Behind Markov Chain Monte-Carlo.

E. Moulines

Ecole Nationale Supérieure des Télécommunications

September 24, 2007

Plan

Motivation

Scaling Adaptation

Multidimensional Scaling

Adaptative Metropolis-Hastings Algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 □ のへで

An Application

Some theoretical results

Motivation

Motivation

MCMC allow to simulate any probability distribution π (typically, large dimensional space)...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 □ のへで

- Motivation

Motivation

- MCMC allow to simulate any probability distribution π (typically, large dimensional space)...
- MCMC depends upon tuning parameters, which have a tremendous impact on the sampling performance...

- Motivation

Motivation

- MCMC allow to simulate any probability distribution π (typically, large dimensional space)...
- MCMC depends upon tuning parameters, which have a tremendous impact on the sampling performance...
- Today, Monte-Carlo methods have become a basic tool for inference in complex stochastic models on large datasets.

イロト 不得 トイヨト イヨト ヨー ろくぐ

- Motivation

Motivation

- MCMC allow to simulate any probability distribution π (typically, large dimensional space)...
- MCMC depends upon tuning parameters, which have a tremendous impact on the sampling performance...
- Today, Monte-Carlo methods have become a basic tool for inference in complex stochastic models on large datasets.
- On the top of that, such analysis are often done routinely allowing only limited expert supervision

イロト 不得 トイヨト イヨト ヨー ろくぐ

- Motivation

Motivation

- MCMC allow to simulate any probability distribution π (typically, large dimensional space)...
- MCMC depends upon tuning parameters, which have a tremendous impact on the sampling performance...
- Today, Monte-Carlo methods have become a basic tool for inference in complex stochastic models on large datasets.
- On the top of that, such analysis are often done routinely allowing only limited expert supervision Require to find methods to tune the parameters automatically !

Motivation

Metropolis-Hastings Algorithm

▶ Propose a move Y_{n+1} from a transition kernel with density $q(X_n, \cdot)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへで

Motivation

Metropolis-Hastings Algorithm

- ▶ Propose a move Y_{n+1} from a transition kernel with density $q(X_n, \cdot)$.
- Accept the move with probability $\alpha(X_n, Y_{n+1})$ where

$$\alpha(x,y) = 1 \land \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}.$$

- Motivation

Metropolis-Hastings Algorithm

- ▶ Propose a move Y_{n+1} from a transition kernel with density $q(X_n, \cdot)$.
- Accept the move with probability $\alpha(X_n, Y_{n+1})$ where

$$\alpha(x,y) = 1 \land \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}.$$

► If the move is accepted, set X_{n+1} = Y_{n+1}; otherwise, stay at the current position X_{n+1} = X_n.

イロト 不得 トイヨト イヨト ヨー ろくぐ

Motivation

Metropolis Algorithm

▶ $Y_{k+1} = X_k + Z_{k+1}$ where $Z_{k+1} \sim_{i.i.d.} q$, and q is symmetric, q(z) = q(-z)

(日) (日) (日) (日) (日) (日) (日)

- Motivation

Metropolis Algorithm

- ▶ $Y_{k+1} = X_k + Z_{k+1}$ where $Z_{k+1} \sim_{i.i.d.} q$, and q is symmetric, q(z) = q(-z)
- ► In this case, q(x, y) = q(y, x) and the acceptance rate does not depend on the proposal distribution

$$\alpha(x,y) = 1 \land \frac{\pi(y)}{\pi(x)}$$

- Motivation

Metropolis Algorithm

- ▶ $Y_{k+1} = X_k + Z_{k+1}$ where $Z_{k+1} \sim_{i.i.d.} q$, and q is symmetric, q(z) = q(-z)
- ► In this case, q(x, y) = q(y, x) and the acceptance rate does not depend on the proposal distribution

$$\alpha(x,y) = 1 \land \frac{\pi(y)}{\pi(x)}$$

▶ ... biased random walk where some moves are rejected.

- Motivation

Scaling

ロト (個) (目) (目) (目) (の)

Diffusive Limits

► Stationary distribution: $\pi^{(d)}(x_1, \ldots, x_d) = \prod_{i=1}^d f(x_i)$ on \mathbb{R}^d (asymptotic = $d \to \infty$)

イロト 不得 トイヨト イヨト ヨー ろくぐ

• Metropolis proposal: $q_{\theta}^{(d)}(x_1, \ldots, x_d) \sim \mathcal{N}\left(0, (\theta^2/d)\mathbf{I}_d\right)...$ with variance decreasing as 1/d.

Diffusive Limits

- ► Stationary distribution: $\pi^{(d)}(x_1, \ldots, x_d) = \prod_{i=1}^d f(x_i)$ on \mathbb{R}^d (asymptotic = $d \to \infty$)
- Metropolis proposal: $q_{\theta}^{(d)}(x_1, \ldots, x_d) \sim \mathcal{N}\left(0, (\theta^2/d)\mathbf{I}_d\right)...$ with variance decreasing as 1/d.
- Interpolated process: Z_t^(d) = X_{[td],1}^(d), we consider a single component and we speed up the time scale by d.

イロト 不得 トイヨト イヨト ヨー ろくぐ

Diffusive Limits

- ► Stationary distribution: $\pi^{(d)}(x_1, \ldots, x_d) = \prod_{i=1}^d f(x_i)$ on \mathbb{R}^d (asymptotic = $d \to \infty$)
- Metropolis proposal: $q_{\theta}^{(d)}(x_1, \ldots, x_d) \sim \mathcal{N}\left(0, (\theta^2/d)\mathbf{I}_d\right)...$ with variance decreasing as 1/d.
- Interpolated process: Z_t^(d) = X_{[td],1}^(d), we consider a single component and we speed up the time scale by d.
- When d becomes large, a single component basically see the mean of the others (mean-field)...

