

LABORATOIRE Hubert LIMR • CNRS • 5516 • ST-ETIENNE

TCS for Machine Learning Scientists

Colin de la Higuera

Barcelona July 2007

Outline

- 1. Strings
- 2. Order
- 3. Distances
- 4. Kernels
- 5. Trees
- 6. Graphs
- Some algorithmic notions and complexity theory for machine learning

- 8. Complexity of algorithms
- 9. Complexity of problems
- 10. Complexity classes
- 11. Stochastic classes
- 12. Stochastic algorithms
- 13.A hardness proof using RP≠NP

Callh 2007

Disclaimer

Collh 2007

3

 The view is that the essential bits of linear algebra and statistics are taught elsewhere.
 If not they should also be in a lecture on basic TCS for ML.

 There are not always fixed name for mathematical objects in TCS. This is one choice.

1 Alphabet and strings

- An alphabet Σ is a finite nonempty set of symbols called letters.
- A string w over Σ is a finite sequence $a_1 \dots a_n$ of letters.
- Let w denote the length of w. In this case we have $|w| = |a_1 ... a_n| = n$.
- The empty string is denoted by λ (in certain books notation ε is used for the COIL 2007 empty string).

• Alternatively a string w of length n can be viewed as a mapping $[n] \rightarrow \Sigma$:

o if
$$w = a_1 a_2 \dots a_n$$
 we have $w(1) = a_1, w(2) = a_2 \dots, w(n) = a_n$.

• Given $a \in \Sigma$, and w a string over Σ , w denotes the number of occurrences of letter a in w.

• Note that $[n] = \{1, ..., n\}$ with $[0] = \emptyset$ COIL 2007

Letters of the alphabet will be indicated by *a*, *b*, *c*,..., strings over the alphabet by *u*, *V*,..., *Z*

Collh 2007

- Let Σ^* be the set of all finite strings over alphabet.
- Given a string w, x is a substring of w if there are two strings / and r such that w = lxr. In that case we will also say that w is a superstring of x.

Callh 2007

• We can count the number of occurrences of a given string *u* as a substring of a string *w* and denote this value by $|w|_u =$ $|\{I \in \Sigma^* : \exists r \in \Sigma^* \land w = Iur\}|.$

Callh 2007

- x is a subsequence of w if it can be obtained from w by erasing letters from w. Alternatively: $\forall x, y, z, x_1, x_2 \in \Sigma^*, \forall a \in \Sigma$:
 - x is a subsequence of x,
 - $x_1 x_2$ is a subsequence of $x_1 a x_2$
 - if x is a subsequence of y and y is a subsequence of z then x is a subsequence of z.

Callh 2007

Basic combinatorics on strings

- Let n = |w| and $p = |\Sigma|$
- Then the number of...

At least		At most
<i>n</i> +1	Prefixes of w	<i>n</i> +1
<i>n</i> +1	Substrings of w	<i>n</i> (<i>n</i> +1)/2+1
<i>n</i> +1	Subsequences of w	2 ⁿ

COIL 2007

Algorithmics

Callh 2007

- There are many algorithms to compute the maximal subsequence of 2 strings
- But computing the maximal subsequence of *n* strings is NP-hard.
- Yet in the case of substrings this is easy.

Knuth-Morris-Pratt algorithm

- Does string s appear as substring of string u?
- **Step 1** compute T[*i*] the table indicating the longest correct prefix if things go wrong.

•
$$T[i]=k \Leftrightarrow s_1 \dots s_k = s_{i-k} \dots s_{i-1}$$

• Complexity is O(|*s*|)

T[7]=2 means that if we fail when parsing *d*, we can still count on the first 2 characters been parsed.

i	1	2	3	4	5	6	7
s[<i>i</i>]	а	b	С	d	а	b	d
<i>T</i> [<i>i</i>]	0	0	0	0	0	1	2

	• KM	P (Step	2)	
	<i>m</i> ← 0;		* <i>m</i> position where s starts*\	
	<i>i</i>		* <i>i is over s and u*</i> \	
	while (<i>m</i> +	<i>i</i> ≤ <i>u</i> & <i>i</i> ≤ s	;)	
	if (<i>u</i> [<i>m</i> +	i] = s[i]) ++i	* <i>matches*</i> \	
	else		*doesn't match\	
	m←	<i>m</i> + <i>i</i> - T[<i>i</i>]-1;	*go back T[<i>i</i>] <i>in u\</i>	
	i←	T[<i>i</i>]+1		
	if (<i>i</i> > s)	return <i>m</i> +1	<pre>1 *found s*\</pre>	
0	else	return m+	i *not found*\	/
	41/h 200> 13	cdlh,	Barcelona, July 2007	

