Introduction
Homeomorphic smoothing splines
Simulations and a real example
Conclusion

Homeomorphic smoothing splines: monotonizing an unconstrained estimator in nonparametric regression

Jérémie Bigot & Sébastien Gadat

Institut de Mathématiques de Toulouse Laboratoire de Statistique et Probabilités Université Paul Sabatier

Algorithms in Complex Systems EURANDOM, Eindhoven, September 2007

- Introduction
 - Nonparametric regression and spline smoothing
 - Nonparametric regression under monotonicity constraints
- Homeomorphic smoothing splines
 - Monotone functions solution of an ODE
 - A new class of monotone estimators
 - Asymptotic properties
- Simulations and a real example
- 4 Conclusion

Formulation of the problem

Noisy observations of an unknown function f

$$y_i = f(x_i) + \sigma \epsilon_i$$
 with $\epsilon_i \sim_{i.i.d.} \mathbb{E}(\epsilon_i) = 0$, $\text{Var}(\epsilon_i) = 1$,

where $x_1, \ldots x_n$ are distinct points in [0, 1]

- **Problem**: monotone estimation of *f*.
- Applications : e.g. analysis of growth curves

Spline smoothing

Noisy observations of an unknown function f

$$y_i = f(x_i) + \sigma \epsilon_i$$

• Let $\tilde{\mathcal{H}}$ be some space of functions defined on \mathbb{R} . Spline smoothing consists in finding $\hat{f}_{n,\lambda} \in \tilde{\mathcal{H}}$ such that

$$\hat{f}_{n,\lambda} = \arg\min_{\tilde{h} \in \tilde{\mathcal{H}}} \frac{1}{n} \sum_{i=1}^{n} (\tilde{h}(x_i) - y_i)^2 + \lambda S(\tilde{h}),$$

where $S(\tilde{h})$ measures the "smoothness" of \tilde{h} , and λ is a regularisation parameter.

Spline smoothing

- Let $\tilde{\mathcal{H}} = Span(\psi_1, \dots \psi_M) + \mathcal{H}_K$ where $(\psi_1, \dots \psi_M)$ are functions defined on \mathbb{R} , and \mathcal{H}_K is a reproducing kernel Hilbert space of $L^2(\mathbb{R})$ (i.e. $f(x) = \langle K(x, \cdot), f \rangle_K$ for some kernel $K : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$).
- ullet Spline smoothing : find $\hat{f}_{n,\lambda} \in ilde{\mathcal{H}}$ such that

$$\hat{f}_{n,\lambda} = \arg\min_{\tilde{h} \in \tilde{\mathcal{H}}} \frac{1}{n} \sum_{i=1}^{n} (\tilde{h}(x_i) - y_i)^2 + \lambda \|h\|_K^2, \text{ where } \tilde{h} = \sum_{j=1}^{M} a_j \psi_j + h.$$

• Kernel trick $\Longrightarrow \hat{f}_{n,\lambda}$ can be easily computed :

$$\hat{f}_{n,\lambda}(x) = \sum_{i=1}^{M} \alpha_i \psi_i(x) + \sum_{i=1}^{n} \beta_i K(x, x_i)$$

where the α_i 's and the β_i 's are the solutions of a linear system of equations.

Example of Spline smoothing

Noisy observations

Estimation with λ small $(M = 2, \psi_1(x) = 1 \text{ and } \psi_2(x) = x)$

Example of Spline smoothing

Estimation with λ by GCV ($M=2, \psi_1(x)=1$ and $\psi_2(x)=x$)

Example of Spline smoothing

Estimation with λ large $(M = 2, \psi_1(x) = 1 \text{ and } \psi_2(x) = x)$

Regression under shape constraints : some existing approaches

Isotonic regression (piecewise constant estimator)

Barlow, Bartholomew, Bremner & Brunk (1972)

• Spline, kernel or wavelet estimator with e.g. a set of constraints at the design points : $\hat{f}_n(x_{i+1}) - \hat{f}_n(x_i) \ge 0$ for i = 1, ..., n

