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Bivariate interval censored data: an example

X

Y
• We want to estimate the joint

distribution function of (X,Y ), where:
◦ X: time of HIV infection
◦ Y : time of onset of AIDS
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Bivariate interval censored data: an example

X

Y
R

• We want to estimate the joint
distribution function of (X,Y ), where:
◦ X: time of HIV infection
◦ Y : time of onset of AIDS

• X and Y can be interval censored.
Instead of a realization (x, y), we observe
an observation rectangle R that is known to contain (x, y).
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Bivariate interval censored data: an example

X

Y
R

• We want to estimate the joint
distribution function of (X,Y ), where:
◦ X: time of HIV infection
◦ Y : time of onset of AIDS

• X and Y can be interval censored.
Instead of a realization (x, y), we observe
an observation rectangle R that is known to contain (x, y).

• Goal: based on n i.i.d observation rectangles R1, . . . , Rn we
want to compute the MLE for the joint distribution function of
(X,Y ).
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The nonparametric maximum likelihood estimator
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The nonparametric maximum likelihood estimator
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∑n
i=1 log(PF (Ri))

maximal intersections

α1

α2

= maxα1,α2
log(α1) + 2 log(α2)

⇒ α1 = 1/3, α2 = 2/3
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The nonparametric maximum likelihood estimator

R3

R2

R1

2 4 6

2

4

6

maxF∈F

∑n
i=1 log(PF (Ri))

maximal intersections

α1

α2

= maxα1,α2
log(α1) + 2 log(α2)

⇒ α1 = 1/3, α2 = 2/3

Computation of the MLE:
• Reduction step: find maximal intersections
• Optimization step: solve optimization problem in α
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Difficulty in the computation of the MLE

• Number of maximal intersections can be very large:
◦ For bivariate censored data: O(n2)
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Difficulty in the computation of the MLE

• Number of maximal intersections can be very large:
◦ For bivariate censored data: O(n2)

◦ For d-variate censored data: O(nd)
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Outline

• Reduction step
• Optimization step
• R-package ‘MLEcens’
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Reduction step

Previous work:
• Betensky and Finkelstein (1999)
• Song (2001)

• Gentleman and Vandal (2001), time complexity O(n5)

• Bogaerts and Lesaffre (2004), time complexity O(n3)
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Reduction step

Previous work:
• Betensky and Finkelstein (1999)
• Song (2001)

• Gentleman and Vandal (2001), time complexity O(n5)

• Bogaerts and Lesaffre (2004), time complexity O(n3)

Related algorithm: finding the maximum number of rectangles
having a non-empty intersection:

• Lee (1983), time complexity O(n log n)

Our reduction algorithm, motivated by Lee (1983):

• Height Map Algorithm, time complexity O(n2)
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Height Map Algorithm

• Definition: Aj 6= ∅ is a maximal intersection if and only if
Aj = ∩i∈βj

Ri for some set βj ⊂ {1, . . . , n} and there is no
strict superset β∗

j ⊂ {1, . . . , n} of βj for which ∩i∈β∗

j
Ri 6= ∅.
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Height Map Algorithm

• Definition: Aj 6= ∅ is a maximal intersection if and only if
Aj = ∩i∈βj

Ri for some set βj ⊂ {1, . . . , n} and there is no
strict superset β∗

j ⊂ {1, . . . , n} of βj for which ∩i∈β∗

j
Ri 6= ∅.

• Basic idea of the Height Map Algorithm:
◦ Define a height map of the observed sets:
◦ The maximal intersections are exactly the local

maximum regions of the height map
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The algorithm

• Transform the observation rectangles into “canonical
rectangles"

• Find local maximum regions of the height map of the
canonical rectangles (by sweeping)

• Transform local maxima back to original coordinates
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Transform rectangles into canonical rectangles
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Replace x-coordinates
by their order statistics.
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Transform rectangles into canonical rectangles

Replace x-coordinates
by their order statistics.

2 63 51 4

Computation of the MLE forbivariate interval censored data – p. 9/23



Transform rectangles into canonical rectangles

Replace x-coordinates
by their order statistics.

3 51 42 6
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Transform rectangles into canonical rectangles

Replace x-coordinates
by their order statistics.

Replace y-coordinates
by their order statistics.
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Transform rectangles into canonical rectangles

Replace x-coordinates
by their order statistics.

Replace y-coordinates
by their order statistics.

1
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All x-coodinates are
different and take values
in {1, 2, . . . , 2n} (same for
y-coordinates).

Intersection structure of
the original and canonical
rectangles is identical.
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Why use canonical rectangles?