A run with abac in aaabcacabacac

i	1	2	3	4
s[<i>i</i>]	а	b	а	С
T [<i>i</i>]	0	0	0	1

aaabcacabacac

т	0	0	0	1		2	2	5	7	7	7	7
i	1	2	1	2	1	2	3	2	1	2	3	4
S	а	b	а	b	а	b	а	b	а	b	а	С
u	а	a	a	a	a	b	С	С	а	b	а	С

cdlh, Barcelona, July 2007

14

COIL 2007

Conclusion

Callh 2007

- Many algorithms and data structures (tries).
- Complexity of KMP=O(|s|+|u|)
- Research is often about constants...

• • • 2 Order! Order!

 Suppose we have a total order relation over the letters of an alphabet Σ. We denote by ≤_{alpha} this order, which is usually called the alphabetical order.

• $a \leq_{alpha} b \leq_{alpha} c...$

COIL 2007

Different orders can be defined over Σ :

the prefix order: x ≤_{pref} y if
∃ w ∈ Σ* : y = xw;
the lexicographic order: x ≤_{lex} y if
either x ≤_{pref} y or
x = uaw ∧ y = ubz ∧ a ≤_{alpha} b.

Collh 200>

- A more interesting order for grammatical inference is the hierarchical order (also sometimes called the length-lexicographic or length-lex order):
- If x and y belong to Σ^* , $x \leq_{\text{length-lex}} y$ if

•
$$|x| < |y| \lor (|x| = |y| \land x \leq_{\text{lex}} y).$$

• The first strings, according to the hierarchical order, with $\Sigma = \{a, b\}$ will be $\{\lambda, a, b, aa, ab, ba, bb, aaa,...\}.$ Callh 2007

Example

- Let = {a, b, c} with $a <_{alpha} b <_{alpha} c$. Then $aab \leq_{lex} ab$,
- but $ab \leq_{length-lex} aab$. And the two strings are incomparable for \leq_{pref} .

COIL 2007

• • 3 Distances

COIL 2007

20

• What is the issue?• 4 types of distances• The edit distance

The problem

- A class of objects or representations C
- A function $C^2 \rightarrow R^+$
- Such that the closer x and y are one to each other, the smaller is d(x,y).

COIIN 2007

The problem

- A class of objects/representations C
- A function $C^2 \rightarrow R$
- which has the following properties:
 - d(x,x)=0
 - d(x,y) = d(y,x)
 - $d(x,y) \ge 0$
- And sometimes
 - $d(x,y)=0 \Rightarrow x=y$

Metric Space $d(x,y)+d(y,z)\geq d(x,z)$

Collh 2007

Summarizing

A metric is a function $C^2 \rightarrow R$ which has the following properties:

- $d(x,y)=0 \Leftrightarrow x=y$
- d(x,y)=d(y,x)

COIL 2007

23

• $d(x,y)+d(y,z)\geq d(x,z)$

Pros and cons

A distance is more flexible A metric gives us extra properties that we can use in an algorithm

Collh 2007

Four types of distances (1)

- Compute the number of modifications of some type allowing to change A to B.
- Perhaps normalize this distance according to the sizes of *A* and *B* or to the number of possible paths
- o Typically, the edit distance

COIL 2007

Four types of distances (2)

- Compute a similarity between A and B. This is a positive measure *s*(*A*,*B*).
- Convert it into a metric by one of at least 2 methods.

COIL 2007

Method 1

- Let $d(A,B)=2^{-s(A,B)}$
- If A=B, then d(A,B)=0
- Typically the prefix distance, or the distance on trees:
- $S(t_1, t_2) = \min\{|x|: t_1(x) \neq t_2(x)\}$

COIIN 2007

Method 2

d(A,B)= s(A,A)-s(A,B)-s(B,A)+s(B,B)
 Conditions

• $d(x,y)=0 \Rightarrow x=y$

Collh 2007

28

• $d(x,y)+d(y,z)\geq d(x,z)$

only hold for some special conditions on s.

