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Disclaimer

The view is that the essential bits of linear 
algebra and statistics are taught elsewhere. 
If not they should also be in a lecture on 
basic TCS for ML.
There are not always fixed name for 
mathematical objects in TCS. This is one 
choice.
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1 Alphabet and strings

An alphabet Σ is a finite nonempty set of 
symbols called letters. 
A string w over Σ is a finite sequence      
a1 …an of letters.
Let |w| denote the length of w. In this case 
we have |w| = |a1…an| = n.
The empty string is denoted by λ (in 
certain books notation ε is used for the 
empty string).
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Alternatively a string w of length n can be 
viewed as a mapping [n] Σ :
if w = a1a2…an we have w(1) = a1, w(2) = 
a2 …, w(n) = an.
Given a∈Σ , and w a string over Σ, |w|a
denotes the number of occurrences of 
letter a in w.
Note that [n]={1,…,n} with [0]=∅
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Letters of the alphabet will be indicated by 
a, b, c,…, strings over the alphabet by u, 
v,… , z
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Let Σ* be the set of all finite strings over 
alphabet.
Given a string w, x is a substring of w if 
there are two strings l and r such that       
w = lxr. In that case we will also say that w
is a superstring of x.
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We can count the number of occurrences 
of a given string u as a substring of a 
string w and denote this value by |w|u = 
|{l∈Σ* : ∃r∈Σ* ∧ w = lur}|.
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x is a subsequence of w if it can be 
obtained from w by erasing letters from w. 
Alternatively: ∀x, y, z, x1, x2 ∈ Σ*, ∀a∈Σ :

x is a subsequence of x,
x1x2 is a subsequence of x1ax2
if x is a subsequence of y and y is a 
subsequence of z then x is a subsequence 
of z.
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Basic combinatorics on 
strings

Let n=|w| and p=|Σ|
Then the number of…

At least At most

n+1 Prefixes of w n+1

n+1 Substrings of w n(n+1)/2+1

n+1 Subsequences of w 2n
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Algorithmics

There are many algorithms to compute the 
maximal subsequence of 2 strings
But computing the maximal subsequence 
of n strings is NP-hard.
Yet in the case of substrings this is easy.



cdlh, Barcelona, July 200712

cdlh 2007

Knuth-Morris-Pratt algorithm
Does string s appear as substring of string u?
Step 1 compute T[i] the table indicating the 
longest correct prefix  if things go wrong.
T[i]=k ⇔ s1…sk=si-k…si-1.
Complexity is O(|s|)

i 1 2 3 4 5 6 7

s[i] a b c d a b d

T[i] 0 0 0 0 0 1 2

T[7]=2 means that if 
we fail when parsing 
d, we can still count 

on the first 2 
characters been 

parsed.
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KMP (Step 2)
m ← 0;                           \*m position where s starts*\
i ← 1;                                            \*i is over s and u*\
while (m + i ≤|u| & i ≤ |s|) 

if (u[m + i] = s[i])  ++i \*matches*\
else \*doesn’t match\

m ←m+ i - T[i]-1;                  \*go back T[i] in u\
i ← T[i]+1

if (i > |s|) return m+1                             \*found s*\
else return m + i \*not found*\
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A run with abac in 
aaabcacabacac

i 1 2 3 4

s[i] a b a c

T[i] 0 0 0 1

aaabcacabacac

m 0 0 0 1
1 1

a
a

a
a

2 2 5 7 7 7 7
i 1 2 2 2 3 2 1

a
a

4
s a b b b a b

32
b a
b a

c
u a a a b c c c
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Conclusion

Many algorithms and data structures 
(tries).
Complexity of KMP=O(|s|+|u|)
Research is often about constants…
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2 Order! Order!

Suppose we have a total order relation 
over the letters of an alphabet Σ. We 
denote by ≤alpha this order, which is usually 
called the alphabetical order.
a ≤alpha b ≤alpha c…



cdlh, Barcelona, July 200717

cdlh 2007

Different orders can be 
defined over Σ:

the prefix order: x ≤pref y if   
∃w ∈ Σ* : y = xw;

the lexicographic order: x ≤lex y if 
either x ≤pref y or
x = uaw ∧ y = ubz ∧ a ≤alpha b.
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A more interesting order for grammatical 
inference is the hierarchical order (also 
sometimes called the length-lexicographic 
or length-lex order):
If x and y belong to Σ*, x ≤length-lex y if 

|x| < |y|∨ (|x| = |y| ∧ x ≤lex y).
The first strings, according to the 
hierarchical order, with Σ = {a, b} will be 
{λ, a, b, aa, ab, ba, bb, aaa,…}.
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Example

