174
XS/}
ﬁ-\rgjean /
D Monnet ll

SAINT-ETIENNE

ORATOIRE

Hubert

TCS for Machine Learning
Scientists

Colin de la Higuera

Barcelona July 2007

N o Ok~ W DdhPRE

Strings
Order
Distances
Kernels
Trees
Graphs

Some algorithmic
notions and

complexity theory
for machine learn

Outline

g. Comp
algorit

exity of
Nms

9. Comp
proble

algorit
13.A haro

exity of
ms

10.Complexity classes
11. Stochastic classes
12.Stochastic

Nms
ness proof

Ing using

cdlh, Barcelona, July 2007

RP=NP

® Disclaimer

o The view Is that the essential bits of linear
algebra and statistics are taught elsewhere.
If not they should also be in a lecture on
basic TCS for ML.

o There are not always fixed name for
mathematical objects in TCS. This Is one
choice.

3 cdlh, Barcelona, July 2007

1 Alphabet and strings

o An alphabet X Is a finite nonempty set of
symbols called letters.

o A string w over X Is a finite sequence
a, ...a, of letters.

o Let |w| denote the length of w. In this case
we have |w| = |a,...a,| =n.

o The empty string is denoted by A (in
certain books notation ¢ is used for the

%y €mpty string).
800)

4 cdlh, Barcelona, July 2007

o Alternatively a string w of length n can be
viewed as a mapping [n| =2 X :

olfw=aa,...a, we have w(l) =a,, w(2) =
a, ..., w(n)=a..

o Given aeX , and w a string over %, |w|,

denotes the number of occurrences of
letter a In w.

o Note that [n]={1,...,n} with [0]=Z

C‘% S
9% S

5 cdlh, Barcelona, July 2007

Letters of the alphabet will be indicated by
a, b, c,..., strings over the alphabet by u,
V,... , Z

6 cdlh, Barcelona, July 2007

o Let >* be the set of all finite strings over
alphabet.

o Given a string w, X Is a substring of w If
there are two strings | and r such that
w = Ixr. In that case we will also say that w
IS a superstring of X.

7 cdlh, Barcelona, July 2007

o We can count the number of occurrences
of a given string u as a substring of a
string w and denote this value by |w| =
{leX* : dreX* A w = lur}|.

8 cdlh, Barcelona, July 2007

o X Is a subseqguence of w If it can be
obtained from w by erasing letters from w.
Alternatively: VX, y, z, X,, X, € Z*, VaeX :

X IS a subsequence of X,
X1X, IS a subsequence of x,ax,

If X Is a subsequence ofyandyisa
subsequence of z then x Is a subsequence
of z.

9 cdlh, Barcelona, July 2007

Basic combinatorics on

strings
o Let n=|w| and p=|Z]
o Then the number of...
At least At most
n+1 Prefixes of w n+1
n+1 Substrings of w n(n+1)/2+1
n+1 Subsequences of w 2"
%

cdlh, Barcelona, July 2007

Algorithmics

o There are many algorithms to compute the
maximal subsequence of 2 strings

o But computing the maximal subsequence
of n strings is NP-hard.

o Yet in the case of substrings this Is easy.

11 cdlh, Barcelona, July 2007

Knuth-Morris-Pratt algorithm

o Does string s appear as substring of string u?

o Step 1 compute TJi] the table indicating the
longest correct prefix if things go wrong.

o Tlil=k & s,...5,=S;...S. ;.
o Complexity is O(|s|)

T[7]=2 means that If :
we fail when parsing | | |1]2]34|5]6]7
d, we can still count .

on the first 2 s[i] b/ cidajbjd

. characters been T[] |l0|0|0]|0 OE
%90 parsed.

o>

12 cdlh, Barcelona, July 2007

KMP (Step 2)

m <« O; *m position where s starts*\
| < 1; *1 is over s and u*\
while (m + i <Jul & i1 < [s])
If (ufm +1] =s[i]) ++i *matches*\
else *doesn’t match\
m «<m+ 1 - TJ[i]-1; *go back T[i] in u\
| < T[i]+1
if (I1>]s]) return m+1 *found s*\
else return m + | *not found*\

O% S
9% S

13 cdlh, Barcelona, July 2007

A run with abac In

aaabcacabacac

1

2

3

A4

s[i]

a

b

a

T[]

-

aa-bcacabacac

O (| O

O OO

O (O

O T | NN
O W IN

OREROREE

O T |DN|N

DY W N

o0 |+~

cdlh, Barce

ona, July 2007

Conclusion

o Many algorithms and data structures
(tries).

o Complexity of KMP=0O(|s|+|ul|)

o Research Is often about constants...

15 cdlh, Barcelona, July 2007

2 Order! Order!

o Suppose we have a total order relation
over the letters of an alphabet . We
denote by <, this order, which Is usually
called the alphabetical order.

O & <gpha B <gpha C---

16 cdlh, Barcelona, July 2007

Different orders can be
defined over X:

o the prefix order: x <, y If
dw e 2* 1y = Xw;

o the lexicographic order: x <, y If
either x <, .,y or
X=uaw Ay =ubz A a <;n, b.

17 cdlh, Barcelona, July 2007

o A more Interesting order for grammatical
Inference Is the hierarchical order (also
sometimes called the length-lexicographic
or length-lex order):

o If x and y belong to X*, X <. i jex Y If

XI < 1ylv (IX] = [y] A X <jex ¥)-
o The first strings, according to the

hierarchical order, with X = {a, b} will be
{\, 4, b, aa, ab, ba, bb, aaa,...}.

