
Behind Markov Chain Monte-Carlo.

Behind Markov Chain Monte-Carlo.

E. Moulines

Ecole Nationale Supérieure des Télécommunications
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Behind Markov Chain Monte-Carlo.

Motivation

Motivation

I MCMC allow to simulate any probability distribution π
(typically, large dimensional space)...

I MCMC depends upon tuning parameters, which have a
tremendous impact on the sampling performance...

I Today, Monte-Carlo methods have become a basic tool for
inference in complex stochastic models on large datasets.

I On the top of that, such analysis are often done routinely
allowing only limited expert supervision Require to find
methods to tune the parameters automatically !
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Behind Markov Chain Monte-Carlo.

Motivation

Metropolis-Hastings Algorithm

I Propose a move Yn+1 from a transition kernel with density
q(Xn, ·).

I Accept the move with probability α(Xn, Yn+1) where

α(x, y) = 1 ∧ π(y)q(y, x)
π(x)q(x, y)

.

I If the move is accepted, set Xn+1 = Yn+1; otherwise, stay at
the current position Xn+1 = Xn.
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Motivation

Metropolis Algorithm

I Yk+1 = Xk + Zk+1 where Zk+1 ∼i.i.d. q, and q is symmetric,
q(z) = q(−z)

I In this case, q(x, y) = q(y, x) and the acceptance rate does
not depend on the proposal distribution

α(x, y) = 1 ∧ π(y)
π(x)

I ... biased random walk where some moves are rejected.



Behind Markov Chain Monte-Carlo.

Motivation

Metropolis Algorithm

I Yk+1 = Xk + Zk+1 where Zk+1 ∼i.i.d. q, and q is symmetric,
q(z) = q(−z)

I In this case, q(x, y) = q(y, x) and the acceptance rate does
not depend on the proposal distribution

α(x, y) = 1 ∧ π(y)
π(x)

I ... biased random walk where some moves are rejected.



Behind Markov Chain Monte-Carlo.

Motivation

Metropolis Algorithm

I Yk+1 = Xk + Zk+1 where Zk+1 ∼i.i.d. q, and q is symmetric,
q(z) = q(−z)

I In this case, q(x, y) = q(y, x) and the acceptance rate does
not depend on the proposal distribution

α(x, y) = 1 ∧ π(y)
π(x)

I ... biased random walk where some moves are rejected.



Behind Markov Chain Monte-Carlo.

Motivation

Scaling
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Behind Markov Chain Monte-Carlo.

Scaling Adaptation

Diffusive Limits

I Stationary distribution: π(d)(x1, . . . , xd) =
∏d

i=1 f(xi) on Rd

(asymptotic = d→∞)

I Metropolis proposal: q
(d)
θ (x1, . . . , xd) ∼ N

(
0, (θ2/d)Id

)
...

with variance decreasing as 1/d.

I Interpolated process: Z
(d)
t = X

(d)
[td],1... we consider a single

component and we speed up the time scale by d.

I When d becomes large, a single component basically see the
mean of the others (mean-field)...
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Behind Markov Chain Monte-Carlo.

Scaling Adaptation

Diffusive Limits

I Z(d) ⇒ Z, where Z solves the Langevin SDE

dZt = v1/2(θ)dBt + (1/2)v(θ)∇ log f(Zt)dt

v(θ) = 2θ2Φ
(
−θ
√
I/2

)
where Φ is the distribution function of N (0, 1) and

I is
Fisher Information of the translation model associated to f ,
I =

∫
(f ′(x)/f(x))2f(x)dx.

I v(θ) is the speed of the diffusion: Zt = Z̃v(θ)t where {Z̃t} is a
solution of the normalized Langevin SDE

dZ̃t = dBt + (1/2)∇ log f(Z̃t)dt.
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Behind Markov Chain Monte-Carlo.

Scaling Adaptation

Speed / Acceptance rate

I Mean Acceptance rate (stationary regime)

τ (d)(θ) =
∫∫

π(d)(x)q(d)
θ (y − x)

{
1 ∧ π(d)(y)

π(d)(x)

}
dxdy .

