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Introduction

Single hypothesis testing: classical topic in statistics.
» observe data sample X = (Xj,..., X)

» We want to decide (from observed data) whether a certain
assumption Hy (null hypothesis) on the generating distribution is
true or false.
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Introduction

Single hypothesis testing: classical topic in statistics.

» observe data sample X = (Xj,..., X)

» We want to decide (from observed data) whether a certain
assumption Hy (null hypothesis) on the generating distribution is
true or false.

» Examples:

e Isittrue that E[X] = 0?
« Are the variables (X, Y) independent?
« Is the distribution of X Gaussian?
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Single testing procedure

» Testing procedure:
Data X = (Xi,...,X,) — DecisionT(X) € {0,1}

» T = 0 means “null hypothesis accepted” and T = 1 “null

hypothesis rejected”
» Language convention: if the null hypothesis is rejected, we
equivalently call it a “positive detection” or “discovery”.
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Single testing procedure

» Testing procedure:
Data X = (Xi,..., Xp) — DecisionT(X) € {0,1}

» T = 0 means “null hypothesis accepted” and T = 1 “null
hypothesis rejected”

» Language convention: if the null hypothesis is rejected, we
equivalently call it a “positive detection” or “discovery”.

» Type | error (or false positive): T = 1 while the null hypothesis H,
is actually true.

» Type Il error (or false negative): T = 0 while the null hypothesis
Ho is actually true.
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p-values for single hypothesis testing

» Most testing procedures are based on a test statistic Z(X) € R
> T,(X)=1{Z(X) > t(a)}

» threshold t(«) is such that that, if Hy is true, P[Z(X) > {(a)] < «
» Ensures control of type | error rate at level a.
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p-values for single hypothesis testing

Most testing procedures are based on a test statistic Z(X) € R
To(X) = 1{Z(X) = t()}

threshold t(«) is such that that, if g is true, P[Z(X) > t(a)] < «
Ensures control of type | error rate at level a.

The statistic can then be normalized: put

p(X) = t1(Z(X));

then if Hy is true, from the above

vVvYyyvyy

P[p(X) < ] < a

i.e. p(X) is stochastically lower bounded by a uniform random
variable in [0, 1] .

» p(X) is called the p-value function associated to this testing
procedure.
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Multiple testing

» Possibly very large number of
different null hypotheses to
test.simultaneously
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image

G. Blanchard, F. Fleuret, E. Roguain Adaptive FDR procedures Multiple Testing 7129



Multiple testing

» Possibly very large number of
different null hypotheses to
test.simultaneously

» testing for the presence of a
large number of different
chemical compounds.

» testing which pixels represent
significant activity in an FMRI
image

» testing which genes have
significantly high expression
level in microarray data

G. Blanchard, F. Fleuret, E. Roguain Multiple Testing 7129



Multiple testing

» Possibly very large number of
different null hypotheses to
test.simultaneously

» testing for the presence of a
large number of different
chemical compounds.

» testing which pixels represent
significant activity in an FMRI
image

» testing which genes have
significantly high expression
level in microarray data

» testing which regression
variables X() have a
dependence relationship with an
output Y
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Mathematical setting for multiple testing

» A set H of null hypotheses to be tested.

» A subset Hy C H is the set of null hypotheses that are actually
true for the generating probability distribution under scrutiny.

» (Hp is of course unknown!)
» In general, a multiple testing procedure is:

Data X = (Xi, ..., Xn) — Rejected hypotheses R(X) C H
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Mathematical setting for multiple testing

» A set H of null hypotheses to be tested.

» A subset Hy C H is the set of null hypotheses that are actually
true for the generating probability distribution under scrutiny.

» (Hp is of course unknown!)
» In general, a multiple testing procedure is:

Data X = (Xi, ..., Xn) — Rejected hypotheses R(X) C H

» We assume that for each single h € H, we already know a single
testing procedure T, with corresponding p-value function py, .

» Main issue: how to construct a reasonable multiple testing
procedure from the knowledge of the single testing ones?

>
Data X — p-values p = (pn(X))nenw — R(P) CH
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What quantification for the type | error?

» There is a risk of error for each separate hypothesis tested. How
to assess globally the quality of a multiple testing procedure?

» Traditional measure: family-wise error rate (FWER), the probability
that the procedure makes at least one type | error:

FWER(R) = P[R(X) N Ho # 0]
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What quantification for the type | error?