18 cdlh, Barcelona, July 2007

Example

o Let ={a, b, c} with a< b< c. Then

aab <, ab,

o but ab <, 4h1ex @@b. And the two strings
are incomparable for <, .

alpha alpha

19 cdlh, Barcelona, July 2007

3 Distances

o What iIs the issue?
o 4 types of distances
o The edit distance

20 cdlh, Barcelona, July 2007

The problem

o A class of objects or representations C
o A function C°—»R*

o Such that the closer x and y are one to
each other, the smaller is d(x,y).

21 cdlh, Barcelona, July 2007

The problem

o A class of objects/representations C
o A function C°—R
o which has the following properties:

d(x,x)=0
d(><,y)=d(y,><)/<|

d(x,y)>0 ,hef /70
S,O Q

o And sometimes
d(x,y)=0 = x=y
oy d(x,y)+d(y,z)>d(x,z)

22 cdlh, Barcelona, July 2007

Ce

Summarizing

A metric is a function C?*—>R
which has the following properties:
d(x,y)=0<= x=y

d(x,y)=d(y,x)
d(x,y)+d(y,z)>d(x,z)

23 cdlh, Barcelona, July 2007

o Pros and cons

o A distance is more flexible

o A metric gives us extra properties that we
can use in an algorithm

24 cdlh, Barcelona, July 2007

Four types of distances (1)

o Compute the number of modifications of
some type allowing to change A to B.

o Perhaps normalize this distance according
to the sizes of A and B or to the number of
possible paths

o Typically, the edit distance

25 cdlh, Barcelona, July 2007

o Four types of distances (2)

o Compute a similarity between A and B.
This Is a positive measure s(A,B).

o Convert it into a metric by one of at least 2
methods.

26 cdlh, Barcelona, July 2007

Method 1

o Let d(A,B)=2s(AB)
o If A=B, then d(A,B)=0

o Typically the prefix distance,
distance on trees:

o S(ty,t)=min{|x[: t;(x)#t,(X)}

27 cdlh, Barcelona, July 2007

or

the

Method 2

o d(A,B)=s(A,A)-s(A,B)-s(B,A)+s(B,B)
o Conditions
d(x,y)=0 = x=y
d(x,y)+d(y,z)>d(x,z)
only hold for some special conditions on s.

28 cdlh, Barcelona, July 2007

Four types of distances (3)

o FInd a finite set of measurable features

o Compute a numerical vector for A and B (v,
and vp). These vectors are elements of R".

o Use some distance d, over R"

o d(A,B)=d,(V,, V) (A

A

29 cdlh, Barcelona, July 2007

o Four types of distances (4)

o Find an Infinite (enumerable) set of
measurable features

o Compute a numerical vector for A and B
(v, and vg). These vectors are elements of
R>.

o Use some distance d, over R”

o d(A,B)=d,(V,, V)

30 cdlh, Barcelona, July 2007

The edit distance

o Defined by Levens(h)tein, 1966

o Algorithm proposed by Wagner and
Fisher, 1974

o Many variants, studies, extensions, since

31 cdlh, Barcelona, July 2007

o Basic operations

o Insertion
o Deletion
o Substitution

o Other operations:
Inversion

33 cdlh, Barcelona, July 2007

o Given two strings w and w' In X* w
rewrites Iinto w' in one step If one of the
following correction rules holds:

o w=uav , wW'=uv and u, veX*, aeX (single
symbol deletion)
o W=uv, w'=uav and u, veX* aeX (single
symbol insertion)
o w=uav, w'=ubv and u, veX*, a,beX, (single
. Symbol substitution)
s

34 cdlh, Barcelona, July 2007

o Examples

o abc — ac
o ac — abc
o abc — aec

35 cdlh, Barcelona, July 2007

O

We will consider the reflexive and
transitive closure of this derivation, and
denote wkw' if and only if w rewrites into
w' by k operations of single symbol
deletion, single symbol insertion and
single symbol substitution.

36 cdlh, Barcelona, July 2007

o Given 2 strings w and w', the Levenshtein
distance between w and w' denoted

d(w,w") Is the smallest k such that wWSw',

o Example: d(abaa, aab) = 2. abaa rewrites
Into aab via (for instance) a deletion of the
b and a substitution of the last a by a b.