Four types of distances (3)

- o Find a finite set of measurable features
- Compute a numerical vector for A and B (v_A and v_B). These vectors are elements of Rⁿ.
- Use some distance d_v over \mathbb{R}^n

```
• d(A,B)=d_v(v_A, v_B)
```


COIL 2007

Four types of distances (4)

- Find an infinite (enumerable) set of measurable features
- Compute a numerical vector for A and B $(v_A \text{ and } v_B)$. These vectors are elements of \mathbb{R}^{∞} .
- Use some distance d_v over R^{∞}

• $d(A,B)=d_v(v_A, v_B)$

COIIN 2007

The edit distance

COIIN 2007

- Defined by Levens(h)tein, 1966
- Algorithm proposed by Wagner and Fisher, 1974
- o Many variants, studies, extensions, since

Basic operations

o Insertion

Deletion

33

COIL 2007

- Substitution
- Other operations:
 - inversion

- Given two strings w and w' in Σ^* , w rewrites into w' in one step if one of the following correction rules holds:
- w = uav, w' = uv and $u, v \in \Sigma^*$, $a \in \Sigma$ (single symbol deletion
- w=uv, w'=uav and u, $v\in\Sigma^*$, $a\in\Sigma$ (single symbol insertion

• w=uav, w'=ubv and $u, v\in\Sigma^*$, $a,b\in\Sigma$, (single Callh 2007 symbol substitution

cdlh, Barcelona, July 2007

• We will consider the reflexive and transitive closure of this derivation, and denote $w^{\underline{k}} \cdot w'$ if and only if w rewrites into w' by k operations of single symbol deletion, single symbol insertion and single symbol substitution.

COIL 2007
- Given 2 strings *w* and *w'*, the *Levenshtein distance* between *w* and *w'* denoted d(w,w') is the smallest *k* such that $w \xrightarrow{k} w'$.
- **Example:** d(abaa, aab) = 2. abaa rewrites into aab via (for instance) a deletion of the b and a substitution of the last a by a b.

Callh 2007

A confusion matrix

	а	b	С	λ	
а	0	1	1	1	
b	1	0	1	1	
С	1	1	0	1	
λ	1	1	1	0	

cdlh, Barcelona, July 2007

Collh 2007

Another confusion matrix

	а	b	С	λ	
а	0	0.7	0.4	1	
b	0.7	0	0.6	0.8	
С	0.4	0.6	0	0.7	
λ	1	0.8	0.7	0	

Collh 2007

cdlh, Barcelona, July 2007

40

d=2+2+0=4

cdlh, Barcelona, July 2007

d=3+0+1=4

cdlh, Barcelona, July 2007

General algorithm

• What does not work:

- Compute all possible sequences of modifications, recursively.
- Something like:

COIIN 2007

44

 $d(ua,vb)=1+\min(d(ua,v), d(u,vb), d(u,v))$

```
The formula for dynamic
             programming
      d(ua,vb) =
           • if a=b, d(u,v)
           • if a \neq b,
            \min \begin{cases} \bullet d(u,vb) + C(a,\lambda) \\ \bullet d(u,v) + C(a,b) \\ \bullet d(ua,v) + C(\lambda,b) \end{cases}
Callh 2007
```

45

b	6	5	4	4	3	3	4	3	4
а	5	4	4	3	2	3	3	3	3
а	4	3	3	2	2	3	2	3	4
С	3	2	2	2	2	2	3	4	5
а	2	1	2	1	2	3	4	5	6
b	1	1	1	2	3	4	5	6	7
λ	0	1	2	3	4	5	6	7	8
	λ	а	b	а	а	С	а	b	а

Collh 2007

	b	6	5	4	4	3	3	4	3	4
	а	5	4	4	3	2	3	3	3	3
	а	4	3	3	2	2	3	2	3	4
	С	3	2	2	2	2	2	3	4	5
	а	2	1	2	1	2	3	4	5	6
	b	1	1	1	2	3	4	5	6	7
	λ	0	1	2	3	4	5	6	7	8
Carl		λ	а	b	а	а	С	а	b	а
SOIN	2007									

cdlh, Barcelona, July 2007

a b a a c a b a | | / | | b a c a b b

b	6	5	4	4	3	3	4	3	4
а	5	4	4	3	2	3	3	3	3
а	4	3	3	2	2	3	2	3	4
С	3	2	2	2	2	2	3	4	5
а	2	1	2	1	2	3	4	5	6
b	1	1	1	2	3	4	5	6	7
λ	0	1	2	3	4	5	6	7	8
48	λ	а	b	а	а	С	а	b	а

Collh 2007

Complexity

- Time and space O(|u|.|v|)
- Note that if normalizing by dividing by the sum of lengths $[d_N(u,v)=d_e(u,v) / (|u|+|v|)]$ you end up with something that is not a distance:
 - *d_N(ab,aba)*=0.2
 - *d_N(aba,ba*)=0.2
 - *d_N(ab,ba)*=0.5

Callh 2007

50

 Can add other operations such as inversion uabv→ubav

- Can work on circular strings
- Can work on languages

- A. V. Aho, Algorithms for Finding Patterns in Strings, in: *Handbook of Theoretical Computer Science* (Elsevier, Amsterdam, 1990) 290-300.
- L. Miclet, *Méthodes Structurelles pour la Recon*naissance des Formes (Eyrolles, Paris, 1984).
- R. Wagner and M. Fisher, The string-to-string Correction Problem, *Journal of the ACM* **21** (1974) 168-178.