Scaling Adaptation

Figure: Diffusive limits for different values of d

Scaling Adaptation

Diffusive Limits

▶ $Z^{(d)} \Rightarrow Z$, where Z solves the Langevin SDE

$$dZ_t = v^{1/2}(\theta)dB_t + (1/2)v(\theta)\nabla \log f(Z_t)dt$$
$$v(\theta) = 2\theta^2 \Phi\left(-\theta\sqrt{I}/2\right)$$

where Φ is the distribution function of $\mathcal{N}(0,1)$ and

Diffusive Limits

▶ $Z^{(d)} \Rightarrow Z$, where Z solves the Langevin SDE

$$dZ_t = v^{1/2}(\theta)dB_t + (1/2)v(\theta)\nabla\log f(Z_t)dt$$
$$v(\theta) = 2\theta^2 \Phi\left(-\theta\sqrt{I}/2\right)$$

where Φ is the distribution function of $\mathcal{N}(0,1)$ and I is Fisher Information of the translation model associated to f, $I = \int (f'(x)/f(x))^2 f(x) dx.$

Diffusive Limits

▶ $Z^{(d)} \Rightarrow Z$, where Z solves the Langevin SDE

$$dZ_t = v^{1/2}(\theta)dB_t + (1/2)v(\theta)\nabla\log f(Z_t)dt$$
$$v(\theta) = 2\theta^2 \Phi\left(-\theta\sqrt{I}/2\right)$$

where Φ is the distribution function of $\mathcal{N}(0,1)$ and I is Fisher Information of the translation model associated to f, $I = \int (f'(x)/f(x))^2 f(x) dx.$

▶ $v(\theta)$ is the speed of the diffusion: $Z_t = \tilde{Z}_{v(\theta)t}$ where $\{\tilde{Z}_t\}$ is a solution of the normalized Langevin SDE

$$d\tilde{Z}_t = dB_t + (1/2)\nabla \log f(\tilde{Z}_t)dt.$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

Scaling Adaptation

Speed / Acceptance rate

Mean Acceptance rate (stationary regime)

$$\tau^{(d)}(\theta) = \iint \pi^{(d)}(\mathbf{x}) q_{\theta}^{(d)}(\mathbf{y} - \mathbf{x}) \left\{ 1 \wedge \frac{\pi^{(d)}(\mathbf{y})}{\pi^{(d)}(\mathbf{x})} \right\} d\mathbf{x} d\mathbf{y} \; .$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●

└─ Scaling Adaptation

Speed / Acceptance rate

Mean Acceptance rate (stationary regime)

$$\tau^{(d)}(\theta) = \iint \pi^{(d)}(\mathbf{x}) q_{\theta}^{(d)}(\mathbf{y} - \mathbf{x}) \left\{ 1 \wedge \frac{\pi^{(d)}(\mathbf{y})}{\pi^{(d)}(\mathbf{x})} \right\} d\mathbf{x} d\mathbf{y} .$$

Result: τ^(∞)(θ) = lim_{d→∞} τ^(d)(θ) exists and it is possible to relate the speed of the diffusion to the mean acceptance rate !

$$v(\theta) = \tau^{(\infty)}(\theta) \left\{ \Phi^{-1}(\tau^{(\infty)}(\theta)/2) \right\}^2$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

Scaling Adaptation

Speed / Acceptance rate

Mean Acceptance rate (stationary regime)

$$\tau^{(d)}(\theta) = \iint \pi^{(d)}(\mathbf{x}) q_{\theta}^{(d)}(\mathbf{y} - \mathbf{x}) \left\{ 1 \wedge \frac{\pi^{(d)}(\mathbf{y})}{\pi^{(d)}(\mathbf{x})} \right\} d\mathbf{x} d\mathbf{y} .$$

Result: τ^(∞)(θ) = lim_{d→∞} τ^(d)(θ) exists and it is possible to relate the speed of the diffusion to the mean acceptance rate !

$$v(\theta) = \tau^{(\infty)}(\theta) \left\{ \Phi^{-1}(\tau^{(\infty)}(\theta)/2) \right\}^2$$

► The speed is optimal for the value θ_* of the parameter which satisfies $\tau^{(\infty)}(\theta_*) = \bar{\tau} \approx 0.234...$

Scaling Adaptation

How to control the Acceptance Rate

• Objective: Finding the scaling factor θ solving

$$h(\theta) \stackrel{\text{def}}{=} \iint \alpha(\mathbf{x}, \mathbf{y}) q_{\theta}(\mathbf{y} - \mathbf{x}) \pi(\mathbf{x}) d\mathbf{x} d\mathbf{y} - \bar{\tau} = 0,$$

where $\alpha(\mathbf{x}, \mathbf{y}) = \{1 \wedge \pi(\mathbf{y}) / \pi(\mathbf{x})\}.$

Scaling Adaptation

How to control the Acceptance Rate

• Objective: Finding the scaling factor θ solving

$$h(\theta) \stackrel{\text{def}}{=} \iint \alpha(\mathbf{x}, \mathbf{y}) q_{\theta}(\mathbf{y} - \mathbf{x}) \pi(\mathbf{x}) d\mathbf{x} d\mathbf{y} - \bar{\tau} = 0,$$

where $\alpha(\mathbf{x}, \mathbf{y}) = \{1 \land \pi(\mathbf{y}) / \pi(\mathbf{x})\}.$

▶ Under general assumptions, $\theta \to h(\theta)$ is monotone with $\lim_{\theta \to 0^+} h(\theta) = 1 - \bar{\tau} > 0$ and $\lim_{\theta \to \infty} h(\theta) = -\bar{\tau} < 0...$

└─ Scaling Adaptation

How to control the Acceptance Rate

• Objective: Finding the scaling factor θ solving

$$h(\theta) \stackrel{\text{def}}{=} \iint \alpha(\mathbf{x}, \mathbf{y}) q_{\theta}(\mathbf{y} - \mathbf{x}) \pi(\mathbf{x}) d\mathbf{x} d\mathbf{y} - \bar{\tau} = 0,$$

where $\alpha(\mathbf{x}, \mathbf{y}) = \{1 \wedge \pi(\mathbf{y}) / \pi(\mathbf{x})\}.$

▶ Under general assumptions, $\theta \to h(\theta)$ is monotone with $\lim_{\theta \to 0^+} h(\theta) = 1 - \bar{\tau} > 0$ and $\lim_{\theta \to \infty} h(\theta) = -\bar{\tau} < 0$... But $h(\theta)$ cannot be computed explicitly !

Scaling Adaptation

How to control the Acceptance Rate

• Objective: Finding the scaling factor θ solving

$$h(\theta) \stackrel{\text{def}}{=} \iint \alpha(\mathbf{x}, \mathbf{y}) q_{\theta}(\mathbf{y} - \mathbf{x}) \pi(\mathbf{x}) d\mathbf{x} d\mathbf{y} - \bar{\tau} = 0,$$

where $\alpha(\mathbf{x}, \mathbf{y}) = \{1 \land \pi(\mathbf{y}) / \pi(\mathbf{x})\}.$

- ▶ Under general assumptions, $\theta \to h(\theta)$ is monotone with $\lim_{\theta \to 0^+} h(\theta) = 1 \bar{\tau} > 0$ and $\lim_{\theta \to \infty} h(\theta) = -\bar{\tau} < 0$... But $h(\theta)$ cannot be computed explicitly !
- ▶ Nevertheless, denoting θ_k the scaling value at iteration k, $\alpha(X_k, Y_{k+1}) - \overline{\tau}$ may be seen as a "noisy" observation of $h(\theta_k)...$