Ramsay (1988), Kelly & Rice (1990), Hall & Huang (2001), Zhang (2004), Antoniadis, Bigot & Gijbels (2007)

 "Projection" of an unconstrained estimator into a space of monotone functions

Mammen & Thomas-Agnan (1999), Mammen, Marron, Turlach & Wand (2001), Dette, Neumeyer & Pilz (2006)

Some drawbacks of these smooth and then monotonize methods:

- numerical computation of the projection?
- projection method that is specific to the chosen unconstrained estimator
- usually the monotone estimator appears to be less smooth

Some problems with monotone regression

- Choice of a class of estimators and of a specific method to impose monotonicity
- What is the rate of convergence of a monotone estimator \hat{f}_n^c ? Can we compare the risk of \hat{f}_n^c to the risk of the associated unconstrained estimator \hat{f}_n ? i.e.

$$R_n(\hat{f}_n^c, f) = \frac{1}{n} \sum_{i=1}^n (\hat{f}_n^c(x_i) - f(x_i))^2 \text{ and } R_n(\hat{f}_n, f) = \frac{1}{n} \sum_{i=1}^n (\hat{f}_n(x_i) - f(x_i))^2$$

- Choice of the regularization parameter
- Numerical computation and algorithmic cost

Image warping and construction of bijective functions

Let $\Omega \subset \mathbb{R}^2$ and two mages $I_1, I_2 : \Omega \to \mathbb{R}$.

• Image warping : find $\phi: \Omega \to \Omega$ such that

$$I_1(x) \approx I_2(\phi(x))$$
 and ϕ is **bijective**

- Trouvé, Younes et al.: general methodology for constructing smooth and bijective functions (diffeomorphisms) in any dimension
- Remark: in 1D, a strictly monotone and continuous function is a homeophormism (C^0 diffeomorphism)
- Main idea: to adapt tools developed for image warping to the problem of monotone regression

- Let $v : \mathbb{R} \to \mathbb{R}$ be a C^1 function such that $||v'||_{\infty} < +\infty$, then if ϵ is sufficiently small $\phi(x) = x + \epsilon v(x)$ is a monotone function
- Let v_1, \ldots, v_p be C^1 functions and $\epsilon > 0$ such that

$$\phi_{p+1} = (Id + \epsilon v_p) \circ \dots \circ (Id + \epsilon v_1) = (Id + \epsilon v_p) \circ \phi_p = \phi_p + \epsilon v_p \circ \phi_p$$

is a sequence of monotone functions which can be written as

$$\frac{\phi_{p+1} - \phi_p}{\epsilon} = \nu_p \circ \phi_p \tag{1}$$

• If $\epsilon \to 0$, we obtain (by introducing a time variable t)

$$\frac{\partial \phi_t}{\partial t} = v_t(\phi_t)$$

- Let $v : \mathbb{R} \to \mathbb{R}$ be a C^1 function such that $||v'||_{\infty} < +\infty$, then if ϵ is sufficiently small $\phi(x) = x + \epsilon v(x)$ is a monotone function
- Let v_1, \ldots, v_p be C^1 functions and $\epsilon > 0$ such that

$$\phi_{p+1} = (Id + \epsilon v_p) \circ \dots \circ (Id + \epsilon v_1) = (Id + \epsilon v_p) \circ \phi_p = \phi_p + \epsilon v_p \circ \phi_p$$

is a sequence of monotone functions which can be written as

$$\frac{\phi_{p+1} - \phi_p}{\epsilon} = \nu_p \circ \phi_p \tag{1}$$

• If $\epsilon \to 0$, we obtain (by introducing a time variable t)

$$\frac{\partial \phi_t}{\partial t} = v_t(\phi_t)$$

- Let $v : \mathbb{R} \to \mathbb{R}$ be a C^1 function such that $||v'||_{\infty} < +\infty$, then if ϵ is sufficiently small $\phi(x) = x + \epsilon v(x)$ is a monotone function
- Let v_1, \ldots, v_p be C^1 functions and $\epsilon > 0$ such that

$$\phi_{p+1} = (Id + \epsilon v_p) \circ \dots \circ (Id + \epsilon v_1) = (Id + \epsilon v_p) \circ \phi_p = \phi_p + \epsilon v_p \circ \phi_p$$

is a sequence of monotone functions which can be written as

$$\frac{\phi_{p+1} - \phi_p}{\epsilon} = \nu_p \circ \phi_p \tag{1}$$

• If $\epsilon \to 0$, we obtain (by introducing a time variable t)

$$\frac{\partial \phi_t}{\partial t} = v_t(\phi_t)$$

Asymptotic properties

Construction of a class of monotone functions

Proposition (Trouvé, Younes)