Note (recent (?) idea, re Bunke et al.)

- Another possibility is to choose *n* strings, and given another string *w*, associate the feature vector <*d*(*w*,*w*₁),*d*(*w*,*w*₂),...>.
- How do we choose the strings?
- Has this been tried?

COIL 2007

52

- A kernel is a function $\kappa : A \times A \rightarrow R$ such that there exists a feature mapping $\phi : A \rightarrow R^n$, and $\kappa(x, y) = \langle \phi(x), \phi(y) \rangle$.
- $\circ \langle \phi(x), \phi(y) \rangle = \phi_1(x) \cdot \phi_1(y) + \phi_2(x) \cdot \phi_2(y) + \dots + \phi_n(x) \cdot \phi_n(y)$

o (dot product)

53

Some important points

- The κ function is explicit, the feature mapping φ may only be implicit.
- Instead of taking Rⁿ any Hilbert space will do.
- If the kernel function is built from a feature mapping φ, this respects the kernel conditions.

Crucial points

- Function ϕ should have a meaning.
- The computation of κ(x,y), should be inexpensive: we are going to be doing this computation many times. Typically O(|x|+|y|) or O(|x|.|y|).
- But notice that $\kappa(x, y) = \sum_{i \in I} = \phi_i(x) \cdot \phi_i(y)$ • With I that can be infinite!

Collh 2007

Some string kernels (1)

• The Parikh kernel:

• $\phi(u) = (|u|_{a1}, |u|_{a2}, |u|_{a3}, ..., |u|_{a|\Sigma|})$ $\kappa(aaba, bbac) = |aaba|_a^*|bbac|_a + |aaba|_b^*|bbac|_b + |aaba|_c^*|bbac|_c = 3*1+1*2+0*1=5$

Some string kernels (2)

• The spectrum kernel:

- Take a length *p*. Let s_1 , s_2 , ..., s_k be an enumeration of all strings in Σ^p
 - $\phi(u) = (|u|_{s1}, |u|_{s2}, |u|_{s3}, \dots, |u|_{sk})$ • $\kappa(aaba, bbac) = 1$ (for p=2)

(only *ba* in common!)

- In other fields n-grams !
- Computation time O(p |x| |y|)

Callh 2007

Some string kernels (3)

- The all-subsequences kernel:
- Let $s_1, s_2, ..., s_n,...$ be an enumeration of all strings in Σ^+
- Denote by $\phi^A(u)_s$ the number of times *s* appears as a subsequence in *u*.
 - $\phi^{A}(u) = (\phi^{A}(u)_{s1}, \phi^{A}(u)_{s2}, \phi^{A}(u)_{s3}, \dots, \phi^{A}(u)_{sn}, \dots)$
 - κ(aaba, bbac)=6
 - κ(*aaba*, *abac*)=7+3+2+1=13

Some string kernels (4)

- The gap-weighted subsequences kernel:
- Let $s_1, s_2, ..., s_n,...$ be an enumeration of all strings in Σ^+
- Let λ be a constant > 0
- Denote by $\phi_j(u)_{s,i}$ be the number of times s appears as a subsequence in u of length i
- Then $\phi_j(u)$ is the sum of all $\phi_j(u)_{sj,I}$
- Example: u= 'caat', let $s_j=$ 'at', then $\phi_j(u)=\lambda^2+\lambda^3$

Curiously a typical value, for theoretical proofs, of λ is 2. But a value between 0 and 1 is more meaningful.

• O(|x| |y|) computation time.

Callh 2007

60

How is a kernel computed?

- Through dynamic programming
- ${\color{black} \bullet}$ We do not compute function ${\color{black} \varphi}$
- Example of the all-subsequences kernel
 - $K[i][j] = \kappa(x_1, \ldots, x_j, y_1, \ldots, y_j)$
 - Aux[*j*] (at step *i*): number of alignments where x_i is paired with y_i.

Callh 2007

General idea (3)

An alignment between $x_1..x_i$ and $y_1..y_m$ is either an alignment where x_i is matched with one of the y_i (and the number of these is Aux[m]), or an alignment where x_i is not matched with anyone (so that is K[*i*-1][*m*]. Callh 2007

The arrays K and Aux for cata and gatta

Ref: Shawe Taylor and Christianini

cdlh, Barcelona, July 2007

Why not try something else ?