37 cdlh, Barcelona, July 2007

A confusion matrix

a b C A
a 0 1 1 1
b 1 0 1 1
C 1 1 0 1
A 1 1 1 0

38 cdlh, Barcelona, July 2007

Another confusion matrix

a b C A
0 0.7 0.4 1
0.7 0 0.6 0.8
0.4 0.6 0 0.7
1 0.8 0.7 0

cdlh, Barcelona, July 2007

A similarity matrix using an

evolution model

1 «
41_1__

O =M
[I

O0nNkEFEOQO

-1 4
-2 0 ©
-2

-1

-1

-1

-2

-2

-1

-2

-3

-3

O 1 O

-3 0

-2

G

-2 0 6
-2
-1
-1
-2
-1
-1

-3 1 0

N
D
E
Q
H
R
K
M
|
L
v
F
Y
W

BLOSUMG62 matrix

-1 1 6

-1
-1
-1
-2
-1
-1
-1
-1
-1

-3 0

-2 0 2 5

-4 0

-3 0 -2 0 0 2 5
-2 1

-3
-3

-1 0 O 8
-2 0 1 0 b5

-1
-1

-2 0

-1 1 1-1 2 5

2 0
-1 -3 -2

-3 0
-1
-1
-1
-1
-2
-2
-2

-1 5

-3 -2 0 -2 -1

-3

-1
-2
-2

-3 1 4

-3
-2
-3
-3
-2
-3

-3
-3
-3
-1

-3
-2
-2
-3
-1 2
-2

-3

4 -3

-1
-1

-2 2 2 4

—4 -3

—4 -3
-3
-3

-2 1 3 1 4
-3 0 0 O

-2

-3

-2
c S T P A G NDE Q H R K M

-3

-3
-3

-3
-3

2 0
-4
-3
-4

-2 0
-2

-2
-3

-1 6
-1 3 7

-2
-2
-3

-2
-2
-2

-1
-2

-1
-3

-1
-1

-3 -2

-3 -2
-2

-3 1 2 11

-2

4 -3

-4

L V F Y W

cdlh, Barcelona, July 2007

Conditions

o C(a,b)< C(a,A)+C(A,b)

o C(a,b)= C(b,a)

o Basically C has to respect the triangle
iInequality

41 cdlh, Barcelona, July 2007

o Aligning

@abaacaba
d=2+2+0=4

bacaab

o Aligning
@abaacaba

d=3+0+1=4

bacaab

General algorithm

o What does not work:

Compute all possible sequences of
modifications, recursively.

o Something like:
d(ua,vb)=1+min(d(ua,v), d(u,vb), d(u,v))

44 cdlh, Barcelona, July 2007

The formula for dynamic
programming

d(ua,vb)=
If a=b, d(u,v)
If a=Db,
{- d(u,vb)+C(a,7)
min < «d(u,v)+C(a,b)

e d(ua,v)+C(A\,b)

cdlh, Barcelona, July 2007

cdlh, Barcelona, July 2007

47

@baacaba

b ac/@a b

</ M| T OO~ ®
MO M T O O |~ QO
I MOIN M T |IO O @
MO M N M T WO O
MIN NN N M T ©
< MO NN AN M| ©
< < M NN || N[O
IO | | M N[|| | @©
OO T M N A O
. &F

jmo»

“

o Complexity

o Time and space O(|ul.|v|)

o Note that if normalizing by dividing by the
sum of lengths [d(u,Vv)=d (u,v) / (|u]+]|Vv])]
you end up with something that is not a
distance:

dy(ab,aba)=0.2
d\(aba,ba)=0.2
dy(ab,ba)=0.5

49 cdlh, Barcelona, July 2007

Extensions

o Can add other operations such as
Inversion uabv—ubav

o Can work on circular strings
o Can work on languages

50 cdlh, Barcelona, July 2007

o A. V. Aho, Algorithms for Finding Patterns In
Strings, in: Handbook of Theoretical Computer
Science (Elsevier, Amsterdam, 1990) 290-300.

o L. Miclet, Méthodes Structurelles pour la Recon-
naissance des Formes (Eyrolles, Paris, 1984).

o R. Wagner and M. Fisher, The string-to-string
Correction Problem, Journal of the ACM 21
(1974) 168-178.

51 cdlh, Barcelona, July 2007

Note (recent (?) idea, re Bunke et al.)

o Another possibility is to choose n strings,
and given another string w, associate the
feature vector <d(w,w,),d(w,w,),...>.

o How do we choose the strings?
o Has this been tried?

52 cdlh, Barcelona, July 2007

4 Kernels

o A kernel is a function x : AxA—R such
that there exists a feature mapping
¢ . A >R", and k(X,y)=< ¢(X), d(y) >.

0 <9(X), p(Y)>=0,(X)-91(y) + §o(X)-d,(y) +...+
(I)n(x)(l)n(y)

o (dot product)

53 cdlh, Barcelona, July 2007

Some important points

o The «k function is explicit, the feature
mapping ¢ may only be implicit.

o Instead of taking R" any Hilbert space will
do.

o If the kernel function i1s built from a feature
mapping ¢, this respects the kernel
conditions.

54 cdlh, Barcelona, July 2007

Crucial points

o Function ¢ should have a meaning.

o The
Inex
com
O(|x

computation of k(x,y), should be
pensive: we are going to be doing this
putation many times. Typically

*+lyl) or O(|x].1y])-

o But notice that 1(x,y)=2;_, = ¢.(X)-d;(y)
o With | that can be infinite!

cdlh, Barcelona, July 2007

Some string kernels (1)

o The Parikh kernel:

(I)(u):(lulal’ |u|a21 |u|a3""1 |u|a|2|)
k(aaba, bbac)=[aaba|_ *|bbac| +
|aaba|, *|bbac|, + |aaba|.*|bbac|.=
3*1+1*2+0*1=5

56 cdlh, Barcelona, July 2007

Some string kernels (2)

o The spectrum kernel:

o Take alength p. Lets,, s,, ..., S, be an
enumeration of all strings in P

(I)(u):(lulsl’ |U|52, |u|331"'1 |u|sk)

k(aaba, bbac)=1 (for p=2)
(only ba in common!)

In other fields n-grams !