Let $\tilde{\mathcal{H}} = Span\{1, x\} + \mathcal{H}_K$ and $(v_t, t \in [0, 1])$ be a time-dependent vector field such that for all t, $v_t \in \tilde{\mathcal{H}}$ and

$$\int_0^1 \|v_t\|_{\tilde{H}} dt < +\infty$$

Then for all $x \in \Omega \subset \mathbb{R}$ and $t \in [0, 1]$

• there exists a unique solution of the ODE $\frac{\partial \phi_t}{\partial t} = v_t(\phi_t)$ with initial condition $\phi_0(x) = x$ i.e.

$$\phi_t(x) = x + \int_0^t v_s(\phi_s(x)) ds$$

• for all $t \in [0,1]$, ϕ_t is a homeomorphism from Ω to $\phi_t(\Omega)$.

Asymptotic properties

Numerical example

Computation of a monotone function vie the integration of an ODE

 $v_t = v$ for all $t \in [0, 1]$, the vector field is not time-dependent

$$\phi_t(x) = x$$
 at time $t = 0$

$$\phi_t(x) = x + \int_0^t v_s(\phi_s(x)) ds$$
 at time $t = 0.05$

$$\phi_t(x) = x + \int_0^t v_s(\phi_s(x)) ds$$
 at time $t = 0.1$

$$\phi_t(x) = x + \int_0^t v_s(\phi_s(x)) ds$$
 at time $t = 0.3$

$$\phi_t(x) = x + \int_0^t v_s(\phi_s(x)) ds$$
 at time $t = 0.7$

$$\phi_t(x) = x + \int_0^t v_s(\phi_s(x)) ds$$
 at time $t = 1$

 Let f be strictly monotone, main idea: write f as the solution at time t = 1 of an ODE with initial condition the identity i.e.

$$\phi_0(x) = x$$
 $\phi_1(x) = f(x)$ $\frac{\partial \phi_t}{\partial t} = v_t^f(\phi_t(x))$

or also

$$f(x) = x + \int_0^1 v_t(\phi_t(x))dt$$

- **Problem**: can we find such a v^f for any monotone function f?
- **Remark**: any function *f* can be written as

$$f(x) = x + \int_0^1 (f(x) - x) dx$$

 Let f be strictly monotone, main idea: write f as the solution at time t = 1 of an ODE with initial condition the identity i.e.

$$\phi_0(x) = x$$
 $\phi_1(x) = f(x)$ $\frac{\partial \phi_t}{\partial t} = v_t^f(\phi_t(x))$

or also

$$f(x) = x + \int_0^1 v_t(\phi_t(x))dt$$

- **Problem**: can we find such a v^f for any monotone function f?
- Remark: any function f can be written as

$$f(x) = x + \int_0^1 (f(x) - x) dx$$

• Let f be strictly monotone, **main idea**: write f as the solution at time t = 1 of an ODE with initial condition the identity i.e.

$$\phi_0(x) = x$$
 $\phi_1(x) = f(x)$ $\frac{\partial \phi_t}{\partial t} = v_t^f(\phi_t(x))$

or also

$$f(x) = x + \int_0^1 v_t(\phi_t(x))dt$$

- **Problem**: can we find such a v^f for any monotone function f?
- Remark: any function f can be written as

$$f(x) = x + \int_0^1 (f(x) - x)dt$$

Proposition

Let $\tilde{\mathcal{H}} = Span\{1,x\} + \mathcal{H}^m(\mathbb{R})$, $m \geq 2$ and $f \in \mathcal{H}^m([0;1])$ such that f' > 0 on [0;1]. Let ϕ_t such that

$$\phi_t(x) = tf(x) + (1-t)x$$

Then, there exists a time-dependent vector field $(v_t^f \in \tilde{\mathcal{H}}, t \in [0, 1])$ which satisfies :

$$\forall t \in [0;1] \quad \forall x \in [0;1] \qquad v_t^f(\phi_t(x)) = f(x) - x,$$

i.e.