- The all-substrings kernel:
- Let $s_1, s_2, \ldots, s_n, \ldots$ be an enumeration of all strings in Σ^+
- $\phi(u) = (|u|_{s1}, |u|_{s2}, |u|_{s3}, \dots, |u|_{sn}, \dots)$ • κ (aaba, bbac)=7 (1+3+2+0+0..+1+0...) • No formula? Callh 2007

Or an alternative edit kernel

- $\kappa(x,y)$ is the number of possible matchings in a best alignment between x and y.
- Is this positive definite (Mercer's conditions)?

Or counting substrings only once?

- $\phi_u(x)$ is the maximum *n* such that u^n is a subsequence of *x*.
- No nice way of computing things...

Kernel Methods for Pattern Analysis. J. Shawe Taylor and N. Christianini. CUP
Articles by A. Clark and C. Watkins (et al.) (2006-2007)

Callh 2007

CO112007

71

- A tree domain (or Dewey tree) is a set of strings over alphabet {1,2,...,n} which is prefix closed:
- $uv \in \text{Dom}(t) \Rightarrow u \in \text{Dom}(t)$.
- Example: { λ , 1, 2, 3, 21, 22, 31, 311}

• Note: often start counting from 0 (sic)

- A ranked alphabet is an alphabet Σ , with a rank (arity) function $\rho: \Sigma \rightarrow \{0,...,n\}$
- A tree is a function from a tree domain to a ranked alphabet, which respects $\rho(u)=k \Rightarrow uk \in Dom(t)$ and $u(k+1) \notin Dom(t)$

• Some combinatorics on trees...

How many

- Dewey trees are there with 2, 3, *n* nodes?
- binary trees are there with 2, 3, *n* nodes?

About binary trees

full binary tree → every node has zero or two children.

perfect (complete) binary tree → full binary tree + leaves are at the same depth.

About algorithms

- An edit distance can be computed
- Tree kernels exist
- Finding patterns is possible
- General rule: we can do on trees what we can do on strings, at least in the ordered case!

• But it is usually more difficult to describe.

Callh 2007

80

A graph

is undirected, (*V*,*E*), where *V* is the set of vertices (a vertex), and *E* the set of edges.

- o You may have loops.
- An edge is undirected, so a set of 2 vertices {a,b} or of 1 vertex {a} (for a loop). An edge is incident to 2 vertices. It has 2 extremities.

A digraph

is a G=(V,A) where V is a set of vertices and A is a set of arcs. An arc is directed and has a start and an end.

Some vocabulary

Undirected graphs

- o an edge
- o a chain
- o a cycle

Callh 2007

o connected

84

Di-graphs

- o an arc
- o a path
- o a circuit
- o strongly connected

What makes graphs so attractive?

- We can represent many situations with graphs.
- From the modelling point of view, graphs are great.

Collh 2007

85

Why not use them more?

- Because the combinatorics are really hard.
- Key problem: graph isomorphism.
- Are graphs G1 and G2 isomorphic?
- Why is it a key problem?
 - For matching
 - For a good distance (metric)
 - For a good kernel

Callh 2007

Conclusion

- Algorithms matter.
- In machine learning, some basic operations are performed an enormous number of times. One should look out for the definitions algorithmically reasonable.

 7 Some algorithmic notions and complexity theory for machine learning

- Concrete complexity (or complexity of the algorithms
- Complexity of the problems

COIIN 2007

90

Why are complexity issues going to be important?

- Because the volumes of data for ML are very large
- Because since we can learn with randomized algorithms we might be able to solve combinatorially hard problems thanks to a learning problem
- Because mastering complexity theory is one key to successful ML applications. Callh 2007

• • 8 Complexity of algorithms

- Goal is to say some thing about how fast an algorithm is.
- Alternatives are:
 - Testing (stopwatch)
 - Maths

92

We could test on
A best case
An average case
A worse case

• We can encode detection of the best case in the algorithm, so this is meaningless

94

COIIN 2007

Average case

• Appealing

- Where is the distribution over which we average?
- But sometimes we can use Monte-Carlo algorithms to have average complexity

Notation O(f(n))

This is the set of all functions asymptotically bounded (by above) by f(n)
So for example in O(n²) we find n → n², n → n log n, n → n, n → 1, n → 7, n → 5n²+317n+423017

• Exists $\exists n_0, \exists k > 0, \forall n \ge n_0, g(n) \le k \cdot f(n)$

Alternative notations

ο Ω(f(n))

This is the set of all functions asymptotically bounded (by underneath) by f(n)

• ⊖(*f*(*n*))

This is the set of all functions. asymptotically bounded (by both sides) by f(n)

 $\exists n_0, \exists k_1, k_2 > 0, \forall n \ge n_0, k_1 \cdot f(n) \le g(n) \le k_2 \cdot f(n)$ COIL 2007

Some remarks

COIL 2007

100

- This model is known as the RAM model. It is nowadays attacked, specifically for large masses of data.
- It is usually accepted that an algorithm whose complexity is polynomial is OK. If we are in Ω(2ⁿ), no.