Computation time O(p |X| [y|)

57 cdlh, Barcelona, July 2007

Some string kernels (3)

o The all-subsequences kernel:
o Lets,,s,, ..., S,,... be an enumeration of all
strings in *
o Denote by ¢*(u), the number of times s appears
as a subsequence in u.
¢A(U)=(9A(U)s1s 9P(W)szs OA(U)szrs G (U o--)
k(aaba, bbac)=6
k(aaba, abac)=7+3+2+1=13

58 cdlh, Barcelona, July 2007

Some string kernels (4)

The gap-weighted subsequences kernel:
Lets,, S,, ..., S,,... be an enumeration of all
strings in *

Let A be a constant > 0

Denote by ¢,(u); be the number of times s
appears as a subsequence in u of length |

Then ¢,(u) Is the sum of all ¢,(u)s;,
Example: u=‘caat’, let s="at’, then ¢,(u)= A*+ A°

59 cdlh, Barcelona, July 2007

o Curiously a typical value, for theoretical
proofs, of A Is 2. But a value between O
and 1 is more meaningful.

o O(|x| |y]) computation time.

60 cdlh, Barcelona, July 2007

How Is a kernel computed?

o Through dynamic programming

o We do not compute function ¢

o Example of the all-subsequences kernel
KOD= k(Xg,--- %5 Yi---Y5)

Aux[]] (at step I): number of alignments
where x; is paired with y;.

61 cdlh, Barcelona, July 2007

General idea (1) Suppose we
know (at step 1)

X;..X: 4
X
Aux|j] |
vji<m
Y,
Yi--Yj1

The number of alignments of X;..x;
with y,..y; where x; Is matched with y;

62 cdlh, Barcelona, July 2007

General idea (2)

Xl' 'Xi-l
X
Aux|j] |
VI<m
y.
Y1--Yj1 |

Notice that AuX[j] =K]i-1][j-1]

General idea (3)

An alignment between x,..x; and
Y;..Y IS either an alignment where
X; IS matched with one of the y; (and
the number of these Is Aux|m]), or
an alignment where Xx; Is not
matched with anyone (so that Is
K[i-1][m].

K(Xq,-- X0y Vq---Yi)

/

For | €[1,m] K[O][j]=1 All matchings of x.
For i E[l,n] with earlier y

last < 0; Aux|[0] « O; Match x; with y,
For je[1l,m] /
Aux [K] <« Aux[last]

it (x;=y;) then Aux[j] <-Aux[last]+K[i-1][}-1]
last « K;
For | €[1,m]
% KIil[i] <« K[i-1][j]+Aux[j]

900)

65 cdlh, Barcelona, July 2007

A always matches

The arrays K and Aux for cata and gatta

A g a t t a

) 1 1 1 1 1 1

Aux | O 0 0 0 0 0

c 1 1 1 1 1 1

K/ Aux | O 0 1 1 1 2
N a 1 1 2 2 2 3
\ Aux 0 0 0 2 4 4
t 1 1 2 4 6 7

Aux | O 0 1 1 1 7

a 1 1 3 5 7 14

Ref. Shawe Taylor and Christianini

66 cdlh, Barcelona, July 2007

Why not try something else ?

o The all-substrings kernel:

olLets,s,, ..., S, ... be an enumeration of
all strings in *

(I)(u):(lulsl’ |U|52, |u|331"'1 |u|sn ’)
k(aaba, bbac)=7 (1+3+2+0+0..+1+0...)

o No formula ?

67 cdlh, Barcelona, July 2007

Or an alternative edit kernel

o k(X,y) Is the number of possible matchings
In a best alignment between x and y.

o Is this positive definite (Mercer’s
conditions)?

68 cdlh, Barcelona, July 2007

Or counting substrings only
once?

o ¢,(x) Is the maximum n such that u" is a
subsequence of X.

o No nice way of computing things...

69 cdlh, Barcelona, July 2007

Bibliography

o Kernel Methods for Pattern Analysis.
J. Shawe Taylor and N. Christianini. CUP

o Articles by A. Clark and C. Watkins (et al.)
(2006-2007)

70 cdlh, Barcelona, July 2007

5 Trees

o A tree domain (or Dewey tree) Is a set of
strings over alphabet {1,2,...,n} which is
prefix closed:

o uv € Dom(t) = u € Dom(t).
o Example: {A\, 1, 2, 3, 21, 22, 31, 311}

o Note: often start counting from O (sic)

71 cdlh, Barcelona, July 2007

o A ranked alphabet is an alphabet X, with a
rank (arity) function p: £— {0,..,n}

o A tree is a function from a tree domain to
a ranked alphabet, which respects
p(u)=k = ukeDom(t) and u(k+1) ¢ Dom(t)

72 cdlh, Barcelona, July 2007

An example

21 22 31

311

73 cdlh, Barcelona, July 2007

o Variants (1)

o Rooted trees (as graphs)

But also unrooted...

74 cdlh, Barcelona, July 2007

Binary trees

f

75 cdlh, Barcelona, July 2007

Exercises

o Some combinatorics on trees...

o How many
Dewey trees are there with 2, 3, n nodes?
binary trees are there with 2, 3, n nodes?

76 cdlh, Barcelona, July 2007

Some vocabulary

/ r
o The root of a tree
o Internal node/—\
o Leaf in a tree a g
o The frontier of a tree
o The siblings a
o The ancestor (¢ of)
o The descendant (of())
(&

o © Father-son...Mother daughter !
/7900)

77 cdlh, Barcelona, July 2007

About binary trees

full binary tree - every node has zero or
two children.

perfect (complete) binary tree - full
binary tree + leaves are at the same
depth.

78 cdlh, Barcelona, July 2007

About algorithms

o An edit distance can be computed
o Tree kernels exist
o Finding patterns is possible

o General rule: we can do on trees what we
can do on strings, at least in the ordered
casel

o But it is usually more difficult to describe.

79 cdlh, Barcelona, July 2007

Set of trees...

IS a forest
o Sequence of trees...
IS a hedge!