$$f(x) = x + \int_0^1 (f(x) - x) dx = x + \int_0^1 v_t^f (tf(x) + (1 - t)x) dx$$

Estimation of the vector field

$$f(x) = x + \int_0^1 v_t^f(tf(x) + (1 - t)x)dt$$

Problem : estimation of $(v_t^f, t \in [0, 1])$ based on the observations y_i ? **Idea :** use an unconstrained estimator \hat{f}_n of f at the points x_i

- For any t in [0;1], $v_t^f(tf(x_i) + (1-t)x_i) = f(x_i) x_i$
- Estimation of v_t^f by \hat{v}_t^f using Spline smoothing of the "data"

$$\{\tilde{x}_i^t = t\hat{f}_n(x_i) + (1-t)x_i\}_{i=1,...,n}$$
 and $\{\tilde{y}_i = \hat{f}_n(x_i) - x_i\}_{i=1,...,n}$

• Computation of the solution at time t = 1 of the ODE :

$$\hat{f}_n^c(x) = \phi_1(x)$$
 with $\frac{\partial \phi_t}{\partial t} = \hat{v}_t^f(\phi_t(x))$ and $\phi_0(x) = x$

Minimisation of a global energy

Let $E_{\lambda}(v)$ be the global energy for $v=(v_t\in \tilde{\mathcal{H}}, t\in [0,1])$

$$E_{\lambda}(v) = \int_{0}^{1} \frac{1}{n} \sum_{i=1}^{n} \left(\hat{f}_{n}(x_{i}) - x_{i} - v_{t}(t\hat{f}_{n}(x_{i}) + (1-t)x_{i}) \right)^{2} dt + \lambda \int_{0}^{1} \|h_{t}\|_{K}^{2} dt,$$

where $v_t(x) = a_t + b_t x + h_t(x)$ with $h_t \in \mathcal{H}_K$

Proposition

Suppose that the points $\tilde{x}_i^t = t\hat{f}_n(x_i) + (1-t)x_i$ are distinct for almost all $t \in [0,1]$ and that n > 2, the unique minimizer \hat{v}_{λ}^f of E_{λ} is such that

$$\hat{v}_{t,\lambda}^f = \arg\min_{\tilde{h} \in \tilde{\mathcal{H}}} \frac{1}{n} \sum_{i=1}^n \left(\hat{f}_n(x_i) - x_i - \tilde{h}(t\hat{f}_n(x_i) + (1-t)x_i) \right)^2 + \lambda \|h\|_K^2$$

Main advantage : computation of \hat{v}^f by Spline smoothing without imposing any shape constraints for $\tilde{h} \in \tilde{\mathcal{H}}$.

Noisy observations

Unconstrained estimator \hat{f}_n

Monotone smoothing with a large λ

Monotone smoothing with a moderate λ

Monotone smoothing with a small λ

Convergence of the monotone estimator

Let $\hat{f}_{\lambda_n}^{n,c}$ be the solution at time t=1 of the ODE governed by $\hat{v}_{\lambda_n}^f$.

Theorem

- Suppose that the unconstrained estimator \hat{f}^n and the x_i satisfy
 - The $\tilde{x}_i^t = t\hat{f}_n(x_i) + (1-t)x_i$ are distinct a.s. for almost all $t \in [0, 1]$
 - 2 There exits $\omega \geq 0$ such that for any continuous function g

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} g(x_i) = \int_{0}^{1} g(x)\omega(x)dx$$

- $\lim_{n\to+\infty} R_n(\hat{f}^n,f) = 0$ in probability
- Then for any sequence $\lambda_n \to 0$, there exists a constant $\Lambda > 0$ such that with probability tending to 1 as $n \to +\infty$:

$$R_n(\hat{f}_{\lambda_n}^{n,c},f) \le \Lambda \left(R_n(\hat{f}^n,f) + \lambda_n\right)$$

Convergence of the monotone estimator

Let $\hat{f}_{\lambda_n}^{n,c}$ be the solution at time t=1 of the ODE governed by $\hat{v}_{\lambda_n}^f$.