9 Complexity of problems

- A problem has to be well defined, *ie* different experts will agree about what a correct solution is.
- For example 'learn a formula from this data' is ill defined, as is 'where are the interest points in this image?'.
- For a problem to be well defined we need a description of the instances of the problem and of the solution. COIL 2007

Typology of problems (1)

Counting problems How many *x* in *I* such that *f*(*x*)

COIIN 2007

Typology of problems (2)

Search/optimisation problems Find *x* minimising *f*

COIIN 2007

103

Typology of problems (3)

Decision problems Is x (in I) such that f(x)?

Callh 2007

About the parameters

- We need to encode the instances in a fair and reasonable way.
- Then we consider the parameters that define the size of the encoding
- Typically
 - Size(n)=log n
 - Size(w)=|w| (when | Σ | \geq 2)
 - Size(G=(V,E))=|V|² or |V| · |E|

Callh 2007

What is a good encoding?

- An encoding is reasonable if it encodes sufficient different objects.
- *Ie* with *n* bits you have 2ⁿ⁺¹ encodings so optimally you should have 2ⁿ⁺¹ different objects.
- Allow for redundancy and syntactic sugar, so $\Omega(p(2^{n+1}))$ different languages.

Simplifying

107

Only decision problems ! Answer is YES or NO

- A problem is a Π , and the size of an instance is n.
- With a problem Π , we associate the coproblem co- Π
- The set of positive instances for Π is denoted $I+(\Pi,)$ Callh 2007

• 10 Complexity Classes

P: deterministic polynomial time NP: non deterministic polynomial time

cdlh, Barcelona, July 2007
Turing machines

 Only one tape Alphabet of 2 symbols • An *input* of length *n* • We can count: number of steps till halting size of tape used for computation

Determinism and non determinism

- Determinism: at each moment, only one rule can be applied.
- Non determinism: various rules can be applied "in parallel". The language recognised is that of the (positive) instances where there is at least one accepting computation.

Callh 2007

• \mathcal{P} and \mathcal{NP}

COIL 2007

112

• $\Pi \in \mathcal{P} \Leftrightarrow \exists M_D \exists p() \forall i \in I(\Pi)$: #steps (M_D(*i*)) $\leq p(size(i))$

• $\Pi \in \mathcal{NP} \Leftrightarrow \exists M_N \exists p() \forall i \in I+(\Pi)$: #steps (M_N(*i*)) $\leq p(size(i))$

Programming point of view

- \mathcal{P} : the program works in polynomial time
- NP: the program takes wild guesses, and if guesses were correct will find the solution in polynomial time.

Turing Reduction

• $\Pi_1 \leq^{\mathcal{P}} \Pi_2$ (Π_1 reduces to Π_2) if there exists a polynomial algorithm solving Π_1 using an oracle that consults Π_2 .

• There is another type of reduction, usually called 'polynomial'

 $\circ \Pi_1 \leq^{\mathcal{P}} \Pi_2$ (Π_1 reduces to Π_2) if there exists a polynomial transformation ψ of the instances of Π_1 into those of Π_2 such that

$i \in \Pi_1 \Leftrightarrow \psi(i) \in \Pi_2$.

Then Π_2 is at least as hard as Π_1 (polynomially speaking) Callh 2007

Complete problems

- A problem Π is *C*-complete if any other problem from *C* reduces to Π
- A complete problem is 'the hardest' of its class.
- Nearly all classes have complete problems.

Example of complete problems

- SAT is NP-complete
- 'Is there a path from x to y in graph G?' is \mathcal{P} -complete
- SAT of a Boolean quantified closed formula is *P-SPACE* complete
- Equivalence between two NFA is *P-SPACE* complete

COIIN 2007

We want to measure how much tape is needed, without taking into account the computation time.

P-SPACE

Collh 2007

120

is the class of problems solvable by a deterministic Turing machine that uses only polynomial space.
NP⊆ P-SPACE

General opinion is that the inclusion is strict.

NP-SPACE

 is the class of problems solvable by a nondeterministic Turing machine that uses only polynomial space.