I Result: τ (∞)(θ) = limd→∞ τ (d)(θ) exists and it is possible to
relate the speed of the diffusion to the mean acceptance rate !

v(θ) = τ (∞)(θ)
{

Φ−1(τ (∞)(θ)/2)
}2

I The speed is optimal for the value θ∗ of the parameter which
satisfies τ (∞)(θ∗) = τ̄ ≈ 0.234...
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Behind Markov Chain Monte-Carlo.

Scaling Adaptation

How to control the Acceptance Rate

I Objective: Finding the scaling factor θ solving

h(θ) def=
∫∫

α(x,y)qθ(y − x)π(x)dxdy − τ̄ = 0,

where α(x,y) = {1 ∧ π(y)/π(x)}.

I Under general assumptions, θ → h(θ) is monotone with
limθ→0+ h(θ) = 1− τ̄ > 0 and limθ→∞ h(θ) = −τ̄ < 0... But
h(θ) cannot be computed explicitly !

I Nevertheless, denoting θk the scaling value at iteration k,
α(Xk, Yk+1)− τ̄ may be seen as a ”noisy” observation of
h(θk)...

I Suggest to use a stochastic approximation procedure to
tune θ.
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Behind Markov Chain Monte-Carlo.

Scaling Adaptation

Controlled Metropolis Algorithm

I Proposition & Accept/Reject

Yk+1 = Xk + θkN (0, Id)

Xk+1 =

{
Yk+1 with prob. α(Xk, Yk+1)
Xk otherwise

I Update the scaling factor

θk+1 = θk + γk+1 {α(Xk, Yk+1)− τ̄}

where limk→∞ γk = 0 and
∑∞

k=1 γk = ∞.
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Behind Markov Chain Monte-Carlo.

Multidimensional Scaling

Multidimensional scaling
I Same asymptotic analysis (d→∞) with

π
(d)
Σd

(x) = |Σd|−1π(d)
(
Σ−1

d x
)
, π(d)(x1, . . . , xd) =

d∏
i=1

f(xi)

q ∼ N(0, (σ2/d)Id)

then Z
(d)
t = X[td],1 converges to the solution a Langevin SDE.

I the target acceptance rate (0.234...) which maximizes the
speed of the limiting diffusion is independent from Σd, but the
achievable maximal speed is strongly affected by Σd... loss

lim
d

d−1
∑d

i=1 λ
2
d,i(

d−1
∑d

i=1 λd,i

)2

where λd,i eigenvalues of Σd.
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Behind Markov Chain Monte-Carlo.

Multidimensional Scaling

Adaptive MCMC with multidim. scaling

1. Simulate

Yk+1 = Xk +N (0, σkΓk)

Xk+1 =

{
Yk+1 with proba. α(Xk, Yk+1)
Xk otherwise

2. Update the target mean and covariance

µk+1 = µk + γk+1(Xk+1 − µk)
Γk+1 = Γk + γk+1

{
(Xk+1 − µk)(Xk+1 − µk)T − Γk

}
3. Control the global scale of the proposal

σk+1 = σk + γk+1 (α(Xk, Yk+1)− τ̄)
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Behind Markov Chain Monte-Carlo.

Multidimensional Scaling

Tricks and Improvements

I No need to estimate the covariance matrix at each iteration [
batch means = OK]

I Update the eigendecomposition of the covariance matrix
directly [Oja and the many improvements since then].

I In large dimension, it is often ore sensible to use hybrid
algorithm, to update a subset of the parameters... the
eigendecomposition can help there to find the directions which
are worthwhile to update.

I In presence of non-linear correlation π, estimating a single
covariance matrix is not enough. In this case, non-linear ACP
methods (e.g. locally linear) are better suited...
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eigendecomposition can help there to find the directions which
are worthwhile to update.

I In presence of non-linear correlation π, estimating a single
covariance matrix is not enough. In this case, non-linear ACP
methods (e.g. locally linear) are better suited...