80 cdlh, Barcelona, July 2007

81 cdlh, Barcelona, July 2007

A graph

IS undirected, (V,E), where V is the set of
vertices (a vertex), and E the set of edges.

o You may have loops.

o An edge Is undirected, so a set of 2 vertices
{a,b} or of 1 vertex {a} (for a loop). An edge
IS Incident to 2 vertices. It has 2 extremities.

82 cdlh, Barcelona, July 2007

A digraph

Is a G=(V,A) where V Is a set of vertices
and A Is a set of arcs. An arc Is directed
and has a start and an end.

83 cdlh, Barcelona, July 2007

Some vocabulary

Undirected graphs Di-graphs

o an edge O an arc

o a chain o a path

o acycle o a circuit

o connected o strongly connected

84 cdlh, Barcelona, July 2007

What makes graphs so
attractive?

o We can represent many situations with
graphs.

o From the modelling point of view, graphs
are great.

85 cdlh, Barcelona, July 2007

Why not use them more?

o Because the comb
hard.

o Key problem: grap
o Are graphs G1 anc

Inatorics are really

N Isomorphism.
G2 iIsomorphic?

o Why is it a key pro
—or matching
—or a good distan

nlem?

ce (metric)

~or a good kernel

86 cdlh, Barcelona, July 2007

Isomorphic?

87 cdlh, Barcelona, July 2007

Isomorphic?

2 ?

A

b

cdlh, Barcelona, July 2007

Conclusion

o Algorithms matter.

o In machine learning, some basic
operations are performed an enormous
number of times. One should look out for
the definitions algorithmically reasonable.

89 cdlh, Barcelona, July 2007

e o/ Some algorithmic notions
and complexity theory for
machine learning

o Concrete complexity (or complexity of the
algorithms

o Complexity of the problems

90 cdlh, Barcelona, July 2007

Why are complexity issues
going to be important?

o Because the volumes of data for ML are
very large

o Because since we can learn with
randomized algorithms we might be able
to solve combinatorially hard problems
thanks to a learning problem

o Because mastering complexity theory Is
one key to successful ML applications.

91 cdlh, Barcelona, July 2007

o 8 Complexity of algorithms

o Goal is to say some thing about how fast
an algorithm is.

o Alternatives are:
Testing (stopwatch)
Maths

92 cdlh, Barcelona, July 2007

Maths

o We could test on
A best case
An average case
A worse case

03 cdlh, Barcelona, July 2007

Best case

o We can encode detection of the best case
In the algorithm, so this is meaningless

o4 cdlh, Barcelona, July 2007

Average case

o Appealing

o Where is the distribution over which we
average?

o But sometimes we can use Monte-Carlo
algorithms to have average complexity

05 cdlh, Barcelona, July 2007

Worse case

o Gives us an upper bound

o Can sometimes transform the worse case
to average case through randomisation

06 cdlh, Barcelona, July 2007

Notation O(f(n))

o This is the set of all functions
asymptotically bounded (by above) by f(n)
o So for example in O(n?) we find

n—n? n—nlogn, n—n, n—1,
n—7, n— 5n%+317n+423017

Exists dn,, 3 k>0, Vn=n,, g(n) <k - f(n)

97 cdlh, Barcelona, July 2007

Alternative notations

o Q(f(n))
This Is the set of all functions asymptotically
bounded (by underneath) by f(n)

o O(i(n))

This Is the set of all functions:- asymptotically
bounded (by both sides) by f(n)

n,, 3 ky,k, >0, Yn=n,, k; - f(n) <g(n) <k, - f(n)

900>

08 cdlh, Barcelona, July 2007

o

f(n)

g(n)

n

99 cdlh, Barcelona, July 2007

Some remarks

o This model is known as the RAM model. It
IS nowadays attacked, specifically for
large masses of data.

o It Is usually accepted that an algorithm
whose complexity is polynomial is OK. If
we are in Q(2"), no.

100 cdlh, Barcelona, July 2007

O Complexity of problems

o A problem has to be well defined, Ie
different experts will agree about what a
correct solution is.

o For example ‘learn a formula from this
data’ is ill defined, as Is ‘where are the
Interest points in this image?’.

o For a problem to be well defined we need

a description of the instances of the
problem and of the solution.

101 cdlh, Barcelona, July 2007

o Typology of problems (1)

o Counting problems
o How many x in | such that f(x)

102 cdlh, Barcelona, July 2007

o Typology of problems (2)

o Search/optimisation problems
o Find X minimising f

103 cdlh, Barcelona, July 2007

@ Typology of problems (3)

o Decision problems
o Is x (in |) such that f(x)?

104 cdlh, Barcelona, July 2007

About the parameters

o We need to encode the instances In a fair
and reasonable way.

o Then we consider the parameters that
define the size of the encoding
o Typically
Size(n)=log n
Size(w)=|w| (when |Z|>2)
s Size(G=(V,E))=|V|? or |V]| - |E]|

9% S

105 cdlh, Barcelona, July 2007

What Is a good encoding?

o An encoding Is reasonable If it encodes
sufficient different objects.

o le with n bits you have 2"*1 encodings so
optimally you should have 2"*! different
objects.

o Allow for redundancy and syntactic sugatrr,
so Q(p(2"*1)) different languages.