Savitch theorem

COIIN 2007

121

P-SPACE=NP-SPACE

log-SPACE L=log-SPACE L is the class of problems that use only poly-logarithmic space.

Obviously reading the *input* does not get counted.

 $\mathcal{L} \subset \mathcal{P}$

122

General opinion is that the inclusion is strict. COIL 2007

• 11 Stochastic classes

• Algorithms that use function random()

 Are there problems that deterministic machines cannot solve but that probabilistic ones can?

11.1 Probabilistic Turing machines (PTM)

- These are non deterministic machines that answer YES when the majority of computations answer YES;
- The accepted set is that of those instances for which the majority of computations give YES.

• \mathcal{PP} is the class of those decision COIL 2007 problems solvable by polynomial PTMs

\mathcal{PP} is a useless class...

If probability of correctness is only

Callh 2007

127

 $\left(\frac{1}{2} + \frac{1}{2^n}\right)$

an exponential (in *n*) number of iterations is needed to do better than random choice.

\mathcal{BPP} : Bounded away from \mathcal{P}

- \mathcal{BPP} is the class of decision problems solvable by a PTM for which the probability of being correct is at least $1/2+\delta$, with δ a constant>0.
- It is believed that \mathcal{NP} and \mathcal{BPP} are incomparable, with the \mathcal{NP} -complete in $NP \setminus BPP$, and some symmetrical problems in $BPP \setminus NP$. COIL 200>

11.2 Randomized Turing Machines (RTM)

These are non deterministic machines such that

- either no computation accepts
- either half of them do

(instead of half, any fraction >0 is OK)

Callh 2007

COIIN 2007

131

RP is the class of decision problems solvable by a RTM *P* ⊂ *RP* ⊂ *NP*

- Inclusions are believed to be strict
- Example: Composite $\in \mathcal{RP}$

An example of a problem in \mathcal{RP}

 $P_1 \dots P_m$

Product Polynomial Inequivalence

o 2 sets of rational polynomials

132

$$Q_1 \dots Q_n$$

• Answer : YES when $\prod_{i \le m} P_i \neq \prod_{i \le n} Q_i$

This problem seems neither to be in \mathcal{P} nor in CO-NP. Cally 2007

Example

- $o(x-2)(x^2+x-21)(x^3-4)$
- $o(x^2-x+6)(x+14)(x+1)(x-2)(x+1)$
- Notice that developing both polynomials is too expensive.

Callh 2007

$ZPP=RP\cap co-RP$

- ZPP : Zero error probabilistic polynomial time
- Use in parallel the algorithm for \mathcal{RP} and the one for \mathcal{CO} - \mathcal{RP}
- These algorithms are called 'Las Vegas'
- They are always right but the complexity is in average polynomial.

COIL 2007

134

12 Stochastic Algorithms

135

Collh 2007

cdlh, Barcelona, July 2007

'Monte-Carlo' Algorithms

- Negative instance \Rightarrow answer is NO
- Positive instance \Rightarrow Pr(answer is YES) > 0.5
- They can be wrong, but by iterating we can get the error arbitrarily small.
- ${\rm o}$ Solve problems from ${\cal RP}$

'Las Vegas' algorithms

• Always correct

- In the worse case too slow
- In average case, polynomial time.

Callh 2007

Another example of 'Monte-Carlo' algorithm

Checking the product of matrices. Consider 3 matrices A, B and C Question $AB \neq C$?

COIL 2007

138

Natural idea

Multiply A by B and compare with C
 Complexity
 O(n³) brute force algorithm

• $O(n^{2.37})$ Strassen algorithm

• But we can do better!

Collh 2007

Algorithm

Collh 2007

140

generate *S*, bit vector compute X=(SA)Bcompute Y=SCIf $X \neq Y$ return TRUE else return FALSE

oO(n)

 $\circ O(n^2)$

 $\circ O(n^2)$

oO(n)

cdlh, Barcelona, July 2007

Proof

144

• Let $D=C-AB \neq 0$ • Let V be a wrong column of D Consider a bit vector S, if SV=0, then S'V \neq 0 with $S' = S \operatorname{xor} (0...0, 1, 0...0)$ *i*-1 COIIN 2007
$\circ Pr(S) = Pr(S')$

145

Callh 2007

• Choosing a random S, we have $SD \neq 0$ with probability at least 1/2

• Repeating the experiment...

• Error

If C=AB the answer is always NO if C≠AB the error made (when answering NO instead of YES) is (1/2)^k (if k experiments)

Callh 2007

Quicksort: an example of 'Las Vegas' algorithm

 Complexity of Quicksort=O(n²)
 This is the worse case, being unlucky with the pivot choice.