Behind Markov Chain Monte-Carlo.

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

I Propose Yk+1 from a pdf q independently from the past

I Accept the move with prob. α(Xk, Yk+1), where

α(x, y) = 1 ∧ π(y)q(x)
π(x)q(y)

I Geometrically ergodic if π(x) ≤Mq(x) and the rate is
controlled by 1/M (similar to accept/reject).

I Similar to the A/R algorithm, efficient if the proposal q is
close to π...
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Behind Markov Chain Monte-Carlo.

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

I Idea: Choose the proposal distribution in a parametric family
(qθ, θ ∈ Θ).

I Example: mixture of Gaussians

1. easy to sample
2. universal approximation

I Objective: on-line adaptation of the parameter by minimizing
the Kullback divergence

KL(π‖qθ) =
∫

log(
π(x)
qθ(x)

)π(x)dx .

I Method: On-line EM algorithm (see ICASSP 2006)
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Figure: Banana shaped target distribution
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Results (Andrieu & Moulines, 2006)

I Law of Large Numbers (under assumptions that do not imply
the cvge of θk)

n−1
n∑

k=1

[f(Xk)− π(f)] a.s−→P̄?
0 .

I Central Limit Theorem (if limk θk exists)

n−1/2
n∑

k=1

[f(Xk)− π(f)] D−→P̄?
Z ,

with Z characteristic function Ē?

[
exp(−1

2σ
2(θ∞, f)t2)

]
and

σ2(θ∞, f) variance of the MCMC under θ∞
∗

∗asymptotically, adaptation cost
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Behind Markov Chain Monte-Carlo.

An Application

Figure: Global monitoring of gaseous matters (ozone layer) and aerosol
concentrations by occultation of stars
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Figure: Principle of the measurement of the transmittance spectrum
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Figure: Spectrum of the star for considered wavelengths
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An Application

Figure: Atmospheric transmittance at different tangential altitude
(height). Sirius
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An Application

Model

I Principle: T (λ, z) = exp
(
−

∑
g αg(λ)Ng(z)

)
(Beer &

Lambert)

1. T (λ, z) transmittance at λ and tangential altitude z

2. Ng(z)(mol/cm2) integrated quantity of gaseous matter (O3,
H2O, NO2 ...) at tangential height z. Related to the
concentration z 7→ ρg(z) by

Ng(z) =
∫

`(z)

ρg[z(s)]ds, `(z) = line of sight

3. αg(λ) absorption coefficient of gaseous species g at frequency
λ.
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An Application

I Altitude discretization (approx. 1 km) and ρg(z) assumed
constant for altitude diff. less than the step-size:

Ng(zi) =
J∑

j=1

`i,jRg,j Rg,j = ρg(zj)

I Prior model for the concentration: Gaussian Linear State
Space Model, i.e. Rg,j = [01]Xg,j

Xg,j =
(

1 0
1 1

)
Xg,j−1 +

(
σ
0

)
N (0, 1)
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An Application

Measurements

I Measurements: noisy estimates of the transmittance at
frequencies λ1, . . . , λI et d’altitudes z1, . . . , zJ

y(λi, zj) = T (λi, zj) + ε(λi, zj) ,

where ε(λi, zj) measurement noise (independent, Gaussian,
known variance)...

I Objective: Infer the posterior distribution of the gaseous
component concentration {Rg,j , j = 1, . . . , J, g = 1, . . . , G}...
Well-posed Non-Linear Inverse Problem!
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An Application

Main Characteristics

I Huge number of measurements: I ≈ 1500 fréquencies,
J ≈ 100 height: 150000 measurement for a single occultation
experiments (and up to 10 occultation experiment / day)...

I Huge number of variables J ×G ≈ 500 .

I Variability of the experimental set-up star emission spectrum,
atmospheric turbulence, line of sight ...

Adaptation is vital !
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Figure: Joint and marginal distributions of two gaseous components at
24 and 26 km
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An Application

Conclusions

I Adaptive MCMC methods are a new class of simulation
strategy, which is likely to help the dissemination of these
techniques at large.

