Energetics of the open - closed transition in the RyR N-terminal region: importance for the CPVT phenotype

Andrea Faltinova

Jozef Ševčík

J. Sevcik¹, A. Faltinova², <u>A. Zahradnikova^{2,3}</u>

¹Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia ²Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia

³Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia

الأسليح ومرام Leaf.

Regional Biophysics Conference 2018 19.5.2018

courtesy of M. Novotová, BMC SAS

courtesy of M. Novotová, BMC SAS

courtesy of M. Novotová, BMC SAS

courtesy of M. Novotová, BMC SAS

courtesy of M. Novotová, BMC SAS

courtesy of M. Novotová, BMC SAS

courtesy of M. Novotová, BMC SAS

RyR2 supplies 60 – 70 % of calcium for heart contraction from calcium stores

RyR2 supplies 60 – 70 % of calcium for heart contraction from calcium stores

RyR2 supplies 60 – 70 % of calcium for heart contraction from calcium stores

Healthy cardiac myocyte

~ 20000 dyads / myocyte ~ 40 RyRs / dyad $P_o \approx 0.0001$ ~ 100 sparks / s / cell

Healthy cardiac myocyte

minor dysfunction

Diseased myocyte arrhythmias

Healthy cardiac myocyte

minor dysfunction

nor dystunction arrr

Healthy cardiac myocyte

minor dysfunction

EMD 1606:Samso et al., PLoS Biol. 7: e85, 20094JKQ:Borko et al., Acta Crystallogr D 70: 2897-2912, 2014

EMD 1606:Samso et al., PLoS Biol. 7: e85, 20094JKQ:Borko et al., Acta Crystallogr D 70: 2897-2912, 2014

RyR2 activation by DP_{cpvtN2}

Faltinova et al., Front Physiol. 8: 443, 2017

RyR2 activation by DP_{cpvtN2}

1 µM

6/11

1 s

Control

Faltinova et al., Front Physiol. 8: 443, 2017

RyR2 activation by DP_{cpvtN2}

6/11

Faltinova et al., Front Physiol. 8: 443, 2017

Control

- the stand of the standard of the lands in the state of the state of

 $P_{O} = (c_{p} + f_{p} K_{p})^{4} / ((c_{p} + f_{p} K_{L})^{4} + f_{p}^{4} (c_{p} + K_{p})^{4} (1/P_{OO} - 1))$ $K_{I} = 0.3 \ \mu\text{M}; \ f_{I} = 0.6; \ P_{O}^{\text{max}} = 0.03$

affinity increases upon opening or ligand binding

Chimera: visualization, interface to modelling software
SITUS: fitting structures into maps
Modeller: completion of loops
I-TASSER: construction of de novo models
GRAMM-X: construction of complexes
Molecular Modelling Toolkit: energy minimization

X-ray structure

Effect of peptide binding:

Disruption of ABC interaction network Creation of new interaction network

Effect of peptide binding:

Disruption of ABC interaction network Creation of new interaction network

Effect of peptide binding: Disruption of ABC interaction network Creation of new interaction network **Effect of mutations:** No effect on ABC interaction network No new interaction network

Effect of peptide binding:

Disruption of ABC interaction network Creation of new interaction network

Effect of mutations:

No effect on ABC interaction network No new interaction network

Closed:decreased $N_{HB}^{SC} (\Delta N_{HB}^{SC} = -21 \pm 2.7, P < 0.001)$ Open:decreased $N_{HB}^{SC} (\Delta N_{HB}^{SC} = -3 \pm 0.7, P < 0.01)$

mutations

Increased stability: New interaction network in both closed and open state **Decreased stability:** Disruption of H-bonds between AA sidechains outside interaction network

10/11

WT B A C

A C

mutations

Increased stability: New interaction network in both closed and open state

Facilitation of opening:

Less H-bonds formed in closed than in the open state

Decreased stability:

Disruption of H-bonds between AA sidechains outside interaction network

Facilitation of opening:

More H-bonds disrupted in closed than in the open state

10/11

Increased stability: New interaction network in both closed and open state

Facilitation of opening: Less H-bonds formed in

closed than in the open state Different mechanisms

Similar effects on $\Delta\Delta E_{opening}$

WT

C

В

A

Decreased stability:

Disruption of H-bonds between AA sidechains outside interaction network

Facilitation of opening:

More H-bonds disrupted in closed than in the open state

10/11

Increased stability: New interaction network in both closed and open state

Facilitation of opening: Less H-bonds formed in closed than in the open state

Different mechanisms

Similar effects on $\Delta\Delta E_{opening}$

mutations

Decreased stability: Disruption of H-bonds between AA sidechains outside interaction network

Facilitation of opening:

More H-bonds disrupted in closed than in the open state

Decrease of the $\Delta\Delta E$ between closed and open NTR conformation may contribute to CPVT phenotype

Grant support

Slovak Research and Development Agency *APVV-15-0302*

Scientific grant agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and of Slovak Academy of Sciences VEGA 2/0143/17

Grant support

Slovak Research and Development Agency *APVV-15-0302*

Scientific grant agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and of Slovak Academy of Sciences *VEGA 2/0143/17*

Open source software and public web servers

http://situs.biomachina.org/ https://salilab.org/modeller/ http://www.cgl.ucsf.edu/chimera/ https://zhanglab.ccmb.med.umich.edu/I-TASSER/ http://vakser.compbio.ku.edu/resources/gramm/grammx/ http://dirac.cnrs-orleans.fr/MMTK.html