Probing lipid interactions of plasma membrane proteins: a micropatterning approach

Applied Physics TU Wien

RBC 2018

Interplay of lipids and proteins in the plasma membrane

- Mammalian plasma membrane:
 - thousands of different lipids and proteins
 - local and temporal heterogeneity
 - lipids and proteins influence each other

Fundamental mechanisms HOW? WHY? WHEN?

Interplay of lipids and proteins in the plasma membrane

Liquid ordered phase:

- sterol- and sphingolipid-enriched
- compartmentalize cellular processes

Liquid disordered phase:

rich in unsaturated fatty acids

Levental et al. (2010), Biochemistry

Interplay of lipids and proteins in the plasma membrane

Liquid ordered phase:

- sterol- and sphingolipid-enriched
- compartmentalize cellular processes

Liquid disordered phase:

rich in unsaturated fatty acids

Protein palmitoylation:

- posttranslational modification
- partitioning in the liquid ordered phase

Levental et al. (2010), Biochemistry

Problems and goals

Problems:

- observations in **live cells** are controversial
- technical limitations
- lipid probes

Problems and goals

Problems:

- observations in live cells are controversial
- technical limitations
- lipid probes

Goals:

 recruit palmitoylated and depalmitoylated transmembrane proteins

Problems and goals

Problems:

- observations in live cells are controversial
- technical limitations
- lipid probes

Goals:

- recruit palmitoylated and depalmitoyltaed transmembrane proteins
- probe with lipids and proteins

- incubation with streptavidin
- II. drying
- III. stamping/stamp removal
- IV. passivation with fibronectin
- V. biotinylated antibody attachment
- VI. cells are grown over the patterns

Proteins in the plasma membrane can be immobilised by antibody patterns

Single molecule diffusion analysis

the image of immobilised protein pattern is captured

ysis ρ_{obstacle, 2}

- the trajectory of diffusing lipids are recorded
- mobility of lipids at ON and OFF area serves useful information

Selection of materials

Obstacle molecules

Hemagglutinin (HA)-mGFP

Δpalm-HA-mGFP

Micropatterning

tracer plus obstacle size can be calculated

Rel. diffusion of Chol-KK114 and CD59

Palmitoylated and wild type cells show the same behaviour

Rel. diffusion of DOPE-KK114 and SM-ATTO594

DOPE-KK114 shows similar behaviour like Chol-KK114

HA density (number/μm²)

SM-ATTO 594 shows minor decrease of rel. diffusion

lmmob. protein	Diffusing tracer	D _{ob} +D _{fr}	Probable cause
HA-mGFP	CD59	9.4 ± 1.9 nm	steric hindrance (ectodomain)
	Chol-KK114	7.8 ± 1.7 nm	steric hindrance (ectodomain)
	DOPE-KK114	6.9 ± 1.9 nm	steric hindrance (ectodomain)
	SM-ATTO594	4.9 ± 1.7 nm	ś
HA∆pal-mGPF	CD59	9.6 ± 3.5 nm	steric hindrance (ectodomain)
	Chol-KK114	9.2 ± 2.3 nm	steric hindrance (ectodomain)

- Palmitoylation of HA-mGFP did not have a significant effect on cholesterol or CD59 diffusion
- Cholesterol and DOPE shows similar diffusion behavior, albeit they have different membrane partitioning preference
- ATTO594 labeled lipids are good tracer candidates, further experiments are needed (DOPC-ATTO594, DSPC-ATTO594)

Special thanks to E. Sevcsik, M. Brameshuber, A. Arnold, G. Schütz, A. Honigmann and N. Matsumori.

Single molecule diffusion analysis

- the pattern of immobilised proteins is recorded
- the trajectory of diffusing lipids are recorded
- diffusion constants of lipids at ON and
 OFF area are yielded
- overlaying the two source of data can result in useful information