I There are many possible ways to adapt a simulation strategy.
Most often, it is more difficult to find appropriate adaptation
criteria rather than to design the on-line procedure itself.

I Sensible criterion ↔ understand the chain dynamic
(simulation bottleneck) ↔ asymptotic analysis (dimension,
fluid limit, etc.)
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Conclusions

There have been many advances since the first works on this
subject in the end of the 90’s

nevertheless, there are a lot of
problems left:

1. Hybrid Algorithms.

2. Links with controlled Markov chain (policy) and reinforcement
learning.

3. Coupling MCMC (serial) and particle (parallel) methods.

4. Extensions to trans-dimensionnal simulation methods

5. most needed ToolBox (AdapBUGS !)
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Behind Markov Chain Monte-Carlo.

Some theoretical results

Ingredients

I (Pθ, θ ∈ Θ) a family of transition kernels with target
distribution π.

I h : Θ → Θ the objective estimating function; the optimal
parameters are the roots of the non-linear equation h(θ) = 0
(Z-estimator).

I H : Θ× X → Θ an estimating function: for all θ ∈ Θ,

h(θ) def=
∫∫

X
H(x, θ)π(dx) .

I Algorithm:

Xk+1 ∼ Pθk
(Xk, ·)

θk+1 = θk + γk+1H(θk, Xk+1)
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Some theoretical results

Problems and Questions.

{(Xk, θk)} is a non-homogeneous Markov Chain but... {Xk} is not
a Markov Chain ! Q: Is it still ergodic ?

1. Limit Theorems for Additive Functionals

n−γ
n∑

k=1

(
ψθk

(Xk)−
∫

X
ψθk

(x)π(dx)
)

2. Rate of Convergence (?)

‖E(x,θ)[f(Xk)]− π(f)‖TV ≤ C‖f‖∞r(k)
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Behind Markov Chain Monte-Carlo.

Some theoretical results

Ergodicity is not Automatically preserved...
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Figure: Metropolis algorithm on R. Target π = N (0, 1), Proposal
q = N (0, θ2). Adaptation: θ2 = θ2+ if Xk ≥ 0 et θ2 = θ2− if Xk < 0.



Behind Markov Chain Monte-Carlo.

Some theoretical results

Assumptions: Geometric Ergodicity

There exists a function V : X → [1,∞] and a set C such that for
all K ⊂ Θ compact,

I Foster-Lyapunov: supθ∈K PθV ≤ λKV + bsfK1C

I Minorization: infx∈C infθ∈K Pθ(x, ·) ≥ δKν(·)

(Douc & M.,2003)† There exist constants ρK < 1 and CK <∞,
depending explicitly on λK, bK and δK, such that

sup
θ∈K

‖Pn
θ f − π(f)‖V ≤ CK‖f‖V ρ

n
K ‖f‖V = sup |f(x)|/V (x)

†Coupling + Sharpening the Lindvall inequality
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Behind Markov Chain Monte-Carlo.

Some theoretical results

Assumptions: Smoothness

For all K ⊂ Θ compact, (θ, θ′) ∈ K× K

I ‖Pθf − Pθ′f‖V ≤ CK ‖f‖V |θ − θ′|

I ‖H(θ, ·)−H(θ′, ·)‖V 1/2 ≤ CK|θ − θ′|

(Andrieu & M.,2005) Existence of a solution f̂θ to the Poisson
equation f − π(f) = f̂θ − Pθf̂θ; f̂θ is Lipshitz
‖f̂θ − f̂θ′‖V ≤ CK|θ − θ′| for all (θ, θ′) ∈ K× K. Satisfied by most
Metropolis-Hastings algorithms, (but not always easy).
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Behind Markov Chain Monte-Carlo.