• We break possible ties early, so that we don’t have to worry
about this anymore

• It is easier and faster to work with integer coordinates
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Find local maxima by sweeping through the height map
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Find local maxima by sweeping through the height map
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Time and space complexity of the algorithm

For bivariate interval censored data:
• time complexity: O(n2)

• space complexity:
◦ computation: O(n)

◦ output: O(n2)
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Time and space complexity of the algorithm

For bivariate interval censored data:
• time complexity: O(n2)

• space complexity:
◦ computation: O(n)

◦ output: O(n2)

For d-dimensional interval censored data:
• time complexity: O(nd)

• space complexity:
◦ computation: O(nd−1)

◦ output: O(nd)
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Simulation study

Bivariate current status data from a simple exponential model:
• Variables of interest: X,Y ∼ Exp(1)

• Observation times: U, V ∼ Exp(1)

• X,Y,U, V mutually independent
• 50 simulations for sample sizes

50 100 250 500 1,000 2,500 5,000 10,000
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Simulation study

Comparison of five reduction algorithms

Sample size
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Computing the MLE: optimization step
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Computing the MLE: optimization step

R3
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maxF∈F

∑n
i=1 log(PF (Ri))

A2 A1

α1

α2
maxα∈A

∑n
i=1 log(

∑m
j=1 αj1{Aj ⊆ Ri})

where A = {α ∈ R
m : αj ≥ 0 and

∑m
j=1 αj = 1}
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Computing the MLE: optimization step
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maxF∈F

∑n
i=1 log(PF (Ri))

A2 A1

α1

α2
maxα∈A

∑n
i=1 log(

∑m
j=1 αj1{Aj ⊆ Ri})

where A = {α ∈ R
m : αj ≥ 0 and

∑m
j=1 αj = 1}

maxα∈A

∑n
i=1 log(CT α)i

where C is the m × n clique matrix, Cji = 1{Aj ⊆ Ri}
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Computing the MLE: optimization step

R3

R2

R1

2 4 6

2

4

6

maxF∈F

∑n
i=1 log(PF (Ri))

A2 A1

α1

α2
maxα∈A

∑n
i=1 log(

∑m
j=1 αj1{Aj ⊆ Ri})

where A = {α ∈ R
m : αj ≥ 0 and

∑m
j=1 αj = 1}

maxα∈A

∑n
i=1 log(CT α)i

where C is the m × n clique matrix, Cji = 1{Aj ⊆ Ri}

minα∈A∗

[

− 1
n

∑n
i=1 log(CT α)i +

∑m
j=1 αj

]

= minα∈A∗ φ(α)

where A∗ = {α ∈ R
m : αj ≥ 0}

Computation of the MLE forbivariate interval censored data – p. 15/23



Necessary and sufficient conditions for the MLE

• There is not always a unique solution α̂ to this optimization
problem
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• There is not always a unique solution α̂ to this optimization
problem

mass 1/4
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Necessary and sufficient conditions for the MLE

• There is not always a unique solution α̂ to this optimization
problem

mass 1/16
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Necessary and sufficient conditions for the MLE

• There is not always a unique solution α̂ to this optimization
problem

• There is no explicit formula available for α̂
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Necessary and sufficient conditions for the MLE

• There is not always a unique solution α̂ to this optimization
problem

• There is no explicit formula available for α̂

• α̂ ∈ A∗ is an MLE iff the following conditions are satisfied:

∂φ(α̂)

∂αj

{

≥ 0 for all j = 1, . . . ,m

= 0 if α̂j > 0
(∗)
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Necessary and sufficient conditions for the MLE

• There is not always a unique solution α̂ to this optimization
problem

• There is no explicit formula available for α̂

• α̂ ∈ A∗ is an MLE iff the following conditions are satisfied:

∂φ(α̂)

∂αj

{

≥ 0 for all j = 1, . . . ,m

= 0 if α̂j > 0
(∗)

• We compute α̂ with an iterative algorithm, and stop if (∗) is
satisfied within some tolerance ǫ, e.g. ǫ = 10−10
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Iterative algorithm for optimization step

We use a combination of Sequential Quadratic Programming,
and the Support Reduction Algorithm of Groeneboom,
Jongbloed and Wellner (2007):
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• Let k = 1 and take a starting value α(1)

Computation of the MLE forbivariate interval censored data – p. 17/23



Iterative algorithm for optimization step
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• Let k = 1 and take a starting value α(1)

• While the necessary and sufficient conditions (∗) are not
satisfied, do:
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We use a combination of Sequential Quadratic Programming,
and the Support Reduction Algorithm of Groeneboom,
Jongbloed and Wellner (2007):

• Let k = 1 and take a starting value α(1)

• While the necessary and sufficient conditions (∗) are not
satisfied, do:
◦ Let φ̃(k) be the quadratic approximation of φ around α(k)
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and the Support Reduction Algorithm of Groeneboom,
Jongbloed and Wellner (2007):

• Let k = 1 and take a starting value α(1)

• While the necessary and sufficient conditions (∗) are not
satisfied, do:
◦ Let φ̃(k) be the quadratic approximation of φ around α(k)

◦ Compute α̃(k) ≈ argmin φ̃(k), using the support reduction
algorithm
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Iterative algorithm for optimization step

