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Introduction

Single hypothesis testing: classical topic in statistics.
I observe data sample X = (X1, . . . , Xn)

I We want to decide (from observed data) whether a certain
assumption H0 (null hypothesis) on the generating distribution is
true or false.

I Examples:
• Is it true that E [X ] = 0?
• Are the variables (X , Y ) independent?
• Is the distribution of X Gaussian?
• . . .
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Single testing procedure

I Testing procedure:

Data X = (X1, . . . , Xn) → DecisionT (X) ∈ {0, 1}

I T = 0 means “null hypothesis accepted” and T = 1 “null
hypothesis rejected”

I Language convention: if the null hypothesis is rejected, we
equivalently call it a “positive detection” or “discovery”.

I Type I error (or false positive): T = 1 while the null hypothesis H0
is actually true.

I Type II error (or false negative): T = 0 while the null hypothesis
H0 is actually true.
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p-values for single hypothesis testing

I Most testing procedures are based on a test statistic Z (X) ∈ R
I Tα(X) = 1{Z (X) ≥ t(α)}
I threshold t(α) is such that that, if H0 is true, P [Z (X) ≥ t(α)] ≤ α

I Ensures control of type I error rate at level α.
I The statistic can then be normalized: put

p(X) = t−1(Z (X));

then if H0 is true, from the above

P [p(X) ≤ α] ≤ α

i.e. p(X) is stochastically lower bounded by a uniform random
variable in [0, 1] .

I p(X) is called the p-value function associated to this testing
procedure.
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Multiple testing

I Possibly very large number of
different null hypotheses to
test.simultaneously

I testing for the presence of a
large number of different
chemical compounds.

I testing which pixels represent
significant activity in an FMRI
image

I testing which genes have
significantly high expression
level in microarray data

I testing which regression
variables X (i) have a
dependence relationship with an
output Y
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Mathematical setting for multiple testing

I A set H of null hypotheses to be tested.
I A subset H0 ⊂ H is the set of null hypotheses that are actually

true for the generating probability distribution under scrutiny.
I (H0 is of course unknown!)
I In general, a multiple testing procedure is:

Data X = (X1, . . . , Xn) → Rejected hypotheses R(X) ⊂ H

I We assume that for each single h ∈ H, we already know a single
testing procedure Th with corresponding p-value function ph .

I Main issue: how to construct a reasonable multiple testing
procedure from the knowledge of the single testing ones?

I
Data X → p-values p = (ph(X))h∈H → R(p) ⊂ H
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What quantification for the type I error?

I There is a risk of error for each separate hypothesis tested. How
to assess globally the quality of a multiple testing procedure?

I Traditional measure: family-wise error rate (FWER), the probability
that the procedure makes at least one type I error:

FWER(R) = P [R(X) ∩H0 6= ∅]

I Less conservative measure of error: Benjamini and Hochberg’s
False Discovery Rate (FDR) (1995):

FDR(R) = E
[
|R(X) ∩H0|
|R(X)|

]
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FDR and screening processes

I The FDR:

FDR(R) = E
[
|R(X) ∩H0|
|R(X)|

]
I This notion is particularly adapted to screening processes:

Large set of objects
↓

Select candidates (screening)
using limited data

↓
Further study of candidates
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A “self-consistency” condition

I Assume we know a priori that |R| ≥ k .
I If we want FDR ≤ α, we can afford up to αk errors on average.
I Consider a thresholding procedure R = {h : ph ≤ t}, then

E [Nb of errors for R] =
∑

h∈H0

P [ph ≤ t ] ≤ |H0|t ≤ |H|t

I Choose t = αk/|H| .
I Now, if for an arbitrary procedure R we observe “post-hoc” that we

would like to have rejected {h : ph ≤ α|R|/|H|}.
I Introduce the self-consistency condition

R ⊂ {h : ph ≤ αβ(|R|)} (SC)

I β is the shape function.