Theorem

- Suppose that the unconstrained estimator \hat{f}^n and the x_i satisfy
 - The $\tilde{x}_i^t = t\hat{f}_n(x_i) + (1-t)x_i$ are distinct a.s. for almost all $t \in [0,1]$
 - 2 There exits $\omega \geq 0$ such that for any continuous function g

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} g(x_i) = \int_0^1 g(x)\omega(x)dx$$

- $\lim_{n\to+\infty} R_n(\hat{f}^n,f) = 0$ in probability
- Then for any sequence $\lambda_n \to 0$, there exists a constant $\Lambda > 0$ such that with probability tending to 1 as $n \to +\infty$:

$$R_n(\hat{f}_{\lambda_n}^{n,c},f) \le \Lambda \left(R_n(\hat{f}^n,f) + \lambda_n\right)$$

Convergence of the monotone estimator

Let $\hat{f}_{\lambda_n}^{n,c}$ be the solution at time t=1 of the ODE governed by $\hat{v}_{\lambda_n}^f$.

Theorem

- Suppose that the unconstrained estimator \hat{f}^n and the x_i satisfy
 - The $\tilde{x}_i^t = t\hat{f}_n(x_i) + (1-t)x_i$ are distinct a.s. for almost all $t \in [0,1]$
 - 2 There exits $\omega \geq 0$ such that for any continuous function g

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} g(x_i) = \int_0^1 g(x)\omega(x)dx$$

- $\lim_{n\to+\infty} R_n(\hat{f}^n,f) = 0$ in probability
- Then for any sequence $\lambda_n \to 0$, there exists a constant $\Lambda > 0$ such that with probability tending to 1 as $n \to +\infty$:

$$R_n(\hat{f}_{\lambda_n}^{n,c},f) \le \Lambda \left(R_n(\hat{f}^n,f) + \lambda_n\right)$$

Convergence of the monotone estimator

Let $\hat{f}_{\lambda_n}^{n,c}$ be the solution at time t=1 of the ODE governed by $\hat{v}_{\lambda_n}^f$.

Theorem

- Suppose that the unconstrained estimator \hat{f}^n and the x_i satisfy
 - The $\tilde{x}_i^t = t\hat{f}_n(x_i) + (1-t)x_i$ are distinct a.s. for almost all $t \in [0,1]$
 - 2 There exits $\omega \geq 0$ such that for any continuous function g

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} g(x_i) = \int_0^1 g(x)\omega(x)dx$$

- Then for any sequence $\lambda_n \to 0$, there exists a constant $\Lambda > 0$ such that with probability tending to 1 as $n \to +\infty$:

$$R_n(\hat{f}_{\lambda_n}^{n,c},f) \le \Lambda \left(R_n(\hat{f}^n,f) + \lambda_n\right)$$

Convergence of the monotone estimator

Let $\hat{f}_{\lambda_n}^{n,c}$ be the solution at time t=1 of the ODE governed by $\hat{v}_{\lambda_n}^f$.

Theorem

- Suppose that the unconstrained estimator \hat{f}^n and the x_i satisfy
 - The $\tilde{x}_i^t = t\hat{f}_n(x_i) + (1-t)x_i$ are distinct a.s. for almost all $t \in [0,1]$
 - 2 There exits $\omega \geq 0$ such that for any continuous function g

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} g(x_i) = \int_0^1 g(x)\omega(x)dx$$

- Then for any sequence $\lambda_n \to 0$, there exists a constant $\Lambda > 0$ such that with probability tending to 1 as $n \to +\infty$:

$$R_n(\hat{f}_{\lambda_n}^{n,c},f) \leq \Lambda\left(R_n(\hat{f}^n,f) + \lambda_n\right)$$

Rate of convergence for Sobolev spaces

Sobolev case : $f \in H^m([0,1])$ and $\mathcal{H}_K = \mathcal{H}^m(\mathbb{R})$.