106 cdlh, Barcelona, July 2007

o Simplifying

o Only decision problems !
Answer Is YES or NO

o A problem is a Il, and the size of an
Instance Is n.

o With a problem I, we associate the co-
problem co-I1

o The set of positive instances for IT is
denoted I+(I1,)

107 cdlh, Barcelona, July 2007

10 Complexity Classes

o P : deterministic polynomial time

o NP: non deterministic polynomial
time

108 cdlh, Barcelona, July 2007

Turing machines

o Only one tape
o Alphabet of 2 symbols
o An input of length n
o We can count:
number of steps till halting
size of tape used for computation

109 cdlh, Barcelona, July 2007

»
Determinism and non determinism

o Determinism: at each moment, only one
rule can be applied.

o Non determinism: various rules can be
applied “in parallel”. The language
recognised Is that of the (positive)
Instances where there is at least one
accepting computation.

110 cdlh, Barcelona, July 2007

e ~ Computation tree for non determinism
|

p(n)!

111 cdlh, Barcelona, July 2007

Pand NP

oll eP <« I My 3 p() Viel(IT):
#steps (My(1)) < p(size())

oIl e NP < 3 My 3 p() Viel+(I1):
#steps (My(1)) < p(size())

o Programming point of view

o P : the program works in polynomial
time
o NP : the program takes wild guesses,

and if guesses were correct will find the
solution in polynomial time.

113 cdlh, Barcelona, July 2007

Turing Reduction

o IT, <¥. 11, (I1, reduces to IL,) if there
exists a polynomial algorithm solving
[T, using an oracle that consults I1, .

o There Is another type of reduction,
usually called ‘polynomial’

114 cdlh, Barcelona, July 2007

Reduction

o IT, <*I1, (I1, reduces to I1,) if there
exists a polynomial transformation
of the instances of I1, into those of
I1, such that

le I, < y(l)e I1,.
Then I, Is at least as hard as I1,
(polynomially speaking)

900>

115 cdlh, Barcelona, July 2007

o

o Complete problems

o A problem IT is C-complete if any
other problem from C reduces to I1

o A complete problem is ‘the hardest’
of its class.

o Nearly all classes have complete
problems.

116 cdlh, Barcelona, July 2007

Example of complete
problems

o SAT is NP-complete

o ‘Is there a path from x to y in graph G?’
IS P-complete

o SAT of a Boolean quantified closed
formula is P -SPACE complete

o Equivalence between two NFA Is
P-SPACE complete

117 cdlh, Barcelona, July 2007

cdlh, Barcelona, July 2007

SPACE Classes

We want to measure how much tape
IS needed, without taking into
account the computation time.

119 cdlh, Barcelona, July 2007

P-SPACE

IS the class of problems solvable by a
deterministic Turing machine that
uses only polynomial space.

o NPc P-SPACT

General opinion Is that the inclusion Is
strict.

120 cdlh, Barcelona, July 2007

NP -SPACE

o Is the class of problems solvable by a
nondeterministic Turing machine that
uses only polynomial space.

o Savitch theorem

P-SPACE=NP-SPACE

log-SPACE

L=log-SPACE
L is the class of problems that use only
poly-logarithmic space.
Obviously reading the input does not
get counted.

Lc P

General opinion Is that the inclusion Is

oy Strict.
800)

122 cdlh, Barcelona, July 2007

L P-SPACE P-SPACE= NP-SPACE

W S
Ps

123

P-SPACT= NP-SPACE

11 Stochastic classes

o Algorithms that use function random()

o Are there problems that deterministic
machines cannot solve but that
probabilistic ones can?

125 cdlh, Barcelona, July 2007

11.1 Probabillistic Turing
machines (PTM)

o These are non deterministic machines
that answer YES when the majority of

computations answer YES,;

o The accepted set is that of those

iInstances for which the majority of
computations give YES.

o PP is the class of those decision
0%90 problems solvable by polynomial PTMs

0>

126 cdlh, Barcelona, July 2007

PP is a useless class...

If probabillity of correctness is only G + Zlnj

an exponential (in n) number of iterations
IS needed to do better than random choice.

127 cdlh, Barcelona, July 2007

BPP: Bounded away from P

o BPP is the class of decision problems
solvable by a PTM for which the probability of

being correct is at least 1/2+0, with 6 a
constant>0.

o It is believed that NP and BPP are
incomparable, with the NP-complete in
NP\BPP, and some symmetrical problems in
BPANP.

900>

128 cdlh, Barcelona, July 2007

o

o Hierarchy

P < BPP < BQ?P
NP-complete n BQP =J

Quantic machines should not be able
to solve NP-hard problems

129 cdlh, Barcelona , July 2007

11.2 Randomized Turing
Machines (RTM)

These are non deterministic machines
such that

either no computation accepts
either half of them do
(instead of half, any fraction >0 is OK)

130 cdlh, Barcelona, July 2007

RP

o RP s the class of decision problems
solvable by a RTM

o PcRPc NP
o Inclusions are believed to be strict
o Example: Composite e RP

131 cdlh, Barcelona, July 2007

An example of a problem in RP

Product Polynomial Inequivalence

o 2 sets of rational polynomials
P,...P

Q;...Q,
o Answer : YES when HiS o Pi# H <n Q

This problem seems neither to be in $ nor in
co-NP.

132 cdlh, Barcelona, July 2007

o Example

o (X-2)(x2+x-21)(x3-4)
0 (X%-X+6)(x+14)(x+1)(x-2)(x+1)

o Notice that developing both polynomials is
too expensive.

133 cdlh, Barcelona, July 2007

LPP=RPN co-RP

o ZPP : Zero error probabilistic polynomial
time

o Use in parallel the algorithm for RP and

the one for co-RP

o These algorithms are called ‘Las Vegas’

o They are always right but the complexity is
In average polynomial.

