: Severe numerical intricacies

- explicit schemes: time step size $\tau \sim \frac{1}{\text{bound on } g}$
- (semi-)implicit schemes: condition number of system matrix large for large bounds on g
- slow convergence
- potential amplification of numerical errors

• **Regularisation** by $g_{\varepsilon}(|\nabla u|) = \frac{1}{|\nabla u| + \varepsilon}$ leads to blurring effects

Deterministic Two-Pixel Scheme

- Given: Initial two-pixel signal $f = (f_1, f_2)$
- Apply space-discrete TV/BFB diffusion with Neumann boundary condition:

$$\dot{u}_1 = \frac{g_{1+\frac{1}{2}}}{h^2} (u_2 - u_1)$$
$$\dot{u}_2 = -\frac{g_{1+\frac{1}{2}}}{h^2} (u_2 - u_1)$$

with initial conditions $u_i(0) = f_i$, i = 1, 2

• Discrete approximations g_1, g_2 give

$$g_{1+\frac{1}{2}} := \frac{g_1 + g_2}{2}$$

Μ	
	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

• Decoupling of (dynamical) system of ODEs:

$$\left(\begin{array}{c} w_1(t) \\ v_1(t) \end{array}\right) = \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} u_1(t) \\ u_2(t) \end{array}\right)$$

Linear first order ODE-solutions

$$w_1(t) = \exp\left(-\frac{2}{h^2}g_{1+\frac{1}{2}}\cdot t\right)\left(u_2(0) - u_1(0)\right)$$

$$v_1(t) = u_2(0) + u_1(0)$$

Yields explicit analytical solution

$$u_{1}(t) = u_{1}(0) + \frac{1}{2} \left(1 - \exp\left(-\frac{2t}{h^{2}}g_{1+\frac{1}{2}}\right) \right) \left(u_{2}(0) - u_{1}(0)\right)$$
$$u_{2}(t) = u_{2}(0) - \frac{1}{2} \left(1 - \exp\left(-\frac{2t}{h^{2}}g_{1+\frac{1}{2}}\right) \right) \left(u_{2}(0) - u_{1}(0)\right)$$

 Reasoning applied to pairs of pixels of a one-dimensional signal, time-discrete version, k-th iteration, time step τ:

$$\begin{aligned} u_i^{k+1} &= u_i^k + \frac{1}{2} \left(1 - \exp\left(-\frac{2\tau}{h^2}g_{i+\frac{1}{2}}\right) \right) \left(u_{i+1}^k - u_i^k\right) \\ u_{i+1}^{k+1}(t) &= u_{i+1}^k - \frac{1}{2} \left(1 - \exp\left(-\frac{2\tau}{h^2}g_{i+\frac{1}{2}}\right) \right) \left(u_{i+1}^k - u_i^k\right) \end{aligned}$$

Ensures only interaction between neighbouring pixels u_i^k and u_{i+1}^k

Problem: How to transport information to other pixels ?

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

• Solution: Consider signal and a shifted version, apply two-pixel scheme with time step 2τ , and average (AOS):

$$\begin{aligned} u_i^{k+1} &= u_i^k &+ \frac{1}{4} \left(1 - \exp\left(-\frac{4\tau}{h^2} g_{i+\frac{1}{2}}\right) \right) \left(u_{i+1}^k - u_i^k\right) \\ &- \frac{1}{4} \left(1 - \exp\left(-\frac{4\tau}{h^2} g_{i-\frac{1}{2}}\right) \right) \left(u_i^k - u_{i-1}^k\right) \end{aligned}$$

Note: Taylor expansion w.r.t. τ of the above **two-pixel module** gives naive, unstable scheme

$$\begin{aligned} u_i^{k+1} &= u_i^k &+ \frac{\tau}{h^2} g_{i+\frac{1}{2}} (u_{i+1}^k - u_i^k) \\ &- \frac{\tau}{h^2} g_{i-\frac{1}{2}} (u_i^k - u_{i-1}^k) \end{aligned}$$

The exponential scheme **remains stable** for large values of g or τ , however, **looses consistency** (degenerates to averaging process).

How about extensions to 2D-setting ?

Two-Dimensional Case

• Obtained by similar reasoning in 2D:

$$\begin{split} u_{i,j}^{k+1} &= u_{i,j}^k + \frac{1}{8} \left(1 - \exp\left(-\frac{8\tau}{h^2} g_{i+\frac{1}{2},j}\right) \right) \left(u_{i+1,j}^k - u_{i,j}^k\right) \\ &+ \frac{1}{8} \left(1 - \exp\left(-\frac{8\tau}{h^2} g_{i-\frac{1}{2},j}\right) \right) \left(u_{i-1,j}^k - u_{i,j}^k\right) \\ &+ \frac{1}{8} \left(1 - \exp\left(-\frac{8\tau}{h^2} g_{i,j+\frac{1}{2}}\right) \right) \left(u_{i,j+1}^k - u_{i,j}^k\right) \\ &+ \frac{1}{8} \left(1 - \exp\left(-\frac{8\tau}{h^2} g_{i,j-\frac{1}{2}}\right) \right) \left(u_{i,j-1}^k - u_{i,j}^k\right) \end{split}$$