Unconstrained estimator: Spline estimate of Speckman (1985) using the Demmler-Reinsch basis. Optimal estimator (but not adaptive) for f belonging to $H^m([0,1])$.

- Condition 1 (distinct time-design) and Condition 3 (convergence in probability) are satisfied
- Speckman's condition : $x_i = G((2i-1)/2n)$, hence **Condition 2** is satisfied with $\omega(x) = \frac{1}{G'(G^{-1}(x))}$

Corollary

Then, the monotone estimator \hat{f}_{n,λ_n}^c based on the minimax estimator \hat{f}_n of Speckman (1985) is such that $:R_n(\hat{f}_{n,\lambda_n}^c,f)=\mathcal{O}_P\left(n^{-\frac{2m}{2m+1}}\right)$, provided $\lambda_n=\mathcal{O}(n^{-\frac{2m}{2m+1}})$.

- ullet Adaptive estimator for $\lambda_n=rac{1}{n}<<\mathbb{E}R_n(\hat{f}^n,f)\sim n^{-rac{2s}{2s+1}}$
- For Spline smoothing $\hat{f}_{n,\lambda}$ evaluated at the points x_1, \ldots, x_n is a linear function of y_1, \ldots, y_n , i.e.

$$\mathbf{\hat{f}}_{\mathbf{n},\lambda} = \left(\hat{f}_{n,\lambda}(x_1), \dots, \hat{f}_{n,\lambda}(x_n)\right)' = A_{\lambda}(y_1, \dots, y_n)',$$

where A_{λ} is a $n \times n$ matrix.

Generalized cross-validation criterion

$$\hat{\lambda}_n = \arg\min_{\lambda \ge 0} V(\lambda) = \arg\min_{\lambda \ge 0} \frac{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{f}_{n,\lambda}(x_i))^2}{[Tr(I_n - A_{\lambda})]^2}$$

- Adaptive estimator for $\lambda_n = \frac{1}{n} << \mathbb{E} R_n(\hat{f}^n, f) \sim n^{-\frac{2s}{2s+1}}$
- For Spline smoothing $\hat{f}_{n,\lambda}$ evaluated at the points x_1, \ldots, x_n is a linear function of y_1, \ldots, y_n , i.e.

$$\hat{\mathbf{f}}_{\mathbf{n},\lambda} = \left(\hat{f}_{n,\lambda}(x_1), \dots, \hat{f}_{n,\lambda}(x_n)\right)' = A_{\lambda}(y_1, \dots, y_n)',$$

where A_{λ} is a $n \times n$ matrix.

Generalized cross-validation criterior

$$\hat{\lambda}_n = \arg\min_{\lambda \ge 0} V(\lambda) = \arg\min_{\lambda \ge 0} \frac{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{f}_{n,\lambda}(x_i))}{[Tr(I_n - A_\lambda)]^2}$$

- Adaptive estimator for $\lambda_n = \frac{1}{n} << \mathbb{E} R_n(\hat{f}^n, f) \sim n^{-\frac{2s}{2s+1}}$
- For Spline smoothing $\hat{f}_{n,\lambda}$ evaluated at the points x_1, \ldots, x_n is a linear function of y_1, \ldots, y_n , i.e.

$$\hat{\mathbf{f}}_{\mathbf{n},\lambda} = \left(\hat{f}_{n,\lambda}(x_1), \dots, \hat{f}_{n,\lambda}(x_n)\right)' = A_{\lambda}(y_1, \dots, y_n)',$$

where A_{λ} is a $n \times n$ matrix.