G. Blanchard, F. Fleuret, E. Roquain Adaptive FDR procedures FDR control 12 / 29



A “self-consistency” condition

I Assume we know a priori that |R| ≥ k .
I If we want FDR ≤ α, we can afford up to αk errors on average.
I Consider a thresholding procedure R = {h : ph ≤ t}, then

E [Nb of errors for R] =
∑

h∈H0

P [ph ≤ t ] ≤ |H0|t ≤ |H|t

I Choose t = αk/|H| .
I Now, if for an arbitrary procedure R we observe “post-hoc” that we

would like to have rejected {h : ph ≤ α|R|/|H|}.
I Introduce the self-consistency condition

R ⊂ {h : ph ≤ αβ(|R|)} (SC)

I β is the shape function.

G. Blanchard, F. Fleuret, E. Roquain Adaptive FDR procedures FDR control 12 / 29



FDR control under (SC)

The FDR can rewritten as:

FDR(R) = E
[
|R ∩H0|
|R|

]
=

∑
h∈H0

E
[

1{h ∈ R}
|R|

]

≤
∑

h∈H0

E
[

1{ph ≤ αβ(|R|)}
|R|

]

Under (SC) FDR control is reduced to a purely probabilistic bound of
the form

E
[

1{U ≤ cβ(V )}
V

]
≤ c

where U is stochastically lower bounded by a uniform distribution, and
under appropriate dependency conditions between U and V .
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Different cases

I Case 1: independent test statistics: inequality satisfied for
β(x) = x/|H|.

I Case 2: positively dependent (PRDS, Benjamini and Yekutieli
2001) test statistics: inequality satisfied for β(x) = x/|H|.

I Case 3: unspecified dependences. inequality satisfied for

β(x) =
1
|H|

∫ x

0
udν(u) ,

where ν is any probability measure on R+ .

In all of these three cases: under the corresponding dependency
assumptions and (SC), we have

FDR(R) ≤ |H0|
|H|

α

In cases 1 and 2: additionally assume that R is a nonincreasing function of p
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Step-up procedures

R ⊂ {h : ph ≤ αβ(|R|)} (SC)

I any procedure R satisfying (SC) for a certain shape function β has
controlled FDR under appropriate dependency conditions.

I to optimize power under this constraint, we want to have the set R
as large as possible under (SC).

I this is precisely realized by a “step-up” procedure:
• order the p-values p(1) ≤ p(2) ≤ . . . ≤ p(m)

• put k̂ = max
{

i : p(i) ≤ αβ(i)
}

• put R =
{

h(1), . . . , h(bk)
}
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Step-up procedure

β(  )x

Rejected null hypotheses

sorted
P−values (reweighted),
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Role of shape function β

I In the case of independent or PRDS test statistics, β is linear with
slope |H|−1. It is the celebrated Benjamini-Hochberg (1995) linear
step-up procedure (LSU)

I In the case of unspecified dependencies, we have to pay a price:
shape function β is always smaller than the LSU.

β(x) = |H|−1
∫ x

0
udν(u)

I (Counter-examples exists to show that this price is necessary
from a theoretical point of view)

I ν then plays the role of a prior on the rejection set size |R|.
I ν(i) = c−1i−1 for i = 1, . . . , |H| gives rise to another linear step-up

procedure namely recovers Benjamini and Yekutieli (2001). The
slope is lower by a factor c ' ln |H|.

I Other choices are possible for the ν-prior and allow added
flexibility.
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Adaptivity to |H0|

I In all cases reviewed previously, we have derived step-up
procedures R satisfying

FDR(R) ≤ π0α

where π0 = |H0|
|H| .

I This is always too conservative. Ideally one would replace the
shape function β by the “ideal one”

β∗ = π−1
0 β . . .

I . . . but π0 is unknown. Two ways to address this:
• (Under-)estimate π0 by some π̂0 then put β̂ = π̂−1

0 β (two-stage
procedure).