Scaling Adaptation

How to control the Acceptance Rate

• Objective: Finding the scaling factor θ solving

$$h(\theta) \stackrel{\text{def}}{=} \iint \alpha(\mathbf{x}, \mathbf{y}) q_{\theta}(\mathbf{y} - \mathbf{x}) \pi(\mathbf{x}) d\mathbf{x} d\mathbf{y} - \bar{\tau} = 0,$$

where $\alpha(\mathbf{x}, \mathbf{y}) = \{1 \land \pi(\mathbf{y}) / \pi(\mathbf{x})\}.$

- Under general assumptions, $\theta \to h(\theta)$ is monotone with $\lim_{\theta \to 0^+} h(\theta) = 1 \bar{\tau} > 0$ and $\lim_{\theta \to \infty} h(\theta) = -\bar{\tau} < 0...$ But $h(\theta)$ cannot be computed explicitly !
- Nevertheless, denoting θ_k the scaling value at iteration k, α(X_k, Y_{k+1}) − τ̄ may be seen as a "noisy" observation of h(θ_k)...
- Suggest to use a stochastic approximation procedure to tune θ.

Scaling Adaptation

Controlled Metropolis Algorithm

Proposition & Accept/Reject

$$\begin{split} Y_{k+1} &= X_k + \theta_k \mathcal{N}(0, \text{Id}) \\ X_{k+1} &= \begin{cases} Y_{k+1} & \text{with prob. } \alpha(X_k, Y_{k+1}) \\ X_k & \text{otherwise} \end{cases} \end{split}$$

Scaling Adaptation

Controlled Metropolis Algorithm

Proposition & Accept/Reject

$$\begin{split} Y_{k+1} &= X_k + \theta_k \mathcal{N}(0, \text{Id}) \\ X_{k+1} &= \begin{cases} Y_{k+1} & \text{with prob. } \alpha(X_k, Y_{k+1}) \\ X_k & \text{otherwise} \end{cases} \end{split}$$

Update the scaling factor

 $\theta_{k+1} = \theta_k + \gamma_{k+1} \left\{ \alpha(X_k, Y_{k+1}) - \bar{\tau} \right\}$

where $\lim_{k\to\infty} \gamma_k = 0$ and $\sum_{k=1}^{\infty} \gamma_k = \infty$.

くして 「「」 (山下)(山下)(山下)(山下)

Scaling Adaptation

- ▲ □ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ● ● ● ●

-Multidimensional Scaling

Multidimensional scaling

• Same asymptotic analysis $(d
ightarrow \infty)$ with

 $\pi_{\Sigma_d}^{(d)}(\mathbf{x}) = |\Sigma_d|^{-1} \pi^{(d)} \left(\Sigma_d^{-1} \mathbf{x} \right), \quad \pi^{(d)}(x_1, \dots, x_d) = \prod_{i=1}^a f(x_i)$ $q \sim N(0, (\sigma^2/d) \mathrm{Id})$

then $Z_t^{(d)} = X_{[td],1}$ converges to the solution a Langevin SDE.

イロト 不得 トイヨト イヨト ヨー ろくぐ

- Multidimensional Scaling

Multidimensional scaling

 \blacktriangleright Same asymptotic analysis $(d
ightarrow \infty)$ with

$$\pi_{\Sigma_d}^{(d)}(\mathbf{x}) = |\Sigma_d|^{-1} \pi^{(d)} \left(\Sigma_d^{-1} \mathbf{x} \right), \quad \pi^{(d)}(x_1, \dots, x_d) = \prod_{i=1}^d f(x_i)$$
$$q \sim N(0, (\sigma^2/d) \mathrm{Id})$$

л

then Z_t^(d) = X_{[td],1} converges to the solution a Langevin SDE.
the target acceptance rate (0.234...) which maximizes the speed of the limiting diffusion is independent from Σ_d, but the achievable maximal speed is strongly affected by Σ_d...

- Multidimensional Scaling

Multidimensional scaling

 \blacktriangleright Same asymptotic analysis $(d
ightarrow \infty)$ with

$$\pi_{\Sigma_d}^{(d)}(\mathbf{x}) = |\Sigma_d|^{-1} \pi^{(d)} \left(\Sigma_d^{-1} \mathbf{x} \right), \quad \pi^{(d)}(x_1, \dots, x_d) = \prod_{i=1}^a f(x_i)$$
$$q \sim N(0, (\sigma^2/d) \mathrm{Id})$$

л

then Z_t^(d) = X_{[td],1} converges to the solution a Langevin SDE.
the target acceptance rate (0.234...) which maximizes the speed of the limiting diffusion is independent from Σ_d, but the achievable maximal speed is strongly affected by Σ_d... loss

$$\lim_{d} \frac{d^{-1} \sum_{i=1}^{d} \lambda_{d,i}^2}{\left(d^{-1} \sum_{i=1}^{d} \lambda_{d,i}\right)^2}$$

where $\lambda_{d,i}$ eigenvalues of Σ_d .

-Multidimensional Scaling

Adaptive MCMC with multidim. scaling

1. Simulate

$$\begin{split} Y_{k+1} &= X_k + \mathcal{N}(0, \sigma_k \Gamma_k) \\ X_{k+1} &= \begin{cases} Y_{k+1} & \text{with proba. } \alpha(X_k, Y_{k+1}) \\ X_k & \text{otherwise} \end{cases} \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへで
-Multidimensional Scaling

Adaptive MCMC with multidim. scaling

1. Simulate

$$\begin{split} Y_{k+1} &= X_k + \mathcal{N}(0, \sigma_k \Gamma_k) \\ X_{k+1} &= \begin{cases} Y_{k+1} & \text{with proba. } \alpha(X_k, Y_{k+1}) \\ X_k & \text{otherwise} \end{cases} \end{split}$$

2. Update the target mean and covariance

$$\mu_{k+1} = \mu_k + \gamma_{k+1} (X_{k+1} - \mu_k)$$

$$\Gamma_{k+1} = \Gamma_k + \gamma_{k+1} \left\{ (X_{k+1} - \mu_k) (X_{k+1} - \mu_k)^{\mathrm{T}} - \Gamma_k \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 □ のへで

-Multidimensional Scaling

Adaptive MCMC with multidim. scaling

1. Simulate

$$\begin{split} Y_{k+1} &= X_k + \mathcal{N}(0, \sigma_k \Gamma_k) \\ X_{k+1} &= \begin{cases} Y_{k+1} & \text{with proba. } \alpha(X_k, Y_{k+1}) \\ X_k & \text{otherwise} \end{cases} \end{split}$$