Let  = {a, b, c} with a<alpha b<alpha c. Then 
aab ≤lex ab,
but ab ≤length-lex aab. And the two strings 
are incomparable for ≤pref.
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3 Distances

What is the issue?
4 types of distances
The edit distance
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The problem

A class of objects or representations C
A function C2→R+

Such that the closer x and y are one to 
each other, the smaller is d(x,y).
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The problem

A class of objects/representations C
A function C2→R
which has the following properties:

d(x,x)=0
d(x,y)=d(y,x)
d(x,y)≥0

And sometimes
d(x,y)=0 ⇒ x=y
d(x,y)+d(y,z)≥d(x,z)
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Summarizing

A metric is a function C2→R
which has the following properties:

d(x,y)=0⇔ x=y
d(x,y)=d(y,x)
d(x,y)+d(y,z)≥d(x,z)
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Pros and cons

A distance is more flexible 
A metric gives us extra properties that we 
can use in an algorithm
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Four types of distances (1)

Compute the number of modifications of 
some type allowing to change A to B.
Perhaps normalize this distance according 
to the sizes of A and B or to the number of 
possible paths
Typically, the edit distance
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Four types of distances (2)

Compute a similarity between A and B. 
This is a positive measure s(A,B).
Convert it into a metric by one of at least 2 
methods.
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Method 1

Let d(A,B)=2-s(A,B)

If A=B, then d(A,B)=0
Typically the prefix distance, or the 
distance on trees:
S(t1,t2)=min{|x|: t1(x)≠t2(x)}
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Method 2

d(A,B)= s(A,A)-s(A,B)-s(B,A)+s(B,B)
Conditions

d(x,y)=0 ⇒ x=y
d(x,y)+d(y,z)≥d(x,z)

only hold for some special conditions on s.
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Four types of distances (3)

Find a finite set of measurable features
Compute a numerical vector for A and B (vA
and vB). These vectors are elements of Rn.
Use some distance dv over Rn

d(A,B)=dv(vA, vB)
A B

α



cdlh, Barcelona, July 200730

cdlh 2007

Four types of distances (4)

Find an infinite (enumerable) set of 
measurable features
Compute a numerical vector for A and B
(vA and vB). These vectors are elements of 
R∞.
Use some distance dv over R∞

d(A,B)=dv(vA, vB)
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The edit distance

Defined by Levens(h)tein, 1966
Algorithm proposed by Wagner and 
Fisher, 1974
Many variants, studies, extensions, since
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Basic operations

Insertion
Deletion
Substitution
Other operations:

inversion
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Given two strings w and w' in Σ*, w
rewrites into w' in one step if one of the 
following correction rules holds: 
w=uav , w'=uv and u, v∈Σ*, a∈Σ (single 
symbol deletion)
w=uv, w'=uav and u, v∈Σ*, a∈Σ (single 
symbol insertion)
w=uav, w'=ubv and u, v∈Σ*, a,b∈Σ, (single 
symbol substitution)
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Examples

abc → ac
ac → abc
abc → aec
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We will consider the reflexive and 
transitive closure of this derivation, and 
denote w→w' if and only if w rewrites into 
w' by k operations of single symbol 
deletion, single symbol insertion and 
single symbol substitution.

k
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Given 2 strings w and w', the Levenshtein
distance between w and w' denoted 
d(w,w') is the smallest k such that w→w'.

Example: d(abaa, aab) = 2. abaa rewrites 
into aab via (for instance) a deletion of the 
b and a substitution of the last a by a b.

k
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A confusion matrix

a b c λ

a 0 1 1 1

b 1 0 1 1

c 1 1 0 1

λ 1 1 1 0
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Another confusion matrix

a b c λ

a 0 0.7 0.4 1

b 0.7 0 0.6 0.8

c 0.4 0.6 0 0.7

λ 1 0.8 0.7 0
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A similarity matrix using an 
evolution modelC   9