We use a combination of Sequential Quadratic Programming,
and the Support Reduction Algorithm of Groeneboom,
Jongbloed and Wellner (2007):

• Let k = 1 and take a starting value α(1)

• While the necessary and sufficient conditions (∗) are not
satisfied, do:
◦ Let φ̃(k) be the quadratic approximation of φ around α(k)

◦ Compute α̃(k) ≈ argmin φ̃(k), using the support reduction
algorithm

◦ Let α(k+1) = λα(k) + (1 − λ)α̃(k), where λ is determined
by Armijo’s rule
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Iterative algorithm for optimization step

We use a combination of Sequential Quadratic Programming,
and the Support Reduction Algorithm of Groeneboom,
Jongbloed and Wellner (2007):

• Let k = 1 and take a starting value α(1)

• While the necessary and sufficient conditions (∗) are not
satisfied, do:
◦ Let φ̃(k) be the quadratic approximation of φ around α(k)

◦ Compute α̃(k) ≈ argmin φ̃(k), using the support reduction
algorithm

◦ Let α(k+1) = λα(k) + (1 − λ)α̃(k), where λ is determined
by Armijo’s rule

◦ Let k = k + 1
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R-packages for interval censored data

• Existing packages:
◦ Icens (Gentleman and Vandal):

several functions for univariate/bivariate interval
censored data

◦ bicreduc (Maathuis):
height map algorithm for the reduction step

◦ intcox (Henschel, Heiss and Mansmann)
fitting Cox model for univariate interval censored data
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R-packages for interval censored data

• Existing packages:
◦ Icens (Gentleman and Vandal):

several functions for univariate/bivariate interval
censored data

◦ bicreduc (Maathuis):
height map algorithm for the reduction step

◦ intcox (Henschel, Heiss and Mansmann)
fitting Cox model for univariate interval censored data

• New package MLEcens
◦ Includes package bicreduc (which is no longer

maintained)
◦ Some overlap with Icens, but MLEcens has:

◦ Very fast reduction step
◦ Fast and stable optimization step
◦ Various new plotting functions
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Structure of R-package

• Algorithm written in C, with wrappers in R

Computation of the MLE forbivariate interval censored data – p. 19/23
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• Algorithm written in C, with wrappers in R
• Optimization step requires some linear algebra routines

(e.g. solve linear system)
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• Optimization step requires some linear algebra routines

(e.g. solve linear system)
◦ We first used Numerical Recipes to do this, but this is

not open source
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• Algorithm written in C, with wrappers in R
• Optimization step requires some linear algebra routines

(e.g. solve linear system)
◦ We first used Numerical Recipes to do this, but this is

not open source
◦ We considered using GNU Scientific Library. This is

open source, but not everybody has it
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Structure of R-package

• Algorithm written in C, with wrappers in R
• Optimization step requires some linear algebra routines

(e.g. solve linear system)
◦ We first used Numerical Recipes to do this, but this is

not open source
◦ We considered using GNU Scientific Library. This is

open source, but not everybody has it
◦ We finally chose to use the open source BLAS (Basic

Linear Algebra Subprograms) and LAPACK (Linear
Algebra PACKage) libraries that come with R
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Overview of MLEcens

• Available functions:
◦ Basic plot function: plotRects
◦ Canonical rectangles: real2canon, canon2real
◦ Reduction step: reduc, plotHM, plotCM
◦ Computation MLE: computeMLE
◦ Plot functions to display the MLE: plotDens1,
plotDens2, plotCDF1, plotCDF2, plotCDF3
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◦ Canonical rectangles: real2canon, canon2real
◦ Reduction step: reduc, plotHM, plotCM
◦ Computation MLE: computeMLE
◦ Plot functions to display the MLE: plotDens1,
plotDens2, plotCDF1, plotCDF2, plotCDF3

• Available data sets:
◦ bivariate interval censored data: actg181
◦ univariate interval censored data: cosmesis
◦ interval censored data with competing risks: menopause

• Documentation and examples for all functions
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Overview of MLEcens

• Available functions:
◦ Basic plot function: plotRects
◦ Canonical rectangles: real2canon, canon2real
◦ Reduction step: reduc, plotHM, plotCM
◦ Computation MLE: computeMLE
◦ Plot functions to display the MLE: plotDens1,
plotDens2, plotCDF1, plotCDF2, plotCDF3

• Available data sets:
◦ bivariate interval censored data: actg181
◦ univariate interval censored data: cosmesis
◦ interval censored data with competing risks: menopause

• Documentation and examples for all functions
• Demonstration...
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Possible extensions of R-package

• 3d-plotting functions
• Specialized algorithms for univariate interval censored data
• Extension to 3-dimensional interval censored data
• . . .

I am happy to modify the package. So please let me know if you
are interested in any extensions, or if you have any other
feedback/suggestions.
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• Optimization step:
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Thanks!

Presentation (including R-code), papers, and R-package
are posted on my website:

http://stat.ethz.ch/∼maathuis
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