2. Update the target mean and covariance

$$\mu_{k+1} = \mu_k + \gamma_{k+1} (X_{k+1} - \mu_k)$$

$$\Gamma_{k+1} = \Gamma_k + \gamma_{k+1} \left\{ (X_{k+1} - \mu_k) (X_{k+1} - \mu_k)^{\mathrm{T}} - \Gamma_k \right\}$$

3. Control the global scale of the proposal

$$\sigma_{k+1} = \sigma_k + \gamma_{k+1} \left(\alpha(X_k, Y_{k+1}) - \bar{\tau} \right)$$

-Multidimensional Scaling

Figure: d = 12, $\pi \sim \mathcal{N}(0, \Gamma)$, $\operatorname{cond}(\Gamma) \approx 100$, $q \sim \mathcal{N}(0, (2.32^2/d) \mathrm{I})$

-Multidimensional Scaling

Figure: d = 12, $\pi \sim \mathcal{N}(0, \Gamma)$, cond(Γ) ≈ 100 , $q \sim \mathcal{N}(0, 2.32^2/d\Gamma)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三里 ・のへで

-Multidimensional Scaling

Figure: d = 12, $\pi \sim \mathcal{N}(0, \Gamma)$, $\operatorname{cond}(\Gamma) \approx 100$, $q \sim \mathcal{N}(0, \sigma_k \Gamma_k)$, with adaptive multidimensional scaling

Multidimensional Scaling

Tricks and Improvements

No need to estimate the covariance matrix at each iteration [batch means = OK]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 □ のへで

— Multidimensional Scaling

Tricks and Improvements

No need to estimate the covariance matrix at each iteration [batch means = OK]

イロト 不得 トイヨト イヨト ヨー ろくぐ

 Update the eigendecomposition of the covariance matrix directly [Oja and the many improvements since then]. — Multidimensional Scaling

Tricks and Improvements

- No need to estimate the covariance matrix at each iteration [batch means = OK]
- Update the eigendecomposition of the covariance matrix directly [Oja and the many improvements since then].
- In large dimension, it is often ore sensible to use hybrid algorithm, to update a subset of the parameters... the eigendecomposition can help there to find the directions which are worthwhile to update.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへ⊙

- Multidimensional Scaling

Tricks and Improvements

- No need to estimate the covariance matrix at each iteration [batch means = OK]
- Update the eigendecomposition of the covariance matrix directly [Oja and the many improvements since then].
- In large dimension, it is often ore sensible to use hybrid algorithm, to update a subset of the parameters... the eigendecomposition can help there to find the directions which are worthwhile to update.
- In presence of non-linear correlation π, estimating a single covariance matrix is not enough. In this case, non-linear ACP methods (e.g. locally linear) are better suited...

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

• Propose Y_{k+1} from a pdf q independently from the past

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

- ▶ Propose Y_{k+1} from a pdf q independently from the past
- Accept the move with prob. $\alpha(X_k, Y_{k+1})$, where

$$\alpha(x,y) = 1 \land \frac{\pi(y)q(x)}{\pi(x)q(y)}$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

- ▶ Propose Y_{k+1} from a pdf q independently from the past
- Accept the move with prob. $\alpha(X_k, Y_{k+1})$, where

$$\alpha(x,y) = 1 \wedge \frac{\pi(y)q(x)}{\pi(x)q(y)}$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

► Geometrically ergodic if π(x) ≤ Mq(x) and the rate is controlled by 1/M (similar to accept/reject).

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

- ▶ Propose Y_{k+1} from a pdf q independently from the past
- Accept the move with prob. $\alpha(X_k, Y_{k+1})$, where

$$\alpha(x,y) = 1 \wedge \frac{\pi(y)q(x)}{\pi(x)q(y)}$$

- ► Geometrically ergodic if π(x) ≤ Mq(x) and the rate is controlled by 1/M (similar to accept/reject).
- Similar to the A/R algorithm, efficient if the proposal q is close to π...

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

▶ Idea: Choose the proposal distribution in a parametric family $(q_{\theta}, \theta \in \Theta)$.

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

▶ Idea: Choose the proposal distribution in a parametric family $(q_{\theta}, \theta \in \Theta)$.

イロト 不得 トイヨト イヨト ヨー ろくぐ

- Example: mixture of Gaussians
 - 1. easy to sample
 - 2. universal approximation

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

- ▶ Idea: Choose the proposal distribution in a parametric family $(q_{\theta}, \theta \in \Theta)$.
- Example: mixture of Gaussians
 - 1. easy to sample
 - 2. universal approximation
- Objective: on-line adaptation of the parameter by minimizing the Kullback divergence

$$\mathrm{KL}(\pi \| q_{\theta}) = \int \log(\frac{\pi(x)}{q_{\theta}(x)}) \pi(x) dx \; .$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへ⊙

Adaptative Metropolis-Hastings Algorithm

Metropolis-Hastings with independent proposals

- ▶ Idea: Choose the proposal distribution in a parametric family $(q_{\theta}, \theta \in \Theta)$.
- Example: mixture of Gaussians
 - 1. easy to sample
 - 2. universal approximation
- Objective: on-line adaptation of the parameter by minimizing the Kullback divergence

$$\mathrm{KL}(\pi \| q_{\theta}) = \int \log(\frac{\pi(x)}{q_{\theta}(x)}) \pi(x) dx \; .$$

Method: On-line EM algorithm (see ICASSP 2006)

Adaptative Metropolis-Hastings Algorithm

Figure: Banana shaped target distribution

イロト イロト イヨト イヨト 二日

Adaptative Metropolis-Hastings Algorithm

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶

Adaptative Metropolis-Hastings Algorithm

Adaptative Metropolis-Hastings Algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 □ のへで

Adaptative Metropolis-Hastings Algorithm

Results (Andrieu & Moulines, 2006)

 Law of Large Numbers (under assumptions that do not imply the cvge of θ_k)

$$n^{-1} \sum_{k=1}^{n} \left[f(X_k) - \pi(f) \right] \xrightarrow{\mathsf{a.s}}_{\bar{\mathbf{P}}_{\star}} 0 .$$

^{*}asymptotically, adaptation cost

Adaptative Metropolis-Hastings Algorithm

Results (Andrieu & Moulines, 2006)

 Law of Large Numbers (under assumptions that do not imply the cvge of θ_k)

$$n^{-1}\sum_{k=1}^{n} \left[f(X_k) - \pi(f)\right] \xrightarrow{\mathbf{a.s}}_{\bar{\mathbf{P}}_{\star}} 0.$$