S  -1  4
T  -1  1  5
P  -3 -1 -1  7
A   0  1  0 -1  4
G  -3  0 -2 -2  0  6
N  -3  1  0 -2 -2  0  6
D  -3  0 -1 -1 -2 -1  1  6
E  -4  0 -1 -1 -1 -2  0  2  5
Q  -3  0 -1 -1 -1 -2  0  0  2  5
H  -3 -1 -2 -2 -2 -2  1 -1  0  0  8
R  -3 -1 -1 -2 -1 -2  0 -2  0  1  0  5
K  -3  0 -1 -1 -1 -2  0 -1  1  1 -1  2  5
M  -1 -1 -1 -2 -1 -3 -2 -3 -2  0 -2 -1 -1  5
I  -1 -2 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3  1  4
L  -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2  2  2  4
V  -1 -2  0 -2  0 -3 -3 -3 -2 -2 -3 -3 -2  1  3  1  4
F  -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3  0  0  0 -1  6
Y  -2 -2 -2 -3 -2 -3 -2 -3 -2 -1  2 -2 -2 -1 -1 -1 -1  3  7
W  -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3  1  2  11

C  S  T  P  A  G  N  D  E  Q  H  R  K  M  I  L  V  F  Y  W 

BLOSUM62 matrix
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Conditions

C(a,b)< C(a,λ)+C(λ,b)
C(a,b)= C(b,a)
Basically C has to respect the triangle 
inequality
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Aligning

a b a a c a b a

b a c a a b
d=2+2+0=4
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Aligning

a b a a c a b a

b a c a a b
d=3+0+1=4



cdlh, Barcelona, July 200744

cdlh 2007

General algorithm

What does not work:
Compute all possible sequences of 
modifications, recursively.

Something like:
d(ua,vb)=1+min(d(ua,v), d(u,vb), d(u,v))
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The formula for dynamic 
programming

d(ua,vb)=
if a=b, d(u,v)
if a≠b,  

• d(u,vb)+C(a,λ)
• d(u,v)+C(a,b)
• d(ua,v)+C(λ,b)

min
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b 6 5 4 4 3 3 4 3 4
a 5

4
3
2
1
0
λ

4 4 3 2 3 3 3 3
a 3 3 2 2 3 2 3 4
c 2 2 2 2 2 3 4 5
a 1 2 1 2 3 4 5 6
b 1 1 2 3 4 5 6 7
λ 1 2 3 4 5 6 7 8

a b a a c a b a
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b 6 5 4 4 3 3 4 3 4
a 5

4
3
2
1
0
λ

4 4 3 2 3 3 3 3
a 3 3 2 2 3 2 3 4
c 2 2 2 2 2 3 4 5
a 1 2 1 2 3 4 5 6
b 1 1 2 3 4 5 6 7
λ 1 2 3 4 5 6 7 8

a b a a c a b a
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a b a a c a b a

b a c a a b
b 6 5 4 4 3 3 4 3 4
a 5

4
3
2
1
0
λ

4 4 3 2 3 3 3 3
a 3 3 2 2 3 2 3 4
c 2 2 2 2 2 3 4 5
a 1 2 1 2 3 4 5 6
b 1 1 2 3 4 5 6 7
λ 1 2 3 4 5 6 7 8

a b a a c a b a
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Complexity

Time and space O(|u|.|v|)
Note that if normalizing by dividing by the 
sum of lengths [dN(u,v)=de(u,v) / (|u|+|v|)] 
you end up with something that is not a 
distance:

dN(ab,aba)=0.2
dN(aba,ba)=0.2
dN(ab,ba)=0.5
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Extensions

Can add other operations such as 
inversion uabv→ubav
Can work on circular strings
Can work on languages 
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Note (recent (?) idea, re Bunke et al.)

Another possibility is to choose n strings, 
and given another string w, associate the 
feature vector <d(w,w1),d(w,w2),…>.
How do we choose the strings?
Has this been tried?
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4 Kernels

A kernel is a function κ : A×A→R such 
that there exists a feature mapping           
φ : A →Rn, and κ(x,y)=< φ(x), φ(y) >. 
<φ(x), φ(y)>=φ1(x)·φ1(y) + φ2(x)·φ2(y) +…+ 
φn(x)·φn(y)

(dot product)
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Some important points

The κ function is explicit, the feature 
mapping φ may only be implicit.
Instead of taking Rn any Hilbert space will 
do.
If the kernel function is built from a feature 
mapping φ, this respects the kernel 
conditions.
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Crucial points

Function φ should have a meaning.
The computation of κ(x,y), should be 
inexpensive: we are going to be doing this 
computation many times. Typically 
O(|x|+|y|) or O(|x|.|y|).