» There is a risk of error for each separate hypothesis tested. How
to assess globally the quality of a multiple testing procedure?

» Traditional measure: family-wise error rate (FWER), the probability
that the procedure makes at least one type | error:

FWER(R) = P[R(X) N Ho # 0]

» Less conservative measure of error: Benjamini and Hochberg’s
False Discovery Rate (FDR) (1995):

\R(X)ﬂHol}

FDR(R) =E [ RO
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FDR and screening processes

» The FDR:

FDR(R) = E [R(X) mHOq

|R(X)]
» This notion is particularly adapted to screening processes:

Large set of objects

!

Select candidates (screening)
using limited data

!

Further study of candidates
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A “self-consistency” condition

» Assume we know a priorithat |R| > k.
» If we want FDR < «, we can afford up to ak errors on average.
» Consider a thresholding procedure R = {h: p, < t}, then

E[Nb of errors for Rl = > P[pn < ] < [Holt < |H|t
heH

» Choose t = ak/|H|.
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A “self-consistency” condition

» Assume we know a priorithat |R| > k.
» If we want FDR < «, we can afford up to ak errors on average.
» Consider a thresholding procedure R = {h: p, < t}, then

E[Nb of errors for Rl = > P[pn < ] < [Holt < |H|t
heH

» Choose t = ak/|H|.

» Now, if for an arbitrary procedure R we observe “post-hoc” that we
would like to have rejected {h: p, < «|R|/|H]|}.

» Introduce the self-consistency condition
R c {h:pn<ap(|R))} (SC)
» (is the shape function.
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FDR control under (SC)

The FDR can rewritten as:

FDR(R) = E [M] S n [1{h€ R}]

AT E A
1(pn < aB(AD)
S,;OE[ e

Under (SC) FDR control is reduced to a purely probabilistic bound of

the form 1(U < co(V))
<c
=[S =

where U is stochastically lower bounded by a uniform distribution, and
under appropriate dependency conditions between U and V.
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Different cases

» Case 1: independent test statistics: inequality satisfied for

B(x) = x/[H|.
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Different cases

» Case 1: independent test statistics: inequality satisfied for
B(x) = x/IH|.

» Case 2: positively dependent (PRDS, Benjamini and Yekutieli
2001) test statistics: inequality satisfied for 5(x) = x/|H]|.
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Different cases

» Case 1: independent test statistics: inequality satisfied for
B(x) = x/[H].

» Case 2: positively dependent (PRDS, Benjamini and Yekutieli
2001) test statistics: inequality satisfied for 5(x) = x/|H]|.

» Case 3: unspecified dependences. inequality satisfied for

1 X
500 = 7 /0 udv(u)

where v is any probability measure on R .

In all of these three cases: under the corresponding dependency
assumptions and (SC), we have

[Ho|
FDR(R) < —«
(R) < |H|

In cases 1 and 2: additionally assume that R is a nonincreasing function.of p
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Step-up procedures

Rc {h:pn<ap(|R)} (SC)

» any procedure R satisfying (SC) for a certain shape function 3 has
controlled FDR under appropriate dependency conditions.
» to optimize power under this constraint, we want to have the set R
as large as possible under (SC).
» this is precisely realized by a “step-up” procedure:
« order the p-values p(") < p@ < ... < p(m
« put kK = max {i:p" < ap(i}
« put R={n0, ... pi}
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Step-up procedure

A P—values (reweighted),

sorted

= —

Rejected null hypotheses
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Role of shape function 3

» In the case of independent or PRDS test statistics, 5 is linear with
slope |H|~'. It is the celebrated Benjamini-Hochberg (1995) linear
step-up procedure (LSU)

» In the case of unspecified dependencies, we have to pay a price:
shape function  is always smaller than the LSU.

500 =m0 [ " udv ()

» (Counter-examples exists to show that this price is necessary
from a theoretical point of view)
» v then plays the role of a prior on the rejection set size |R|.
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Role of shape function 3

» In the case of independent or PRDS test statistics, 5 is linear with
slope |H|~'. It is the celebrated Benjamini-Hochberg (1995) linear
step-up procedure (LSU)

» In the case of unspecified dependencies, we have to pay a price:
shape function  is always smaller than the LSU.

500 =m0 [ " udv ()

» (Counter-examples exists to show that this price is necessary
from a theoretical point of view)

» v then plays the role of a prior on the rejection set size |R|.