• Central Limit Theorem (if $\lim_k \theta_k$ exists)

$$n^{-1/2} \sum_{k=1}^{n} [f(X_k) - \pi(f)] \xrightarrow{\mathcal{D}}_{\bar{\mathbf{P}}_{\star}} Z ,$$

with Z characteristic function $\bar{\mathbf{E}}_{\star} \left[\exp(-\frac{1}{2}\sigma^2(\theta_{\infty},f)t^2) \right]$ and $\sigma^2(\theta_{\infty},f)$ variance of the MCMC under θ_{∞}^*

^{*}asymptotically, adaptation cost

An Application

Figure: Global monitoring of gaseous matters (ozone layer) and aerosol concentrations by occultation of stars

An Application

Figure: Principle of the measurement of the transmittance spectrum

An Application

Figure: Spectrum of the star for considered wavelengths

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

An Application

Figure: Atmospheric transmittance at different tangential altitude (height). Sirius

An Application

Model

Principle: T(λ, z) = exp (-∑_g α_g(λ)N_g(z)) (Beer & Lambert)
 1. T(λ, z) transmittance at λ and tangential altitude z

An Application

Model

- Principle: $T(\lambda, z) = \exp\left(-\sum_{g} \alpha_g(\lambda) N_g(z)\right)$ (Beer & Lambert)
 - 1. $T(\lambda,z)$ transmittance at λ and tangential altitude z
 - 2. $N_g(z) (\text{mol/cm}^2)$ integrated quantity of gaseous matter (O₃, H₂O, NO₂ ...) at tangential height z. Related to the concentration $z \mapsto \rho_g(z)$ by

$$N_g(z) = \int_{\ell(z)}
ho_g[z(s)] ds, \quad \ell(z) = {\sf line \ of \ sight}$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

An Application

Model

- ▶ Principle: $T(\lambda, z) = \exp\left(-\sum_{g} \alpha_g(\lambda) N_g(z)\right)$ (Beer & Lambert)
 - 1. $T(\lambda,z)$ transmittance at λ and tangential altitude z
 - 2. $N_g(z) (\text{mol/cm}^2)$ integrated quantity of gaseous matter (O₃, H₂O, NO₂ ...) at tangential height z. Related to the concentration $z \mapsto \rho_g(z)$ by

$$N_g(z) = \int_{\ell(z)}
ho_g[z(s)] ds, \quad \ell(z) = {
m line \ of \ sight}$$

3. $\alpha_g(\lambda)$ absorption coefficient of gaseous species g at frequency λ .

An Application

▶ Altitude discretization (approx. 1 km) and $\rho_g(z)$ assumed constant for altitude diff. less than the step-size:

$$N_g(z_i) = \sum_{j=1}^J \ell_{i,j} R_{g,j} \quad R_{g,j} = \rho_g(z_j)$$

An Application

► Altitude discretization (approx. 1 km) and $\rho_g(z)$ assumed constant for altitude diff. less than the step-size:

$$N_g(z_i) = \sum_{j=1}^J \ell_{i,j} R_{g,j} \quad R_{g,j} = \rho_g(z_j)$$

▶ Prior model for the concentration: Gaussian Linear State Space Model, i.e. R_{g,j} = [01]X_{g,j}

$$X_{g,j} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} X_{g,j-1} + \begin{pmatrix} \sigma \\ 0 \end{pmatrix} \mathcal{N}(0,1)$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

An Application

Measurements

Measurements: noisy estimates of the transmittance at frequencies λ₁,..., λ_I et d'altitudes z₁,..., z_J

$$y(\lambda_i, z_j) = T(\lambda_i, z_j) + \varepsilon(\lambda_i, z_j) ,$$

where $\varepsilon(\lambda_i, z_j)$ measurement noise (independent, Gaussian, known variance)...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 □ のへで

An Application

Measurements

Measurements: noisy estimates of the transmittance at frequencies λ₁,..., λ_I et d'altitudes z₁,..., z_J

 $y(\lambda_i, z_j) = T(\lambda_i, z_j) + \varepsilon(\lambda_i, z_j) ,$

where $\varepsilon(\lambda_i, z_j)$ measurement noise (independent, Gaussian, known variance)...

► Objective: Infer the posterior distribution of the gaseous component concentration {R_{g,j}, j = 1,...,J, g = 1,...,G}... Well-posed Non-Linear Inverse Problem!

An Application

Main Characteristics

► Huge number of measurements: I ≈ 1500 fréquencies, J ≈ 100 height: 150000 measurement for a single occultation experiments (and up to 10 occultation experiment / day)...

An Application

Main Characteristics

► Huge number of measurements: I ≈ 1500 fréquencies, J ≈ 100 height: 150000 measurement for a single occultation experiments (and up to 10 occultation experiment / day)...

イロト イポト イヨト イヨト ヨー のくや

• Huge number of variables $J \times G \approx 500$.
An Application

Main Characteristics

- ► Huge number of measurements: I ≈ 1500 fréquencies, J ≈ 100 height: 150000 measurement for a single occultation experiments (and up to 10 occultation experiment / day)...
- Huge number of variables $J \times G \approx 500$.
- Variability of the experimental set-up star emission spectrum, atmospheric turbulence, line of sight ...

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへ⊙

Adaptation is vital !

-An Application

An Application

Figure: Joint and marginal distributions of two gaseous components at 24 and 26 $\rm km$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 □ のへで

An Application

Conclusions

Adaptive MCMC methods are a new class of simulation strategy, which is likely to help the dissemination of these techniques at large.

An Application

Conclusions

- Adaptive MCMC methods are a new class of simulation strategy, which is likely to help the dissemination of these techniques at large.
- There are many possible ways to adapt a simulation strategy.

An Application

Conclusions

- Adaptive MCMC methods are a new class of simulation strategy, which is likely to help the dissemination of these techniques at large.
- There are many possible ways to adapt a simulation strategy. Most often, it is more difficult to find appropriate adaptation criteria rather than to design the on-line procedure itself.

イロト イポト イヨト イヨト ヨー のくや

An Application

Conclusions

- Adaptive MCMC methods are a new class of simulation strategy, which is likely to help the dissemination of these techniques at large.
- There are many possible ways to adapt a simulation strategy. Most often, it is more difficult to find appropriate adaptation criteria rather than to design the on-line procedure itself.

イロト イポト イヨト イヨト ヨー のくや

Sensible criterion

An Application

Conclusions

- Adaptive MCMC methods are a new class of simulation strategy, which is likely to help the dissemination of these techniques at large.
- There are many possible ways to adapt a simulation strategy. Most often, it is more difficult to find appropriate adaptation criteria rather than to design the on-line procedure itself.