But notice that κ(x,y)=Σi∈ I = φi(x)·φi(y)
With I that can be infinite!
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Some string kernels (1)

The Parikh kernel:
φ(u)=(|u|a1, |u|a2, |u|a3,…, |u|a|Σ|)
κ(aaba, bbac)=|aaba|a*|bbac|a+ 
|aaba|b*|bbac|b + |aaba|c*|bbac|c= 
3*1+1*2+0*1=5
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Some string kernels (2)

The spectrum kernel:
Take a length p. Let s1, s2, …, sk be an 
enumeration of all strings in Σp

φ(u)=(|u|s1, |u|s2, |u|s3,…, |u|sk)
κ(aaba, bbac)=1 (for p=2)

(only ba in common!)
In other fields n-grams !
Computation time O(p |x| |y|)
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Some string kernels (3)

The all-subsequences kernel:
Let s1, s2, …, sn,… be an enumeration of all 
strings in Σ+

Denote by φA(u)s the number of times s appears 
as a subsequence in u.

φA(u)=(φA(u)s1, φA( u)s2, φA( u)s3,…, φA( u)sn ,…)
κ(aaba, bbac)=6
κ(aaba, abac)=7+3+2+1=13



cdlh, Barcelona, July 200759

cdlh 2007

Some string kernels (4)
The gap-weighted subsequences kernel:
Let s1, s2, …, sn,… be an enumeration of all 
strings in Σ+

Let λ be a constant > 0
Denote by φj(u)s,i be the number of times s
appears as a subsequence in u of length i
Then φj(u) is the sum of all φj(u)sj,I

Example: u=‘caat’, let sj=‘at’, then φj(u)= λ2+ λ3
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Curiously a typical value, for theoretical 
proofs, of λ is 2. But a value between 0 
and 1 is more meaningful.
O(|x| |y|) computation time.
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How is a kernel computed?

Through dynamic programming
We do not compute function φ
Example of the all-subsequences kernel

K[i][j]= κ(x1,…xi, y1…yj)
Aux[j] (at step i): number of alignments 
where xi is paired with yj.
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General idea (1) Suppose we 
know (at step i)

xi

yjy1..yj-1

x1..xi-1

Aux[j]
∀j≤m

The number of alignments of x1..xi
with y1..yj where xi is matched with yj
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General idea (2)

xi

yjy1..yj-1

x1..xi-1

Aux[j]
∀j≤m

Notice that Aux[j] =K[i-1][j-1] 
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General idea (3)

An alignment between x1..xi and 
y1..ym is either an alignment where 
xi is matched with one of the yj (and 
the number of these is Aux[m]), or 
an alignment where xi is not 
matched with anyone (so that is 
K[i-1][m].
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κ(x1,…xn, y1…ym)

For j ∈[1,m] K[0][j]=1
For i ∈[1,n]

last ← 0; Aux[0] ← 0;
For j∈[1,m] 

Aux [k] ← Aux[last]
if (xi=yj ) then Aux[j] ←Aux[last]+K[i-1][j-1]
last ← k;

For j ∈[1,m]
K[i][j] ← K[i-1][j]+Aux[j]

All matchings of xi
with earlier y

Match xi with yj

λ always matches
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The arrays K and Aux for cata and gatta
λ g a t t a

λ 1 1 1 1 1 1
Aux 0 0 0 0 0 0

c 1 1 1 1 1 1
Aux 0 0 1 1 1 2

a 1 1 2 2 2 3
Aux 0 0 0 2 4 4

t 1 1 2 4 6 7
Aux 0 0 1 1 1 7

a 1 1 3 5 7 14

Ref: Shawe Taylor and Christianini

κ
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The all-substrings kernel:
Let s1, s2, …, sn,… be an enumeration of 
all strings in Σ+

φ(u)=(|u|s1, |u|s2, |u|s3,…, |u|sn ,…)
κ(aaba, bbac)=7 (1+3+2+0+0..+1+0…)

No formula ?

Why not try something else ?
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Or an alternative edit kernel

κ(x,y) is the number of possible matchings
in a best alignment between x and y.
Is this positive definite (Mercer’s 
conditions)?
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Or counting substrings only 
once?