• Use a deterministic shape function β that is in some sense directly
“adaptive” (one-stage procedure)
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Existing procedures

I Modified Storey’s procedure (2001): (Storey-λ) 2-stage procedure
with

π̂−1
0 =

(1− λ)|H|
| {h : ph > λ} |+ 1

I Procedure of Benjamini, Kruger and Yekutieli (2006) (BKY06):
2-stage procedure with

π̂−1
0 =

1
1 + α

|H|
|H| − |R0|

,

where R0 is the linear step-up procedure at level α/(1 + α).
I The following result holds:

Theorem (Benjamini, Kruger, Yekutieli 06)

If we assume that the test statistics are independent, then for either of
the above procedures,

FDR(R) ≤ α
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New one-stage adaptive procedure for independent
test statistics

I We introduce a new one-stage step-up procedure:

I Put β(x) = 1
1+α min

(
x

|H|−x+1 , 1
)

Theorem
If we assume that the test statistics are independent, then for the
one-stage procedure R using the above shape function,

FDR(R) ≤ α
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Comparison to LSU (α = 0.1)
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The new one-stage procedure is always more powerful than standard
step-up except in “marginal” situations.
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New two-stage adaptive procedure for independent
test statistics

I Idea: use previous procedure |R′
0| instead of standard linear

step-up in (BKY06).
I Use

π̂−1
0 =

1
1 + α

|H|
|H| − |R′

0|+ 1
,

Theorem
If we assume that the test statistics are independent, then for the
two-stage procedure R using the above π̂−1

0 ,

FDR(R) ≤ α

I Always better than (BKY06) except for the “+1” and the marginal
situations mentioned previously.
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Comparison on simulations

Setting:
I X (k) ∼ N (µk , 1) with µk ∈ {0, m}

I Cov
[
X (k), X (k ′)

]
= ρ for k 6= k ′

• ρ = 0: independent case
• ρ > 0 : positive dependence case

I One-sided tests: hk = “µk ≤ 0′′

I 1000 repetitions, m=3, |H| = 100

G. Blanchard, F. Fleuret, E. Roquain Adaptive FDR procedures Adaptive procedures 25 / 29



Power (independent case ρ = 0)
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Plotted: ratio of correct rejections/correct rejections of “oracle” LSU
procedure (if π0 were known), as a function of π0.
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FDR (positive correlation case ρ = 0.5
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Plotted: FDR against π0 for various procedures in a positively
correlated case
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Adaptive procedure under unspecified dependencies

I Recall that for unspecified dependencies we can use a shape
function of the form β(x) =

∫ x
0 udν(u).

• Step 1: perform regular step-up procedure R0 at level α/4 and
shape function β.

• Step 2: put π̂−1
0 =

(
1−

√
2|R0|/|H| − 1

)−1
and perform step-up

procedure at level α/2 with shape function β̂ = π̂0
−1

β

Theorem
The above procedure has FDR(R) ≤ α under arbitrary dependencies.

I Note that this is much less favorable than in the independent case. It
improves over the non-adaptive procedure only if the first stage at level
α/4 (!) rejects more than 63% hypotheses.

I However this is up to our knowledge the first theoretically proved
adaptive procedure in the unspeficied dependencies case.
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Conclusion and perspectives

I Contributions:
• Synthetic theoretical framework to recover and extend results on

FDR control under various dependency assumptions.
• New one-stage adaptive procededures that improves over standard

linear step-up.
• New two-stage adaptive procedure that improves over (BKY06) and

appears robust wrt. positive correlations.
• In the unspecified dependencies case, first theoretically proved

adaptive procedure (relevant only if there is already a large number
of “easy” rejections)

I Some orientations for future work:
• Better adaptive procedures in the unspecified dependencies case
• Role of the “size prior” ν in the shape function
• Theoretical support for robustness properties of procedures which

are only provably controlled in the independent case
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