This scheme

- is explicit, unconditionally stable
- is applicable to PDEs with degenerated diffusivities
- becomes conditionally consistent for large $\tau \cdot g_{i+\frac{1}{2}}$
- Generalisations to 4-pixels schemes possible (Welk et al., 2005)

Minimally Stochastic Approach:

- Introduce randomness by stochastic rounding in the exponential two-pixel module
- Stochastic rounding function $SR: \mathbb{R} \longrightarrow \mathbb{N}$ with integer-part-function [x]

$$SR(x) = \begin{cases} [x] & \text{with probability} \quad 1 - |[x] - x| \\ [x] + 1 & \text{with probability} \quad |[x] - x| \end{cases}$$

• Example:

$$SR(2,7) = \begin{cases} 2 & \text{with probability} & 0,3 \\ 3 & \text{with probability} & 0,7 \end{cases}$$

Randomised two-pixel module define by

$$u_m^{k+1} = u_m^k + \omega$$
$$u_n^{k+1} = u_n^k - \omega$$

А

2

4

6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

1

3

5

7

9

with
$$\omega := SR\left\{\left(1 - \exp\left(-\frac{2\tau}{h^2}(g_n^k + g_m^k)\right)\!\right) \frac{u_n^k - u_m^k}{2}\right\}$$

• If (f_i) is integer valued then scheme requires **integer arithmetic** only.

• Diffusivities are unbounded,
$$g_m^k = \infty$$
 or $g_n^k = \infty$, we set $\omega = SR\left(\frac{u_n^k - u_m^k}{2}\right)$

Implementational modification:

$$\omega = \begin{cases} SR\left\{ \left(1 - \exp\left(-\frac{4\tau}{h^2} \left(\frac{1}{g_n^k} + \frac{1}{g_m^k}\right)^{-1}\right)\right) \frac{u_n^k - u_m^k}{2} \right\} & \text{for } \frac{1}{g_m^k}, \frac{1}{g_n^k} > 0, \\ SR\left(\frac{u_n^k - u_m^k}{2}\right) & \text{for } \frac{1}{g_m^k}, \frac{1}{g_n^k} = 0 \end{cases}$$

How to apply the two-pixel scheme to the whole image domain ?

- Apply the stochastic two-pixel module to overlapping pairs of pixels
- Average the results (as in the deterministic case)

But where to start ?

How to apply the two-pixel scheme to the whole image domain ?

- Apply the stochastic two-pixel module to overlapping pairs of pixels
- Average the results (as in the deterministic case)
- Choose randomly one of the starting points (indicated below)
 - proceed first in blue direction
 - then in red direction

- Random selection of starting position for each cycle avoids bias
- Minimally stochastic scheme obeys maximum-minimum principle but
- Allows for one-pixel fluctuations

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

Experimental Setup

Diffusion filtering, experimental setup

А

2

4

6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

1

3

5

7

9

 128×128 test image 70% uniform noise

 256×256 test image no additional noise

TV diffusion filtering, stopping time: 100

Top: Deterministic exponential scheme

 $\tau = 1$

 $\tau=0.01$

 $\tau = 0.1$

Bottom: Minimally stochastic scheme

Experimental Results (2)

BFB diffusion filtering, stopping time: 3000

Top: Deterministic exponential scheme

 $\tau = 3$

 $\tau = 10$

Bottom: Minimally stochastic scheme

TV diffusion filtering, stopping time: 100

Top: Deterministic exponential scheme

 $\tau = 0.01$

 $\tau = 0.1$

 $\tau = 1$

Bottom: Minimally stochastic scheme

21 22

1

3

5

7

9

А

2

4

6

8

10

11 12

13 14

15 16

17 18

19 20

Experimental Results (4)

BFB diffusion filtering, stopping time: 3000

Top: Deterministic exponential scheme

 $\tau = 30$

Bottom: Minimally stochastic scheme

Summary

Summary:

- Considered semi-discrete approach to singular diffusion
- Introduced two-pixel scheme
 - dynamical system allows analytical solution
 - yields stable scheme
 - extendable to 2D (in spirit of AOS)
- Stochastic rounding introduces (minimal) randomness
 - allows for integer aritmethics (realisable in hardware)
 - stochsticity has regularising effect
- Extensions to 2D (in stochastic or deterministic manner)
- Numerical examples demonstrate: Minimally stochastic approach is competitive, approx. 10 times faster than deterministic scheme.
- B. Burgeth, J. Weickert, S. Tari: Minimally stochastic schemes for singular diffusion equations. In X.-C. Tai, K.-A. Lie, T. F. Chan, S. Osher (Eds.): Image Processing Based on Partial Differential Equations, Springer, Berlin, 2006.

Thank you very much for your attention !

Μ	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22

1			
			١
			ſ
1			ſ

	/		

				Ē							۷		1	
				V									V	
Δ	ľ						ļ		٧					

			_
	ļ		
		۷	

		٨
		Ĩ

ſ	_	>			
			•	٨	
				T	
V					

١			
		>	

V		_
		┢
		•