φu(x) is the maximum n such that un is a 
subsequence of x.
No nice way of computing things…
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5 Trees

A tree domain (or Dewey tree)  is a set of 
strings over alphabet {1,2,…,n} which is 
prefix closed:
uv ∈ Dom(t) ⇒ u ∈ Dom(t).
Example: {λ, 1, 2, 3, 21, 22, 31, 311}

Note: often start counting from 0 (sic)
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A ranked alphabet is an alphabet Σ, with a 
rank (arity) function ρ: Σ→ {0,..,n}
A tree is a function from a tree domain to 
a ranked alphabet, which respects                    
ρ(u)=k ⇒ uk∈Dom(t) and u(k+1) ∉ Dom(t)



cdlh, Barcelona, July 200773

cdlh 2007

An example

a

a b

g h

f

h

b

1

21 22

2 3

λ

31

311
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Variants (1)

Rooted trees (as graphs)

a

a b

g

h

f

h

b
But also unrooted…
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Binary trees

a

g h

f

h

b

a

g h

f

h

b

≠
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Exercises

Some combinatorics on trees…
How many 

Dewey trees are there with 2, 3, n nodes?
binary trees are there with 2, 3, n nodes?
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Some vocabulary

The root of a tree
Internal node
Leaf in a tree
The frontier of a tree
The siblings
The ancestor (    of    )
The descendant (    of    )
Father-son…Mother daughter !

a

a b

g h

f

h

b
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About binary trees

full binary tree every node has zero or 
two children. 

perfect (complete) binary tree full 
binary tree + leaves are at the same 
depth. 
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About algorithms

An edit distance can be computed
Tree kernels exist
Finding patterns is possible
General rule: we can do on trees what we 
can do on strings, at least in the ordered 
case!
But it is usually more difficult to describe.
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Set of trees…

is a forest
Sequence of trees…
is a hedge!
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6 Graphs

gc d

a b
e

h

f
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A graph

is undirected, (V,E), where V is the set of 
vertices (a vertex), and E the set of edges.
You may have loops.
An edge is undirected, so a set of 2 vertices 
{a,b} or of 1 vertex {a} (for a loop). An edge 
is incident to 2 vertices. It has 2 extremities.
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A digraph

is a G=(V,A) where V is a set of vertices
and A is a set of arcs. An arc is directed 
and has a start and an end. 



cdlh, Barcelona, July 200784

cdlh 2007

Some vocabulary

Undirected graphs
an edge
a chain
a cycle
connected

Di-graphs
an arc
a path
a circuit
strongly connected
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What makes graphs so 
attractive?

We can represent many situations with 
graphs.
From the modelling point of view, graphs 
are great.
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Why not use them more?

Because the combinatorics are really 
hard.
Key problem: graph isomorphism.
Are graphs G1 and G2 isomorphic?
Why is it a key problem?

For matching
For a good distance (metric)
For a good kernel
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Isomorphic?
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Conclusion

Algorithms matter. 
In machine learning, some basic 
operations are performed an enormous 
number of times. One should look out for 
the definitions algorithmically reasonable.



cdlh, Barcelona, July 200790

cdlh 2007

7 Some algorithmic notions 
and complexity theory for 
machine learning

Concrete complexity (or complexity of the 
algorithms
Complexity of the problems
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Why are complexity issues 
going to be important?

Because the volumes of data for ML are 
very large
Because since we can learn with 
randomized algorithms we might be able 
to solve combinatorially hard problems 
thanks to a learning problem
Because mastering complexity theory is 
one key to successful ML applications.
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8 Complexity of algorithms

Goal is to say some thing about how fast 
an algorithm is.
Alternatives are:

Testing (stopwatch)
Maths
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Maths

We could test on 
A best case
An average case
A worse case
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Best case

We can encode detection of the best case 
in the algorithm, so this is meaningless
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Average case

Appealing
Where is the distribution over which we 
average?
But sometimes we can use Monte-Carlo 
algorithms to have average complexity
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Worse case

Gives us an upper bound
Can sometimes transform the worse case 
to average case through randomisation
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Notation O(f(n))

This is the set of all functions 
asymptotically bounded (by above) by f(n)
So for example in O(n2) we find
n → n2, n → n log n, n → n, n → 1, 
n →7, n → 5n2+317n+423017

Exists ∃n0, ∃ k >0, ∀n≥n0, g(n) ≤k · f(n)
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Alternative notations

Ω(f(n))
This is the set of all functions asymptotically 
bounded (by underneath) by f(n)

Θ(f(n))
This is the set of all functions· asymptotically 
bounded (by both sides) by f(n)

∃n0, ∃ k1,k2 >0, ∀n≥n0, k1 · f(n) ≤g(n) ≤k2 · f(n)
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n

f(n)
g(n)



cdlh, Barcelona, July 2007100

cdlh 2007

Some remarks

This model is known as the RAM model. It 
is nowadays attacked, specifically for 
large masses of data.
It is usually accepted that an algorithm 
whose complexity is polynomial is OK. If 
we are in Ω(2n), no.
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9 Complexity of problems