イロト イポト イヨト イヨト ヨー のくや

Sensible criterion ↔ understand the chain dynamic (simulation bottleneck)

An Application

Conclusions

- Adaptive MCMC methods are a new class of simulation strategy, which is likely to help the dissemination of these techniques at large.
- There are many possible ways to adapt a simulation strategy. Most often, it is more difficult to find appropriate adaptation criteria rather than to design the on-line procedure itself.
- Sensible criterion ↔ understand the chain dynamic (simulation bottleneck) ↔ asymptotic analysis (dimension, fluid limit, etc.)

イロト 不得 トイヨト イヨト ヨー ろくぐ

An Application

Conclusions

There have been many advances since the first works on this subject in the end of the 90's

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへで

An Application

Conclusions

There have been many advances since the first works on this subject in the end of the 90's nevertheless, there are a lot of problems left:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 □ のへで

An Application

Conclusions

There have been many advances since the first works on this subject in the end of the 90's nevertheless, there are a lot of problems left:

イロト イポト イヨト イヨト ヨー のくや

1. Hybrid Algorithms.

An Application

Conclusions

There have been many advances since the first works on this subject in the end of the 90's nevertheless, there are a lot of problems left:

- 1. Hybrid Algorithms.
- 2. Links with controlled Markov chain (policy) and reinforcement learning.

An Application

Conclusions

There have been many advances since the first works on this subject in the end of the 90's nevertheless, there are a lot of problems left:

- 1. Hybrid Algorithms.
- 2. Links with controlled Markov chain (policy) and reinforcement learning.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへ⊙

3. Coupling MCMC (serial) and particle (parallel) methods.

An Application

Conclusions

There have been many advances since the first works on this subject in the end of the 90's nevertheless, there are a lot of problems left:

- 1. Hybrid Algorithms.
- 2. Links with controlled Markov chain (policy) and reinforcement learning.

- 3. Coupling MCMC (serial) and particle (parallel) methods.
- 4. Extensions to trans-dimensionnal simulation methods

An Application

Conclusions

There have been many advances since the first works on this subject in the end of the 90's nevertheless, there are a lot of problems left:

- 1. Hybrid Algorithms.
- 2. Links with controlled Markov chain (policy) and reinforcement learning.

- 3. Coupling MCMC (serial) and particle (parallel) methods.
- 4. Extensions to trans-dimensionnal simulation methods
- 5. most needed ToolBox (AdapBUGS !)

Some theoretical results

Ingredients

• $(P_{\theta}, \theta \in \Theta)$ a family of transition kernels with target distribution π .

Some theoretical results

Ingredients

- $(P_{\theta}, \theta \in \Theta)$ a family of transition kernels with target distribution π .
- ▶ $h: \Theta \to \Theta$ the objective estimating function; the optimal parameters are the roots of the non-linear equation $h(\theta) = 0$ (Z-estimator).

Some theoretical results

Ingredients

- $(P_{\theta}, \theta \in \Theta)$ a family of transition kernels with target distribution π .
- ▶ $h: \Theta \to \Theta$ the objective estimating function; the optimal parameters are the roots of the non-linear equation $h(\theta) = 0$ (Z-estimator).
- ▶ $H: \Theta \times X \to \Theta$ an estimating function: for all $\theta \in \Theta$,

$$h(\theta) \stackrel{\text{def}}{=} \iint_{\mathsf{X}} H(x,\theta) \pi(dx) \; .$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

Some theoretical results

Ingredients

- $(P_{\theta}, \theta \in \Theta)$ a family of transition kernels with target distribution π .
- ▶ $h: \Theta \to \Theta$ the objective estimating function; the optimal parameters are the roots of the non-linear equation $h(\theta) = 0$ (Z-estimator).
- ▶ $H: \Theta \times X \to \Theta$ an estimating function: for all $\theta \in \Theta$,

$$h(\theta) \stackrel{\text{def}}{=} \iint_{\mathsf{X}} H(x,\theta) \pi(dx) \; .$$

Algorithm:

$$X_{k+1} \sim P_{\theta_k}(X_k, \cdot)$$

$$\theta_{k+1} = \theta_k + \gamma_{k+1} H(\theta_k, X_{k+1})$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

Some theoretical results

Problems and Questions.

 $\{(X_k, \theta_k)\}$ is a non-homogeneous Markov Chain but... $\{X_k\}$ is not a Markov Chain ! Q: Is it still ergodic ?

Problems and Questions.

 $\{(X_k, \theta_k)\}$ is a non-homogeneous Markov Chain but... $\{X_k\}$ is not a Markov Chain ! Q: Is it still ergodic ?

1. Limit Theorems for Additive Functionals

$$n^{-\gamma} \sum_{k=1}^{n} \left(\psi_{\theta_k}(X_k) - \int_{\mathsf{X}} \psi_{\theta_k}(x) \pi(dx) \right)$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

Problems and Questions.

 $\{(X_k, \theta_k)\}$ is a non-homogeneous Markov Chain but... $\{X_k\}$ is not a Markov Chain ! Q: Is it still ergodic ?

1. Limit Theorems for Additive Functionals

$$n^{-\gamma} \sum_{k=1}^{n} \left(\psi_{\theta_k}(X_k) - \int_{\mathsf{X}} \psi_{\theta_k}(x) \pi(dx) \right)$$

2. Rate of Convergence (?)

$$\|\mathbf{E}_{(x,\theta)}[f(X_k)] - \pi(f)\|_{\mathrm{TV}} \le C \|f\|_{\infty} r(k)$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

Ergodicity is not Automatically preserved...

Figure: Metropolis algorithm on \mathbb{R} . Target $\pi = \mathcal{N}(0, 1)$, Proposal $q = \mathcal{N}(0, \theta^2)$. Adaptation: $\theta^2 = \theta_+^2$ if $X_k \ge 0$ et $\theta^2 = \theta_-^2$ if $X_k < 0$.

Assumptions: Geometric Ergodicity

There exists a function $V: X \to [1, \infty]$ and a set C such that for all $K \subset \Theta$ compact,

► Foster-Lyapunov: $\sup_{\theta \in \mathsf{K}} P_{\theta} V \leq \lambda_{\mathsf{K}} V + b_{sfK} \mathbb{1}_{\mathsf{C}}$

[†]Coupling + Sharpening the Lindvall inequality () +

Assumptions: Geometric Ergodicity

There exists a function $V: X \to [1, \infty]$ and a set C such that for all $K \subset \Theta$ compact,

- ► Foster-Lyapunov: $\sup_{\theta \in \mathsf{K}} P_{\theta} V \leq \lambda_{\mathsf{K}} V + b_{sfK} \mathbb{1}_{\mathsf{C}}$
- Minorization: $\inf_{x \in \mathsf{C}} \inf_{\theta \in \mathsf{K}} P_{\theta}(x, \cdot) \geq \delta_{\mathsf{K}} \nu(\cdot)$