» v(i)=c i7" fori=1,...,|H| gives rise to another linear step-up
procedure namely recovers Benjamini and Yekutieli (2001). The
slope is lower by a factor ¢ ~ In | H|.

» Other choices are possible for the v-prior and allow added
flexibility.
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Adaptivity to |Ho|

» In all cases reviewed previously, we have derived step-up
procedures R satisfying

FDR(R) < moa

where mg = %

» This is always too conservative. Ideally one would replace the
shape function g by the “ideal one”

ﬂ*=7r0_1ﬂ...
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Adaptivity to |Ho|

» In all cases reviewed previously, we have derived step-up
procedures R satisfying

FDR(R) < moa

where mg = %

» This is always too conservative. Ideally one would replace the
shape function g by the “ideal one”

,3*:71'0_1,3...

.. but 7y is unknown. Two ways to address this:

« (Under-)estimate mo by some 7 then put 3 = 7' 3 (two-stage

procedure).
« Use a deterministic shape function ( that is in some sense directly

“adaptive” (one-stage procedure)
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Existing procedures

» Modified Storey’s procedure (2001): (Storey-)\) 2-stage procedure
with
1 (-
0o = .
[{h:pn> A} +1
» Procedure of Benjamini, Kruger and Yekutieli (2006) (BKY06):
2-stage procedure with
~ 1 1 K|
Ty = ,
" 1+alH|-|R
where Ry is the linear step-up procedure at level o/(1 + «).
» The following result holds:

Theorem (Benjamini, Kruger, Yekutieli 06)

If we assume that the test statistics are independent, then for either of
the above procedures,
FDR(R) < «
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New one-stage adaptive procedure for independent
test statistics

» We introduce a new one-stage step-up procedure:
> Put 3(x) = 17 min (m, 1)

Theorem

If we assume that the test statistics are independent, then for the
one-stage procedure R using the above shape function,

FDR(R) < o
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Comparison to LSU (o = 0.1)

1 || Adapt

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

The new one-stage procedure is always more powerful than standard
step-up except in “marginal” situations.
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New two-stage adaptive procedure for independent
test statistics

» Idea: use previous procedure |Ry| instead of standard linear
step-up in (BKYO06).
» Use
%—1 _ 1 ’H|
0 1+alH| - R+ 17

Theorem

If we assume that the test statistics are independent, then for the
two-stage procedure R using the above 7, 1

FDR(R) < o

» Always better than (BKY06) except for the “+1” and the marginal
situations mentioned previously.
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Comparison on simulations

Setting:
> X~ N (puk, 1) with pk € {0, m}
> Cov [x(k), x(k’>] —pfork #K

« p = 0: independent case
e p> 0 : positive dependence case

» One-sided tests: hy = “ux < 0”

» 1000 repetitions, m=3, |H| = 100
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Power (independent case p = 0)
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Plotted: ratio of correct rejections/correct rejections of “oracle” LSU
procedure (if 7o were known), as a function of .
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FDR (positive correlation case p = 0.5
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Plotted: FDR against mq for various procedures in a positively
correlated case
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Adaptive procedure under unspecified dependencies

» Recall that for unspecified dependencies we can use a shape
function of the form g(x) = f(f udv(u).
 Step 1: perform regular step-up procedure Ry at level «/4 and
shape function 5.

1
« Step 2: put7; ' = (1 —+/2|Ry|/|H|—1) and perform step-up
0

procedure at level «//2 with shape function 3 = %5’16

Theorem
The above procedure has FDR(R) < « under arbitrary dependencies.

» Note that this is much less favorable than in the independent case. It
improves over the non-adaptive procedure only if the first stage at level
a/4 (!) rejects more than 63% hypotheses.

» However this is up to our knowledge the first theoretically proved
adaptive procedure in the unspeficied dependencies case.
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Conclusion and perspectives

» Contributions:

« Synthetic theoretical framework to recover and extend results on
FDR control under various dependency assumptions.

« New one-stage adaptive procededures that improves over standard
linear step-up.

» New two-stage adaptive procedure that improves over (BKY06) and
appears robust wrt. positive correlations.

« In the unspecified dependencies case, first theoretically proved
adaptive procedure (relevant only if there is already a large number
of “easy” rejections)

» Some orientations for future work:

« Better adaptive procedures in the unspecified dependencies case

 Role of the “size prior” v in the shape function

« Theoretical support for robustness properties of procedures which
are only provably controlled in the independent case
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