A problem has to be well defined, ie
different experts will agree about what a 
correct solution is.
For example ‘learn a formula from this 
data’ is ill defined, as is ‘where are the 
interest points in this image?’.
For a problem to be well defined we need 
a description of the instances of the 
problem and of the solution.
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Typology of problems (1)

Counting problems
How many x in I such that f(x)
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Typology of problems (2)

Search/optimisation problems
Find x minimising f
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Typology of problems (3)

Decision problems
Is x (in I ) such that f(x)?
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About the parameters

We need to encode the instances in a fair 
and reasonable way.
Then we consider the parameters that 
define the size of the encoding
Typically

Size(n)=log n
Size(w)=|w| (when |Σ|≥2)
Size(G=(V,E))=|V|2 or |V| · |E|
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What is a good encoding?

An encoding is reasonable if it encodes 
sufficient different objects.
Ie with n bits you have 2n+1 encodings so 
optimally you should have 2n+1 different 
objects.
Allow for redundancy and syntactic sugar, 
so Ω(p(2n+1)) different languages.
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Simplifying

Only decision problems !
Answer is YES or NO

A problem is a Π, and the size of an 
instance is n.
With a problem Π, we associate the co-
problem co-Π
The set of positive instances for Π is 
denoted I+(Π,)
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10 Complexity Classes

P : deterministic polynomial time
NP: non deterministic polynomial 
time
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Turing machines

Only one tape
Alphabet of 2 symbols
An input of length n
We can count:

number of steps till halting 
size of tape used for computation
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Determinism and non determinism

Determinism: at each moment, only one 
rule can be applied.
Non determinism: various rules can be 
applied “in parallel”. The language 
recognised is that of the (positive) 
instances where there is at least one
accepting computation.
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Computation tree for non determinism

p(n)
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P and NP

Π ∈P ⇔ ∃ MD ∃ p() ∀i∈I(Π):                  
#steps (MD(i)) ≤ p(size(i))

Π ∈ NP ⇔ ∃ MN ∃ p() ∀i∈I+(Π):      
#steps (MN(i)) ≤ p(size(i))
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Programming point of view

P : the program works in polynomial 
time 
NP : the program takes wild guesses, 
and if guesses were correct will find the 
solution in polynomial time.
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Turing Reduction 

Π1 ≤P
T Π2 (Π1 reduces to Π2) if there 

exists a polynomial algorithm solving  
Π1 using an oracle that consults Π2 .

There is another type of reduction, 
usually called ‘polynomial’
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Reduction 

Π1 ≤PΠ2 (Π1 reduces to Π2) if there 
exists a polynomial transformation ψ
of the instances of Π1 into those of 
Π2 such that

i∈ Π1 ⇔ ψ(i)∈ Π2 .
Then Π2 is at least as hard as Π1

(polynomially speaking) 
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Complete problems

A problem Π is C-complete if any 
other problem from C reduces to Π
A complete problem is ‘the hardest’
of its class.
Nearly all classes have complete 
problems.
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Example of complete 
problems

SAT is NP-complete
‘Is there a path from x to y in graph G?’
is P-complete
SAT of a Boolean quantified closed 
formula is P-SPACE complete
Equivalence between two NFA is        
P-SPACE complete
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P

co-NP

NP

NPC

NP∩co-NP



cdlh, Barcelona, July 2007119

cdlh 2007

SPACE Classes

We want to measure how much tape 
is needed, without taking into 
account the computation time.
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P-SPACE

is the class of problems solvable by a 
deterministic Turing machine that 
uses only polynomial space.
NP⊆ P-SPACE

General opinion is that the inclusion is 
strict.
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NP-SPACE

is the class of problems solvable by a 
nondeterministic Turing machine that 
uses only polynomial space.
Savitch theorem
P-SPACE=NP-SPACE
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log-SPACE
L=log-SPACE

L is the class of problems that use only 
poly-logarithmic space.
Obviously reading the input does not 
get counted.