Assumptions: Geometric Ergodicity

There exists a function $V: X \to [1, \infty]$ and a set C such that for all $K \subset \Theta$ compact,

- ► Foster-Lyapunov: $\sup_{\theta \in \mathsf{K}} P_{\theta} V \leq \lambda_{\mathsf{K}} V + b_{sfK} \mathbb{1}_{\mathsf{C}}$
- Minorization: $\inf_{x \in \mathsf{C}} \inf_{\theta \in \mathsf{K}} P_{\theta}(x, \cdot) \geq \delta_{\mathsf{K}} \nu(\cdot)$

(Douc & M.,2003)[†] There exist constants $\rho_{\rm K} < 1$ and $C_{\rm K} < \infty$, depending explicitly on $\lambda_{\rm K}$, $b_{\rm K}$ and $\delta_{\rm K}$, such that

 $\sup_{\theta \in \mathcal{K}} \|P_{\theta}^{n}f - \pi(f)\|_{V} \leq C_{\mathsf{K}} \|f\|_{V} \rho_{\mathsf{K}}^{n} \quad \|f\|_{V} = \sup |f(x)|/V(x)$

[†]Coupling + Sharpening the Lindvall inequality (-)

Some theoretical results

Assumptions: Smoothness

For all $\mathsf{K} \subset \Theta$ compact, $(\theta, \theta') \in \mathsf{K} \times \mathsf{K}$ $\blacktriangleright ||P_{\theta}f - P_{\theta'}f||_{V} \leq C_{\mathsf{K}} ||f||_{V} |\theta - \theta'|$

Assumptions: Smoothness

For all $\mathsf{K} \subset \Theta$ compact, $(\theta, \theta') \in \mathsf{K} \times \mathsf{K}$

- $\blacktriangleright \|P_{\theta}f P_{\theta'}f\|_{V} \le C_{\mathsf{K}} \|f\|_{V} |\theta \theta'|$
- $\blacktriangleright \|H(\theta, \cdot) H(\theta', \cdot)\|_{V^{1/2}} \le C_{\mathsf{K}} |\theta \theta'|$

イロト イポト イヨト イヨト ヨー のくや

Assumptions: Smoothness

For all $\mathsf{K} \subset \Theta$ compact, $(\theta, \theta') \in \mathsf{K} \times \mathsf{K}$

- $\blacktriangleright \|P_{\theta}f P_{\theta'}f\|_{V} \le C_{\mathsf{K}} \|f\|_{V} |\theta \theta'|$
- $\blacktriangleright \|H(\theta, \cdot) H(\theta', \cdot)\|_{V^{1/2}} \le C_{\mathsf{K}} |\theta \theta'|$

(Andrieu & M.,2005) Existence of a solution \hat{f}_{θ} to the Poisson equation $f - \pi(f) = \hat{f}_{\theta} - P_{\theta}\hat{f}_{\theta}$;

Assumptions: Smoothness

For all $\mathsf{K} \subset \Theta$ compact, $(\theta, \theta') \in \mathsf{K} \times \mathsf{K}$

- $\blacksquare \|P_{\theta}f P_{\theta'}f\|_{V} \le C_{\mathsf{K}} \|f\|_{V} |\theta \theta'|$
- $||H(\theta, \cdot) H(\theta', \cdot)||_{V^{1/2}} \le C_{\mathsf{K}} |\theta \theta'|$

(Andrieu & M.,2005) Existence of a solution \hat{f}_{θ} to the Poisson equation $f - \pi(f) = \hat{f}_{\theta} - P_{\theta}\hat{f}_{\theta}$; \hat{f}_{θ} is Lipshitz $\|\hat{f}_{\theta} - \hat{f}_{\theta'}\|_{V} \leq C_{\mathsf{K}}|\theta - \theta'|$ for all $(\theta, \theta') \in \mathsf{K} \times \mathsf{K}$.

Assumptions: Smoothness

For all $\mathsf{K} \subset \Theta$ compact, $(\theta, \theta') \in \mathsf{K} \times \mathsf{K}$

- $\blacksquare \|P_{\theta}f P_{\theta'}f\|_{V} \le C_{\mathsf{K}} \|f\|_{V} |\theta \theta'|$
- $||H(\theta, \cdot) H(\theta', \cdot)||_{V^{1/2}} \le C_{\mathsf{K}} |\theta \theta'|$

(Andrieu & M.,2005) Existence of a solution \hat{f}_{θ} to the Poisson equation $f - \pi(f) = \hat{f}_{\theta} - P_{\theta}\hat{f}_{\theta}$; \hat{f}_{θ} is Lipshitz $\|\hat{f}_{\theta} - \hat{f}_{\theta'}\|_{V} \leq C_{\mathsf{K}}|\theta - \theta'|$ for all $(\theta, \theta') \in \mathsf{K} \times \mathsf{K}$. Satisfied by most Metropolis-Hastings algorithms, (but not always easy).

Error decomposition

Existence of solutions to Poisson Eqs. \Rightarrow

$$f(X_k) - \pi(f) = \hat{f}_{\theta_k}(X_k) - P_{\theta_k}\hat{f}_{\theta_k}(X_k),$$

Error decomposition

Existence of solutions to Poisson Eqs. \Rightarrow

$$f(X_k) - \pi(f) = \hat{f}_{\theta_k}(X_k) - P_{\theta_k}\hat{f}_{\theta_k}(X_k),$$

Error Decomposition

$$\hat{f}_{\theta_{k}}(X_{k}) - P_{\theta_{k}}\hat{f}_{\theta_{k}}(X_{k}) = \left(\hat{f}_{\theta_{k-1}}(X_{k}) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k-1})\right) + \left(\hat{f}_{\theta_{k}}(X_{k}) - \hat{f}_{\theta_{k-1}}(X_{k})\right) + \left(P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k-1}) - P_{\theta_{k}}\hat{f}_{\theta_{k}}(X_{k})\right)$$

First term: martingale. Second term: Lipshitz (cvgce de θ_k not necessary for LLN). Third term: disappear in the summations...

Error decomposition

Existence of solutions to Poisson Eqs. \Rightarrow

$$f(X_k) - \pi(f) = \hat{f}_{\theta_k}(X_k) - P_{\theta_k}\hat{f}_{\theta_k}(X_k),$$

Error Decomposition

$$\hat{f}_{\theta_{k}}(X_{k}) - P_{\theta_{k}}\hat{f}_{\theta_{k}}(X_{k}) = \left(\hat{f}_{\theta_{k-1}}(X_{k}) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k-1})\right) + \left(\hat{f}_{\theta_{k}}(X_{k}) - \hat{f}_{\theta_{k-1}}(X_{k})\right) + \left(P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k-1}) - P_{\theta_{k}}\hat{f}_{\theta_{k}}(X_{k})\right)$$

First term: martingale. Second term: Lipshitz (cvgce de θ_k not necessary for LLN). Third term: disappear in the summations...