 If we choose it randomly we have an average complexity O(n log n)

COIIN 2007

13 The hardness of learning 3-term-DNF by 3-term-DNF

o references:

 Pitt & Valiant 1988, Computational Limitations on learning from examples 1, JACM 35 965-984.

 Examples and Proofs: Kearns & Vazirani, An Introduction to Computational Learning Theory, MIT press, 1994 Callh 2007

A formula in disjunctive normal form: X={u₁,...,u_n} F=T₁ ∨ T₂∨ T₃ each T_i is a conjunction of literals

COIL 2007

• An example: <0,1,....0,1>

n

o a formula: max 9n

COIL 2007

150

• To efficiently learn a 3-term-DNF, you have to be polynomial in: $1/\varepsilon$, $1/\delta$, and *n*.

COIIN 2007

151

If $\mathcal{RP}\neq \mathcal{NP}$ the class of 3-term-DNF is not polynomially learnable by 3-term-DNF.

Callh 2007

152

A hypothesis *h* is consistent with a set of labelled examples $S=\{<x_1, b_1>, ..., <x_p, b_p>\}$, if $\forall x_i \in S h(x_i)=b_i$

3-colouring

COIL 2007

153

- Instances: a graph G=(V, A)
- Question: does there exist a way to colour V in 3 colours such that 2 adjacent nodes have different colours?

• Remember: 3-colouring is \mathcal{NP} -complete

Our problem

- Name: 3-term-DNF consistent
- Instances: a set of positive examples S+ and a set of negative examples S-
- Question: does there exist a 3-term-DNF consistent with S+ and S-?

COIL 2007

Reduce 3-colouring to « consistent hypothesis »

Remember:

155

Collh 2007

- Have to transform an instance of 3colouring to an instance of « consistent hypothesis »
- And that the graph is 3 colourable *iff* the set of examples admits a consistent 3term-DNF

 S_G^+ (011111, 1) (101111, 1)(110111, 1) (011101, 0)(111011, 1)(111101, 1)(111110, 1)

 S_G -(001111, 0)(011011, 0)(100111, 0)(101110, 0)(110110, 0)(111100, 0)

 S_G^+ (011111, 1)(101111, 1)(110111, 1) (011101, 0)(111011, 1) (100111, 0)(111101, 1) (101110, 0)(111110, 1) (110110, 0)

 S_{G} -(001111, 0)(011011, 0)(111100, 0)

 $T_{yellow} = x_1 \land x_2 \land x_4 \land x_5 \land x_6$ $T_{blue} = x_1 \land x_3 \land x_6$ $T_{red} = x_2 \wedge x_3 \wedge x_4 \wedge x_5$

cdlh, Barcelona, July 2007

 S_G^+ (011111, 1)(101111, 1) (011011, 0)(110111, 1) (011101, 0)(111011, 1) (100111, 0)(111101, 1) (101110, 0)(111110, 1) (110110, 0)

 S_{G} -(001111, 0)(111100, 0)

 $T_{yellow} = x_1 \land x_2 \land x_4 \land x_5 \land x_6$ $T_{blue} = x_1 \land x_3 \land x_6$ $T_{red} = x_2 \wedge x_3 \wedge x_4 \wedge x_5$

cdlh, Barcelona, July 2007

Where did we win?

- Finding a 3-term-DNF consistent is exactly PAC-learning 3-term DNF
- Suppose we have a polynomial learning algorithm *L* that learns 3-term-DNF PAC.

• Let S be a set of examples • Take $\varepsilon = 1/(2|S|)$

Callh 2007

- We learn with the uniform distribution over S with an algorithm L.
 - If there exists a consistent 3-term-DNF, then with probability at least $1-\delta$ the error is less than ε : so there is in fact no error !
 - If there exists no consistent 3-term-DNF, L will not find anything.
 - So just by looking at the results we know in which case we are.

Callh 2007

Therefore:

COIL 2007

- L is a randomized learner that checks in polynomial time if a sample S admits a consistent 3-term-DNF.
- If S does not admit a consistent 3-term-DNF L answers « no » with probability 1.
- If S admit a consistent 3-term-DNF L answers ves with probability 1- δ .
- In this case we have 3-colouring $\in \mathcal{RP}$.

• The class 3-term-DNF is polynomially PAC learnable by 3-CNF !

163

Collh 2007

General conclusion

Lots of other TCS topics in ML. Logics (decision trees, ILP) Higher graph theory (graphical models, clustering, HMMs and DFA) Formal language theory ... and there never is enough algorithmics !

COIL 2007