L⊆ P
General opinion is that the inclusion is 
strict.
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L

P

co-NP
NP

P-SPACE= NP-SPACE

NPC

L≠ P-SPACE
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L

RP
co
-
RP

P

co-NP
NP

BPP

ZPP

P-SPACE= NP-SPACE

NPC
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11 Stochastic classes
Algorithms that use function random()

Are there problems that deterministic 
machines cannot solve but that 
probabilistic ones can?
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11.1 Probabilistic Turing 
machines (PTM)

These are non deterministic machines 
that answer YES when the majority of 
computations answer YES;
The accepted set is that of those 
instances for which the majority of 
computations give YES.
PP is the class of those decision 
problems solvable by polynomial PTMs
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PP is a useless class…

If probability of correctness is only

an exponential (in n) number of iterations 
is needed to do better than random choice.

⎟
⎠
⎞

⎜
⎝
⎛ + n2

1
2
1
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BPP: Bounded away from P

BPP is the class of decision problems 
solvable by a PTM for which the probability of 
being correct is at least 1/2+δ, with δ a 
constant>0.
It is believed that NP and BPP are 
incomparable, with the NP-complete in 
NP\BPP, and some symmetrical problems in 
BPP\NP.
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Hierarchy

P ⊆ BPP ⊆ BQP 

NP-complete ∩ BQP = ∅

Quantic machines should not be able 
to solve NP-hard problems
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11.2 Randomized Turing 
Machines (RTM)

These are non deterministic machines 
such that

either no computation accepts 
either half of them do

(instead of half, any fraction >0 is OK)
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RP

RP is the class of decision problems 
solvable by a RTM
P ⊆ RP ⊆ NP
Inclusions are believed to be strict
Example: Composite ∈RP
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An example of a problem in RP 
Product Polynomial Inequivalence

2 sets of rational  polynomials
P1…Pm

Q1…Qn

Answer : YES when ∏i≤ m Pi ≠ ∏ i≤ n Qi

This problem seems neither to be in P nor in 
co-NP.
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Example

(x-2)(x2+x-21)(x3-4)
(x2-x+6)(x+14)(x+1)(x-2)(x+1)
Notice that developing both polynomials is 
too expensive.
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ZPP=RP∩ co-RP

ZPP : Zero error probabilistic polynomial 
time
Use in parallel the algorithm for RP and 
the one for co-RP
These algorithms are called ‘Las Vegas’
They are always right but the complexity is 
in average polynomial.
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12 Stochastic Algorithms
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‘Monte-Carlo’ Algorithms
Negative instance ⇒ answer is NO
Positive instance ⇒ Pr(answer is YES) > 0.5
They can be wrong, but by iterating we can 
get the error arbitrarily small.
Solve problems from RP
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‘Las Vegas’ algorithms

Always correct
In the worse case too slow 
In average case, polynomial time.
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Another example of ‘Monte-
Carlo’ algorithm

Checking the product of matrices.
Consider 3 matrices A, B and C
Question AB≠C ?
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Natural idea

Multiply A by B and compare with C
Complexity

O(n3) brute force algorithm
O(n2.37) Strassen algorithm

But we can do better!
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Algorithm

generate  S, bit vector
compute X=(SA)B
compute Y=SC
If X ≠ Y return TRUE 

else return FALSE

O(n)
O(n2)
O(n2)
O(n)



cdlh, Barcelona, July 2007141

cdlh 2007

Example

1 2 3
4 5 6
7 8 9

3 1 4
1 5 9
2 6 5

1 1 2 9 3 7
2 9 6 5 9 1
4 7 9 9 4 5

B=A=

C=
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1 2 3
4 5 6
7 8 9

(1,1,0)

1 1 2 9 3 7
2 9 6 5 9 1
4 7 9 9 4 5

(1,1,0)

=(5,7,9)

3 1 4
1 5 9
2 6 5

(5,7,9) = (40,94,128)

=(40,94,128)
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1 2 3
4 5 6
7 8 9

(0,1,1)

1 1 2 9 3 7
2 9 6 5 9 1
4 7 9 9 4 5

(0,1,1)

=   (11, 13, 15)

3 1 4
1 5 9
2 6 5

= (76,166,236)

=(76,164,136)
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Proof

Let D=C-AB ≠ 0
Let V be a wrong column of D
Consider a bit vector S,

if SV=0, then S’V ≠ 0 with
S’=S xor (0…0, 1, 0…0)

i-1
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Pr(S)=Pr(S’) 

Choosing a random S, we have SD ≠ 0 
with probability at least 1/2

Repeating the experiment...
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Error

If C=AB the answer is always NO

if C≠AB the error made (when 
answering NO instead of YES) is 
(1/2)k (if k experiments)
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Quicksort: an example of 
‘Las Vegas’ algorithm