Generalized cross-validation criterion

$$\hat{\lambda}_n = \arg\min_{\lambda \ge 0} V(\lambda) = \arg\min_{\lambda \ge 0} \frac{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{f}_{n,\lambda}(x_i))^2}{[Tr(I_n - A_{\lambda})]^2}$$

• Let $\hat{x}_i^t = t\hat{f}^n(x_i) + (1-t)x_i$ et $\hat{y}_i = \hat{f}^n(x_i) - x_i$. Then for all $t \in [0,1]$ the estimator v_{t,λ_n}^f evaluated at the points $\hat{x}_1^t, \dots, \hat{x}_n^t$ is a linear function of $\hat{y}_1, \dots, \hat{y}_n$, i.e.

$$\mathbf{v}_{t,\lambda_n}^f = \left(v_{t,\lambda_n}^f(\hat{x}_1^t), \dots, v_t^{n,\lambda}(\hat{x}_n^t)\right)' = A_{\lambda,t}(\hat{y}_1, \dots, \hat{y}_n)'$$

Generalized cross-validation type criterion

$$\hat{\lambda}_n = \arg\min_{\lambda \geq 0} V(\lambda) = \arg\min_{\lambda \geq 0} \frac{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{f}_{n,\lambda}^c(x_i))^2}{\int_0^1 [Tr(I_n - A_{\lambda,t})]^2 dt}.$$

A simple algorithm

- choose a sufficiently fine discretization $t_k = \frac{k}{T}, k = 0, \dots, T$ of the time-interval [0,1]. In practice, we found that the choice T=20 gives satisfactory results.
- initialization : set $\phi_{n,\lambda}^0(x)=x$ for $x\in[0,1]$
- repeat : for $k = 1, \ldots, T$,
 - find for $t=t_k$ the solution $v_{t_k}^{n,\lambda}$ of the unconstrained smoothing problem

$$v_{t_k}^{n,\lambda} = \arg\min_{\tilde{h} \in \tilde{\mathcal{H}}} \frac{1}{n} \sum_{i=1}^{n} \left(\hat{f}_n(x_i) - x_i - \tilde{h}(t_k \hat{f}_n(x_i) + (1 - t_k)x_i) \right)^2 + \lambda \|h\|_K^2$$

• compute
$$\phi_{n,\lambda}^{k+1}(x) = \phi_{n,\lambda}^k(x) + \frac{1}{T} v_{t_k}^{n,\lambda} \left(\phi_{n,\lambda}^k(x) \right)$$

Comparison withh two other methods

Dette Neumeyer & Pilz (2006): estimation of the inverse of f

$$\hat{m}_n^{-1}(x) = \frac{1}{Nh_d} \sum_{i=1}^N \int_{-\infty}^t K_d \left(\frac{\hat{f}_n(\frac{i}{N}) - u}{h_d} \right) du,$$

where \hat{f}_n is an unconstrained estilmator, K_d a positive kernel, h_d a bandwidth that controls the smoothness of \hat{m}_n^{-1}

• Ramsay (1998) : parametric monotone estimator : find $f(x) = C_0 + C_1 \int_0^x \exp\left(\int_0^z g(v)dv\right) dz$ which minimizes :

$$\sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int_0^1 |g(t)|^2 dt,$$

with $g(t) = \sum_{k=1}^{K} c_k B_k(t)$, and C_0, C_1 abitrary constants

Unconstrained estimation by local polynomials

Estimation by Dette et al. (smooth and then monotonize) / Homeomorphic Spline / Ramsay (1998)

Unconstrained estimation by local polynomials

Estimation by Dette et al. (smooth and then monotonize) / Homeomorphic Spline / Ramsay (1998)

Pointwise empirical MSE - High SNR : Dette et al.'s estimator (dashed curves), homeomorphic smoothing spline (solid curves) and Ramsay's estimator (dotted curves)

A real example

Distances taken to stop versus the speed of cars Estimation by local polynomials

A real example

Distances taken to stop versus the speed of cars
Estimation by Dette et al. (smooth and then monotonize) /
Homeomorphic Spline / Ramsay's estimator

Conclusion

- Approach with relies on the representation of bijective functions as the solution of an ODE.
- Possible extensions in 2D and 3D.
- Applications to the statistical analysis of deformations for noisy images?
- Matlab codes available at

```
http ://www.lsp.ups-tlse.fr/Fp/Bigot/soft_fr.html
```