Exocytotic properties of astrocytic vesicles

Jernej Jorgačevski

jernej.jorgacevski@mf.uni-lj.si

Astrocytes and vesicular gliotransmitters

Halassa et al., 2007

Exocytotitc release of gliotransmitters:
(i) amino acids: glutamate, D-serine
(ii) nucleotides: adenosine 5'triphosphate (ATP)
(iii) peptides: atrial natriuretic peptide (ANP),
brain-derived neurotrophic factor (BDNF)

Parpura and Zorec, 2009

1. The anatomy of single vesicles in astrocytes

2. Regulated exocytosis in astrocytes

3. Vesicle mobility in astrocytes

1. The anatomy of single vesicles in astrocytes

Takamori et al. 2006

Astrocytic vesicles - STED

Astrocytic vesicles - STED

Astrocytic vesicles - STED

Guček, Jorgačevski et al., 2016

Vesicle diameters

EM (Literature)	STED
45 ± 2 nm (Potokar et al. 2008)	65 nm
125 ± 22 nm (Bergami et al. 2008)	63 nm
37 ± 11 nm (Bergersen et al. 2011)	65 nm
30-50 nm (Bezzi et al. 2004, Stenovec et al. 2007)	76 nm
	EM (Literature) 45 ± 2 nm (Potokar et al. 2008) 125 ± 22 nm (Bergami et al. 2008) 37 ± 11 nm (Bergersen et al. 2011) 30-50 nm (Bezzi et al. 2004, Stenovec et al. 2007)

Vesicles	EM (Literature)	SIM
Lysosomes	100-1200 nm (Holtzmann E. 1989)	~200 nm

VGLUT1

ANP

The number of YspH per astrocytic vesicle

Singh et al., 2016

The number of YspH per astrocytic vesicle

Singh et al., 2016

RBC 2018, May 19, 2018

The number of Sb2 per astrocytic vesicle

Singh et al., 2016

1. The anatomy of single vesicles in astrocytes

2. Regulated exocytosis in astrocytes

3. Vesicle mobility in astrocytes

2. Regulated exocytosis in astrocytes

Exocytotic events in astrocytes

Properties of exocytotic events in astrocytes

Exocytotic events in astrocytes

Guček, Jorgačevski et al., 2016

1. The anatomy of single vesicles in astrocytes

2. Regulated exocytosis in astrocytes

3. Vesicle mobility in astrocytes

3. Vesicle mobility in astrocytes

XLID

• ID - a non-progressive cognitive impairment affecting 1-3% of the Western population.

• Lifelong care at home or in welfare centers - enormous socioeconomic burdens.

• Syndromic and non-syndromic ID - environmental factors, genetic predisposition, or a combination of both.

• ~50% of moderate-to-severe cases have genetic origins and ~10% are due to XLID.

 ~820 genes responsible for ID; guanine nucleotide dissociation inhibitor (GDI1) was one of the first identified.

Nature Reviews | Molecular Cell Biology

Rat astrocytes express α GDI and β GDI.

Vesicle mobility in astrocytes

siGdin

siGdi2

0

Control

αGDI absence in Gdi1^{-/Y} mice attenuates vesicle mobility

Potokar et al., 2016

Conclusions

- Smaller, synaptic like, vesicles in astrocytes contain amino acid and peptidergic transmitters, while larger vesicles contain ATP.
- There are 15 to 25 Sb2 molecules per astrocytic vesicle.
- Regulated exocytosis is present in astrocytes.
- ATP stimulation triggers distinct response of two vesicle populations.
- Vesicle mobility in astrocytes is affected in pathological conditions.

Acknowledgements

LN-MCP

dr. Robert Zorec

dr. Maja Potokar dr. Marko Kreft dr. Alenka Guček dr. Priyanka Singh dr. Valentina Lacovich dr. Nina Vardjan Marjeta Lisjak

Göttingen, Germany

dr. Stefan W. Hell dr. Alexander Egner dr. Claudia Geisler

Birmingham, USA

dr. Vladimir Parpura dr. Vladimir Grubišić dr. Randy F. Stout Jr.

Milan, Italy

dr. Patrizia D'Adamo dr. Veronica Bianchi

NIH Public Access Author Manuscript Nat Commun. Author manuscript; available in PMC 2015 February 27.

Published in final edited form as: Nat Commun.; 5: 3780. doi:10.1038/ncomms4780.

Single-vesicle architecture of synaptobrevin2 in astrocytes

Priyanka Singh¹, Jernej Jorgačevski^{1,2}, Marko Kreft^{1,2,3}, Vladimir Grubišić⁴, Randy F. Stout Jr^{4,5}, Maja Potokar^{1,2}, Vladimir Parpura^{4,6}, and Robert Zorec^{1,2}

Cell. Mol. Life Sci. DOI 10.1007/s00018-016-2213-2

Cellular and Molecular Life Sciences

CrossMark

CrossMark

ORIGINAL ARTICLE

Alenka Guček¹ · Jernej Jorgačevski^{1,2} · Priyanka Singh¹ · Claudia Geisler³ · Marjeta Lisjak¹ · Nina Vardjan^{1,2} · Marko Kreft^{1,2,4} · Alexander Egner³ · Robert Zoree^{1,2}

Mol Neurobiol DOI 10.1007/s12035-016-9834-1

Impaired α GDI Function in the X-Linked Intellectual Disability: The Impact on Astroglia Vesicle Dynamics

Maja Potokar^{1,2} · Jernej Jorgačevski^{1,2} · Valentina Lacovich¹ · Marko Kreft^{1,2,3} · Nina Vardjan^{1,2} · Veronica Bianchi⁴ · Patrizia D'Adamo^{1,2,4} · Robert Zorec^{1,2}

Received: 14 January 2016 / Accepted: 4 March 2016 © Springer Science+Business Media New York 2016

Astrocytic vesicles - CLSM

Astrocytic vesicles - SIM

0,⊥ 0.0

0.2

0.4

Vesicle diameter (µm)

0.6

0.8

0,⊥́ 0.0

0.2

0.4

Vesicle diameter (µm)

0.6

8.0

0

0.0

0.2

0.4

Vesicle diameter (µm)

0.6

0.8

RBC 2018, May 19, 2018

0.4

Vesicle diameter (µm)

0.6

0.8

0∔ 0.0

0.2

XLID mutations of *αGDI* impair endolysosomal traffic in,, astrocytes