134 cdlh, Barcelona, July 2007

-

12 Stochastic Algorithms

™

/

%
135

‘Monte-Carlo’ Algorithms

o Negative instance = answer is NO
o Positive instance = Pr(answer is YES) > 0.5

o They can be wrong, but by Iterating we can
get the error arbitrarily small.

o Solve problems from RP

136 cdlh, Barcelona, July 2007

‘Las Vegas’ algorithms

o Always correct
o In the worse case too slow
o In average case, polynomial time.

137 cdlh, Barcelona, July 2007

Another example of ‘Monte-
Carlo’ algorithm

Checking the product of matrices.
Consider 3 matrices A, B and C
Question AB=C ?

138 cdlh, Barcelona, July 2007

Natural idea

o Multiply A by B and compare with C
o Complexity

O(n3) brute force algorithm

O(n?%37) Strassen algorithm
o But we can do better!

Algorithm

generate S, bit vector
compute X=(SA)B
compute Y=5SC

If X #Y return TRUE
else return FALSE

o O(n)
o O(n?)
o O(n?)
o O(n)

o Example

o O1 -

71 2 3) /3
A: 4 5 6 B: 1
\7 3 9/ \2
/11 29 37\
C= 29 65 91
C 47 99 45
%900) _ /

141 cdlh, Barcelona, July 2007

o1 © b~

(1,1,0)| 4 9 6 | 5709

7 8 9
_ _/
3 1 4)
579 1 5 9 |=(4094128)
2 6 5
(11 29 37
(11.0)) 29 65 91| =(4094,128)
47 99 45
R _ _/

142 cdlh, Barcelona, July 2007

"1 2 3)
011)| 4 5 6 |= (11,13, 15)
7 8 9
_ _/
"3 1 4)
1 5 9 |=(76,166,236)
2 6 5
(11 29 37
OLD1 29 65 91| —(76,164,136)
47 99 45
0% \ J

143 cdlh, Barcelona, July 2007

C Proof

o Let D=C-AB =0

o Let V be a wrong column of D
o Consider a bit vector S,

If SV=0, then S’V = 0 with

S’=S xor (0...0, 1, 0...0)

-~

-1

144 cdlh, Barcelona, July 2007

o Pr(S)=Pr(S’)

o Choosing a random S, we have SD =0
with probabillity at least 1/2

o Repeating the experiment...

O Error

o If C=AB the answer Is always NO

o If CAB the error made (when
answering NO instead of YES) Is

(1/2)k (if k experiments)

Quicksort: an example of
‘Las Vegas’ algorithm

o Complexity of Quicksort=0(n?)

This Is the worse case, being unlucky with
the pivot choice.

o If we choose it randomly we have an
average complexity O(n 1og n)

147 cdlh, Barcelona, July 2007

®"13 The hardness of learning

3-term-DNF by 3-term-DNF

o references:
Pitt & Valiant 1988, Computational
Limitations on learning from examples 1,
JACM 35 965-984.
Examples and Proofs: Kearns & Vazirani,
An Introduction to Computational Learning
Theory, MIT press, 1994

148 cdlh, Barcelona, July 2007

o A formula in disjunctive normal form:
o X={Uy,,..,u.}

oF=T,vT,vTI,

o each T, Is a conjunction of literals

149 cdlh, Barcelona, July 2007

O sizes

o An example: <0,1,....0,1>

N

o a formula: max 9n

o To efficiently learn a 3-term-DNF, you
have to be polynomial in: 1/, 1/6, and n.

150 cdlh, Barcelona, July 2007

Theorem:

If RP=NP the class of 3-term-DNF is not
polynomially learnable by 3-term-DNF.

151 cdlh, Barcelona, July 2007

Definition:

A hypothesis h Is consistent with a
set of labelled examples
S={<Xq,by>,... <X, D> I

Vx.eS h(x)=b

152 cdlh, Barcelona, July 2007

3-colouring

o Instances: a graph G=(V, A)

o Question: does there exist a way to
colour V In 3 colours such that 2 adjacent
nodes have different colours?

o Remember: 3-colouring is NP-complete

153 cdlh, Barcelona, July 2007

Our problem

o Name: 3-term-DNF consistent

o Instances: a set of positive examples S+
and a set of negative examples S-

o Question: does there exist a 3-term-DNF
consistent with S+ and S-?

154 cdlh, Barcelona, July 2007

Reduce 3-colouring to
« consistent hypothesis »

Remember:

o Have to transform an instance of 3-
colouring to an instance of « consistent
hypothesis »

o And that the graph is 3 colourable iff the
set of examples admits a consistent 3-
term-DNF

155 cdlh, Barcelona, July 2007

Reduction

build from G=(V, A): Sg+uU Sg-

Vie[n] <v(i),1>eSc+ where v(i)=(1,1,..,1,0,1,..1)
)
I

(i, j) €A <a(i, j),0>eSe-

where a(l, j):(l""1’?""’?’1’"’1)
J

156 cdlh, Barcelona, July 2007

S+
(011111, 1)
(101111, 1)
(110111, 1)
(111011, 1)
(111101, 1)
(111110, 1)

cdlh, Barcelona, July 2007

Se-
(001111, 0)
(011011, 0)
(011101, 0)
(100111, 0)
(101110, 0)
(110110, 0)
(111100, 0)

Sg+
(011111, 1)
(101111, 1)
(110111, 1)
(111011, 1)
(111101, 1)
(111110, 1)