Assumptions: Stability of the adaptation procedure and convergence

Lyapunov function $w: \Theta \rightarrow [0,\infty]$ such that

1. Level-sets $\mathcal{W}_M \stackrel{\text{def}}{=} \{\theta \in \Theta, w(\theta) \leq M\} \subset \Theta$ are compact,
Assumptions: Stability of the adaptation procedure and convergence

Lyapunov function $w:\Theta
ightarrow [0,\infty]$ such that

1. Level-sets $\mathcal{W}_M \stackrel{\text{def}}{=} \{\theta \in \Theta, w(\theta) \leq M\} \subset \Theta$ are compact,

2. $\langle \nabla w(\theta), h(\theta) \rangle \leq 0$

Assumptions: Stability of the adaptation procedure and convergence

Lyapunov function $w: \Theta \rightarrow [0,\infty]$ such that

- 1. Level-sets $\mathcal{W}_M \stackrel{\text{def}}{=} \{\theta \in \Theta, w(\theta) \leq M\} \subset \Theta$ are compact,
- 2. $\langle \nabla w(\theta), h(\theta) \rangle \leq 0$
- 3. the closure of $w(\{\theta \in \Theta, \langle \nabla w(\theta), h(\theta) \rangle = 0\})$ has an empty interior

イロト 不得 トイヨト イヨト ヨー ろくぐ

Assumptions: Stability of the adaptation procedure and convergence

Lyapunov function $w: \Theta \rightarrow [0,\infty]$ such that

- 1. Level-sets $\mathcal{W}_M \stackrel{\text{def}}{=} \{\theta \in \Theta, w(\theta) \leq M\} \subset \Theta$ are compact,
- 2. $\langle \nabla w(\theta), h(\theta) \rangle \leq 0$
- 3. the closure of $w(\{\theta \in \Theta, \langle \nabla w(\theta), h(\theta) \rangle = 0\})$ has an empty interior

(Andrieu & M. et Priouret, 2005) convergence of stochastic approximation $d(\theta_k, \mathcal{L}) \rightarrow 0$ p.s. under verifiable assumptions

Behind Markov Chain Monte-Carlo.

(ロト (個) (E) (E) (E) (の)()

Some theoretical results

h

Stochastic Approximation: an introduction

Let Θ be the domain of allowable values for a vector of parameters θ.

► Two fundamental problems of interest: Problem 1. Find the value(s) of a vector θ ∈ Θ that minimize a scalar-valued loss function w(θ)

イロト 不得 トイヨト イヨト ヨー ろくぐ

Stochastic Approximation: an introduction

- Let Θ be the domain of allowable values for a vector of parameters θ.
- Two fundamental problems of interest:
 - Problem 1. Find the value(s) of a vector $\theta \in \Theta$ that minimize a scalar-valued loss function $w(\theta)$
 - Problem 2. Find the value(s) of $\theta \in \Theta$ that solve the equation $h(\theta) = 0$ for some vector-valued function h. Frequently (but not necessarily) $h(\theta) = \nabla w(\theta)$

Stochastic root-finding problem

Focus is on finding θ (i.e., θ*) such that h(θ*) = 0 where h(θ) is typically a nonlinear function of θ assuming that only noisy measurements of h(θ) are available

 $\theta_{k+1} = \theta_k + \gamma_{k+1} Y_{k+1}$ $Y_{k+1} = h(\theta_k) + \text{"noise"}$

- Above problem arises frequently in practice
 - Optimization with noisy measurements (h(θ) represents gradient of loss function)

イロト 不得 トイヨト イヨト ヨー ろくぐ

- Machine learning
- ... and adaptive MCMC.

Behind Markov Chain Monte-Carlo.

-Some theoretical results

Existence solutions to the Poisson Equation

▶ For any compact subset $\mathcal{K} \subset \Theta$ and for any $r \in [0, 1]$ there exist constants C and $\rho < 1$ such that for all $\psi \in \mathcal{L}_{V^r}$ and all $\theta \in \mathcal{K}$

$$||P_{\theta}^{k}\psi - \pi(\psi)||_{V^{r}} \leq C\rho^{k} ||\psi||_{V^{r}}.$$

▶ Therefore, for all $\theta, x \in \Theta \times X$ and $\psi \in \mathcal{L}_{V^r}$,

$$\sum_{k=0}^{\infty} |P_{\theta}^{k}\psi(x) - \pi(\psi)| < \infty$$

and

$$u \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} (P_{\theta}^{k} \psi - \pi(\psi))$$

is a solution of Poisson's equation: $u - P_{\theta}u = \psi - \pi(\psi)$.

Regularity of the Solutions to the Poisson Equation

for any function f and k,

$$P_{\theta}^{k}f - P_{\theta'}^{k}f = \sum_{j=1}^{k-1} P_{\theta}^{j} \left(P_{\theta} - P_{\theta'}\right) P_{\theta'}^{k-j-1}f$$
$$= \sum_{j=1}^{k-1} P_{\theta}^{j} \left(P_{\theta} - P_{\theta'}\right) \left(P_{\theta'}^{k-j-1}f - \pi(f)\right)$$
$$= \sum_{j=1}^{k-1} \left(P_{\theta}^{j} - \pi\right) \left(P_{\theta} - P_{\theta'}\right) \left(P_{\theta'}^{k-j-1}f - \pi(f)\right)$$

◆□> ◆□> ◆□> ◆□> ◆□> ◆□> ◆□>

Behind Markov Chain Monte-Carlo.

Some theoretical results

Regularity of the Solutions to the Poisson Equation

The geometric ergodicity and the regularity of the transition kernel implies that

$$\begin{aligned} |P_{\theta}^{k}f - P_{\theta'}^{k}f| &\leq C_{\theta,\theta'} \sum_{j=1}^{k-1} \rho_{\theta}^{j} \rho_{\theta'}^{k-j} |\theta - \theta'| \\ &\leq C_{\theta,\theta'} \rho^{k} |\theta - \theta'| \quad \rho = \rho_{\theta} \wedge \rho_{\theta'} . \end{aligned}$$

► Denote by \hat{f}_{θ} the solution of the Poisson equation $\hat{f}_{\theta} - P_{\theta}\hat{f}_{\theta} = f - \pi(f)$. Then

$$\hat{f}_{\theta} - \hat{f}_{\theta'} = \sum_{k=1}^{\infty} (P_{\theta}^k f - P_{\theta'}^k f)$$

and the regularity follows from the preceding bound.