Complexity of Quicksort=O(n2)
This is the worse case, being unlucky with 

the pivot choice.
If we choose it randomly we have an 
average complexity O(n log n)
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13 The hardness of learning 
3-term-DNF by 3-term-DNF

references: 
Pitt & Valiant 1988, Computational 
Limitations on learning from examples 1, 
JACM 35 965-984.
Examples and Proofs: Kearns & Vazirani, 
An Introduction to Computational Learning 
Theory, MIT press, 1994
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A formula in disjunctive normal form:
X={u1,..,un}
F=T1 ∨ T2∨ T3

each Ti is a conjunction of literals
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sizes

An example: <0,1,….0,1>

a formula: max 9n
To efficiently learn a 3-term-DNF, you 
have to be polynomial in: 1/ε, 1/δ, and n.

n
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Theorem:

If RP≠NP the class of 3-term-DNF is not 
polynomially learnable by 3-term-DNF.
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Definition:

A hypothesis h is consistent with a 
set of labelled examples 
S={<x1,b1>,…<xp,bp>}, if 

∀xi∈S h(xi)=bi
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3-colouring

Instances: a graph G=(V, A)
Question:  does there exist a way to 
colour V in 3 colours such that 2 adjacent 
nodes have different colours?

Remember: 3-colouring is NP-complete
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Our problem

Name: 3-term-DNF consistent
Instances: a set of positive examples S+
and a set of negative examples S-
Question: does there exist a 3-term-DNF 
consistent with S+ and S-?
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Reduce 3-colouring to 
« consistent hypothesis »

Remember:
Have to transform an instance of 3-
colouring to an instance of « consistent 
hypothesis »
And that the graph is 3 colourable iff the 
set of examples admits a consistent 3-
term-DNF
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Reduction

build from G=(V, A): SG+∪ SG-
∀i∈[n] <v(i),1>∈SG+ where v(i)=(1,1,..,1,0,1,..1)

i
∀(i, j) ∈A <a(i, j),0>∈SG-

where a(i, j)=(1,..,1,0,...,0,1,..,1)

i      j
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4

1

3
6

5

SG+ SG-
(011111, 1) (001111, 0)
(101111, 1) (011011, 0)
(110111, 1) (011101, 0)
(111011, 1) (100111, 0)
(111101, 1) (101110, 0)
(111110, 1) (110110, 0)

(111100, 0)

2
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4

1

3
6

5

SG+ SG-
(011111, 1) (001111, 0)
(101111, 1) (011011, 0)
(110111, 1) (011101, 0)
(111011, 1) (100111, 0)
(111101, 1) (101110, 0)
(111110, 1) (110110, 0)

(111100, 0)

Tyellow=x1∧x2∧x4 ∧x5∧x6
Tblue=x1∧x3∧x6
Tred=x2∧x3∧x4∧x5

2
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4

1

3
6

5

SG+ SG-
(011111, 1) (001111, 0)
(101111, 1) (011011, 0)
(110111, 1) (011101, 0)
(111011, 1) (100111, 0)
(111101, 1) (101110, 0)
(111110, 1) (110110, 0)

(111100, 0)

Tyellow=x1∧x2∧x4 ∧x5∧x6
Tblue=x1∧x3∧x6
Tred=x2∧x3∧x4∧x5

2
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Where did we win?

Finding a 3-term-DNF consistent is 
exactly PAC-learning 3-term DNF
Suppose we  have a polynomial 
learning algorithm L that learns  3-term-
DNF PAC. 
Let S be a set of examples
Take ε =1/(2⎪S⎪)
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We learn with the uniform distribution over S
with an algorithm L.
If there exists a consistent 3-term-DNF, then 
with probability at least  1-δ the error is less 
than ε: so there is in fact  no error !
If there exists no consistent 3-term-DNF, L
will not find anything.
So just by looking at the results we know in 
which case we are.



cdlh, Barcelona, July 2007162

cdlh 2007

Therefore:
L is a randomized learner that checks in 
polynomial time if a sample S admits a 
consistent 3-term-DNF.
If S does not admit a consistent 3-term-DNF L
answers « no » with probability 1. 
If S admit a consistent 3-term-DNF L 
answers« yes », with probability 1-δ.
In this case we have 3-colouring ∈RP.
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Careful

The class 3-term-DNF is polynomially
PAC learnable by 3-CNF !
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General conclusion

Lots of other TCS topics in ML.
Logics (decision trees, ILP)
Higher graph theory (graphical models, 

clustering, HMMs and DFA)
Formal language theory
… and there never is enough algorithmics !
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