T

yellow

T

red

cdlh, Barcelona, July 2007

Sg-
(001111, 0)
(011011, 0)
(011101, 0)
(100111, 0)
(101110, 0)
(110110, 0)
(111100, 0)

=X, AXoAXy AXeAXg
Toie=X1AX3AXg
=Xy AXgAXgAXg

Sg+
(011111, 1)
(101111, 1)
(110111, 1)
(111011, 1)
(111101, 1)
(111110, 1)

T

yellow

T

red

cdlh, Barcelona, July 2007

Sg-
(001111, 0)
(011011, 0)
(011101, 0)
(100111, 0)
(101110, 0)
(110110, 0)
(111100, 0)

=X, AXoAXy AXeAXg
Toie=X1AX3AXg
=Xy AXgAXgAXg

Where did we win?

o Finding a 3-term-DNF consistent is
exactly PAC-learning 3-term DNF

o Suppose we have a polynomial
earning algorithm L that learns 3-term-
DNF PAC.

o Let S be a set of examples
o Take £=1/(2]SI)

160 cdlh, Barcelona, July 2007

® o We learn with the uniform distribution over S
with an algorithm L.

o If there exists a consistent 3-term-DNF, then
with probability at least 1-othe error is less
than & so there is In fact no error !

o If there exists no consistent 3-term-DNF, L
will not find anything.

o So just by looking at the results we know In
which case we are.

161 cdlh, Barcelona, July 2007

Therefore:

o L I1s a randomized learner that checks in
polynomial time if a sample S admits a
consistent 3-term-DNF.

o If S does not admit a consistent 3-term-DNF L
answers « no » with probability 1.

o If S admit a consistent 3-term-DNF L
answers« yes », with probability 1-¢.

o In this case we have 3-colouring e RP.

162 cdlh, Barcelona, July 2007

Careful

o The class 3-term-DNF is polynomially
PAC learnable by 3-CNF !

163 cdlh, Barcelona, July 2007

General conclusion

_ots of other TCS topics in ML.
_ogics (decision trees, ILP)

Higher graph theory (graphical models,
clustering, HMMs and DFA)

Formal language theory
... and there never is enough algorithmics !

164 cdlh, Barcelona, July 2007

	TCS for Machine Learning Scientists
	Outline
	Disclaimer
	1 Alphabet and strings
	Basic combinatorics on strings
	Algorithmics
	Knuth-Morris-Pratt algorithm
	KMP (Step 2)
	A run with abac in aaabcacabacac
	Conclusion
	2 Order! Order!
	Different orders can be defined over :
	Example
	3 Distances
	The problem
	The problem
	Summarizing
	Pros and cons
	Four types of distances (1)
	Four types of distances (2)
	Method 1
	Method 2
	Four types of distances (3)
	Four types of distances (4)
	The edit distance
	Basic operations
	Examples
	A confusion matrix
	Another confusion matrix
	A similarity matrix using an evolution model
	Conditions
	Aligning
	Aligning
	General algorithm
	The formula for dynamic programming
	Complexity
	Extensions
	Note (recent (?) idea, re Bunke et al.)
	4 Kernels
	Some important points
	Crucial points
	Some string kernels (1)
	Some string kernels (2)
	Some string kernels (3)
	Some string kernels (4)
	How is a kernel computed?
	General idea (1) Suppose we know (at step i)
	General idea (2)
	General idea (3)
	(x1,…xn, y1…ym)
	The arrays K and Aux for cata and gatta
	Or an alternative edit kernel
	Or counting substrings only once?
	Bibliography
	5 Trees
	An example
	Variants (1)
	Binary trees
	Exercises
	Some vocabulary
	About binary trees
	About algorithms
	Set of trees…
	6 Graphs
	A graph
	A digraph
	Some vocabulary
	What makes graphs so attractive?
	Why not use them more?
	Isomorphic?
	Isomorphic?
	Conclusion
	7 Some algorithmic notions and complexity theory for machine learning
	Why are complexity issues going to be important?
	8 Complexity of algorithms
	Maths
	Best case
	Average case
	Worse case
	Notation O(f(n))
	Alternative notations
	Some remarks
	9 Complexity of problems
	Typology of problems (1)
	Typology of problems (2)
	Typology of problems (3)
	About the parameters
	What is a good encoding?
	Simplifying
	10 Complexity Classes
	Turing machines
	Determinism and non determinism
	Computation tree for non determinism
	P and NP
	Programming point of view
	Turing Reduction
	Reduction
	Complete problems
	Example of complete problems
	SPACE Classes
	P-SPACE
	NP-SPACE
	log-SPACE
	11 Stochastic classes
	11.1 Probabilistic Turing machines (PTM)
	PP is a useless class…
	BPP: Bounded away from P
	Hierarchy
	11.2 Randomized Turing Machines (RTM)
	RP
	An example of a problem in RP
	Example
	ZPP=RP co-RP
	12 Stochastic Algorithms
	‘Monte-Carlo’ Algorithms
	‘Las Vegas’ algorithms
	Another example of ‘Monte-Carlo’ algorithm
	Natural idea
	Algorithm
	Example
	Proof
	Error
	Quicksort: an example of ‘Las Vegas’ algorithm
	13 The hardness of learning 3-term-DNF by 3-term-DNF
	sizes
	Theorem:
	Definition:
	3-colouring
	Our problem
	Reduce 3-colouring to « consistent hypothesis »
	Reduction
	Where did we win?
	Therefore:
	Careful
	General conclusion