Some theoretical results

Error decomposition

Existence of solutions to Poisson Eqs. ⇒

f(Xk)− π(f) = f̂θk
(Xk)− Pθk

f̂θk
(Xk),

Error Decomposition

f̂θk
(Xk)− Pθk

f̂θk
(Xk) =

(
f̂θk−1

(Xk)− Pθk−1
f̂θk−1

(Xk−1)
)

+(
f̂θk

(Xk)− f̂θk−1
(Xk)

)
+

(
Pθk−1

f̂θk−1
(Xk−1)− Pθk

f̂θk
(Xk)

)
First term: martingale. Second term: Lipshitz (cvgce de θk not
necessary for LLN). Third term: disappear in the summations...
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Behind Markov Chain Monte-Carlo.

Some theoretical results

Assumptions: Stability of the adaptation procedure and
convergence

Lyapunov function w : Θ → [0,∞] such that

1. Level-sets WM
def= {θ ∈ Θ, w(θ) ≤M} ⊂ Θ are compact,

2. 〈∇w(θ), h(θ)〉 ≤ 0
3. the closure of w ({θ ∈ Θ, 〈∇w(θ), h(θ)〉 = 0}) has an empty

interior

(Andrieu & M. et Priouret, 2005) convergence of stochastic
approximation d(θk,L) → 0 p.s. under verifiable assumptions
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Some theoretical results

Stochastic Approximation: an introduction

I Let Θ be the domain of allowable values for a vector of
parameters θ.

I Two fundamental problems of interest:

Problem 1. Find the value(s) of a vector θ ∈ Θ that
minimize a scalar-valued loss function w(θ)

Problem 2. Find the value(s) of θ ∈ Θ that solve the
equation h(θ) = 0 for some vector-valued
function h. Frequently (but not necessarily)
h(θ) = ∇w(θ)
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Some theoretical results

Stochastic root-finding problem

I Focus is on finding θ (i.e., θ?) such that h(θ?) = 0 where h(θ)
is typically a nonlinear function of θ assuming that only noisy
measurements of h(θ) are available

θk+1 = θk + γk+1Yk+1 Yk+1 = h(θk) + ”noise”

I Above problem arises frequently in practice
I Optimization with noisy measurements (h(θ) represents

gradient of loss function)
I Machine learning
I ... and adaptive MCMC.

back
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Some theoretical results

Existence solutions to the Poisson Equation

I For any compact subset K ⊂ Θ and for any r ∈ [0, 1] there
exist constants C and ρ < 1 such that for all ψ ∈ LV r and all
θ ∈ K

‖P k
θ ψ − π(ψ)‖V r ≤ Cρk ‖ψ‖V r .

I Therefore, for all θ, x ∈ Θ× X and ψ ∈ LV r ,

∞∑
k=0

|P k
θ ψ(x)− π(ψ)| <∞

and

u
def=

∞∑
k=0

(P k
θ ψ − π(ψ))

is a solution of Poisson’s equation: u− Pθu = ψ − π(ψ).
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Regularity of the Solutions to the Poisson Equation

for any function f and k,

P k
θ f − P k

θ′f =
k−1∑
j=1

P j
θ (Pθ − Pθ′)P

k−j−1
θ′ f

=
k−1∑
j=1

P j
θ (Pθ − Pθ′)

(
P k−j−1

θ′ f − π(f)
)

=
k−1∑
j=1

(
P j

θ − π
)

(Pθ − Pθ′)
(
P k−j−1

θ′ f − π(f)
)
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Some theoretical results

Regularity of the Solutions to the Poisson Equation

I The geometric ergodicity and the regularity of the transition
kernel implies that

|P k
θ f − P k

θ′f | ≤ Cθ,θ′

k−1∑
j=1

ρj
θρ

k−j
θ′ |θ − θ′|

≤ Cθ,θ′ρ
k|θ − θ′| ρ = ρθ ∧ ρθ′ .

I Denote by f̂θ the solution of the Poisson equation
f̂θ − Pθf̂θ = f − π(f). Then

f̂θ − f̂θ′ =
∞∑

k=1

(P k
θ f − P k

θ′f)

and the regularity follows from the preceding bound.
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