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® Disclaimer

o The view Is that the essential bits of linear
algebra and statistics are taught elsewhere.
If not they should also be in a lecture on
basic TCS for ML.

o There are not always fixed name for
mathematical objects in TCS. This Is one
choice.
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1 Alphabet and strings

o An alphabet X Is a finite nonempty set of
symbols called letters.

o A string w over X Is a finite sequence
a, ...a, of letters.

o Let |w| denote the length of w. In this case
we have |w| = |a,...a,| =n.

o The empty string is denoted by A (in
certain books notation ¢ is used for the

%y €mpty string).
800)
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o Alternatively a string w of length n can be
viewed as a mapping [n| =2 X :

olfw=aa,...a, we have w(l) =a,, w(2) =
a, ..., w(n)=a..

o Given aeX , and w a string over %, |w|,

denotes the number of occurrences of
letter a In w.

o Note that [n]={1,...,n} with [0]=Z

C‘% S
9% S
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Letters of the alphabet will be indicated by
a, b, c,..., strings over the alphabet by u,
V,... , Z
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o Let >* be the set of all finite strings over
alphabet.

o Given a string w, X Is a substring of w If
there are two strings | and r such that
w = Ixr. In that case we will also say that w
IS a superstring of X.
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o We can count the number of occurrences
of a given string u as a substring of a
string w and denote this value by |w| =
{leX* : dreX* A w = lur}|.
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o X Is a subseqguence of w If it can be
obtained from w by erasing letters from w.
Alternatively: VX, y, z, X,, X, € Z*, VaeX :

X IS a subsequence of X,
X1X, IS a subsequence of x,ax,

If X Is a subsequence ofyandyisa
subsequence of z then x Is a subsequence
of z.
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Basic combinatorics on

strings
o Let n=|w| and p=|Z]
o Then the number of...
At least At most
n+1 Prefixes of w n+1
n+1 Substrings of w n(n+1)/2+1
n+1 Subsequences of w 2"
%
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Algorithmics

o There are many algorithms to compute the
maximal subsequence of 2 strings

o But computing the maximal subsequence
of n strings is NP-hard.

o Yet in the case of substrings this Is easy.
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Knuth-Morris-Pratt algorithm

o Does string s appear as substring of string u?

o Step 1 compute TJi] the table indicating the
longest correct prefix if things go wrong.

o Tlil=k & s,...5,=S;...S. ;.
o Complexity is O(|s|)

T[7]=2 means that If :
we fail when parsing | | |1]2]34|5]6]7
d, we can still count .

on the first 2 s[i] b/ cidajbjd

. characters been T[] |l0|0|0]|0 OE
%90 parsed.

o>

12 cdlh, Barcelona, July 2007



KMP (Step 2)

m <« O; \*m position where s starts*\
| < 1; \*1 is over s and u*\
while (m + i <Jul & i1 < [s])
If (ufm +1] =s[i]) ++i \*matches*\
else \*doesn’t match\
m «<m+ 1 - TJ[i]-1; \*go back T[i] in u\
| < T[i]+1
if (I1>]s]) return m+1 \*found s*\
else return m + | \*not found*\

O% S
9% S
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A run with abac In

aaabcacabacac
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Conclusion

o Many algorithms and data structures
(tries).

o Complexity of KMP=0O(|s|+|ul|)

o Research Is often about constants...
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2 Order! Order!

o Suppose we have a total order relation
over the letters of an alphabet . We
denote by <, this order, which Is usually
called the alphabetical order.

O & <gpha B <gpha C---
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Different orders can be
defined over X:

o the prefix order: x <, y If
dw e 2* 1y = Xw;

o the lexicographic order: x <, y If
either x <, .,y or
X=uaw Ay =ubz A a <;n, b.
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o A more Interesting order for grammatical
Inference Is the hierarchical order (also
sometimes called the length-lexicographic
or length-lex order):

o If x and y belong to X*, X <. i jex Y If

XI < 1ylv (IX] = [y] A X <jex ¥)-
o The first strings, according to the

hierarchical order, with X = {a, b} will be
{\, 4, b, aa, ab, ba, bb, aaa,...}.
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Example

o Let ={a, b, c} with a< b< c. Then

aab <, ab,

o but ab <, 4h1ex @@b. And the two strings
are incomparable for <, .

alpha alpha
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3 Distances

o What iIs the issue?
o 4 types of distances
o The edit distance
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The problem

o A class of objects or representations C
o A function C°—»R*

o Such that the closer x and y are one to
each other, the smaller is d(x,y).
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The problem

o A class of objects/representations C
o A function C°—R
o which has the following properties:

d(x,x)=0
d(><,y)=d(y,><)/<|

d(x,y)>0 ,hef /70
S,O Q

o And sometimes
d(x,y)=0 = x=y
oy d(x,y)+d(y,z)>d(x,z)
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Summarizing

A metric is a function C?*—>R
which has the following properties:
d(x,y)=0<= x=y

d(x,y)=d(y,x)
d(x,y)+d(y,z)>d(x,z)
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o Pros and cons

o A distance is more flexible

o A metric gives us extra properties that we
can use in an algorithm
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Four types of distances (1)

o Compute the number of modifications of
some type allowing to change A to B.

o Perhaps normalize this distance according
to the sizes of A and B or to the number of
possible paths

o Typically, the edit distance
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o Four types of distances (2)

o Compute a similarity between A and B.
This Is a positive measure s(A,B).

o Convert it into a metric by one of at least 2
methods.
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Method 1

o Let d(A,B)=2s(AB)
o If A=B, then d(A,B)=0

o Typically the prefix distance,
distance on trees:

o S(ty,t)=min{|x[: t;(x)#t,(X)}
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Method 2

o d(A,B)=s(A,A)-s(A,B)-s(B,A)+s(B,B)
o Conditions
d(x,y)=0 = x=y
d(x,y)+d(y,z)>d(x,z)
only hold for some special conditions on s.
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Four types of distances (3)

o FInd a finite set of measurable features

o Compute a numerical vector for A and B (v,
and vp). These vectors are elements of R".

o Use some distance d, over R"

o d(A,B)=d,(V,, V) (A

A
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o Four types of distances (4)

o Find an Infinite (enumerable) set of
measurable features

o Compute a numerical vector for A and B
(v, and vg). These vectors are elements of
R>.

o Use some distance d, over R”

o d(A,B)=d,(V,, V)

30 cdlh, Barcelona, July 2007



The edit distance

o Defined by Levens(h)tein, 1966

o Algorithm proposed by Wagner and
Fisher, 1974

o Many variants, studies, extensions, since
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o Basic operations

o Insertion
o Deletion
o Substitution

o Other operations:
Inversion
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o Given two strings w and w' In X* w
rewrites Iinto w' in one step If one of the
following correction rules holds:

o w=uav , wW'=uv and u, veX*, aeX (single
symbol deletion)
o W=uv, w'=uav and u, veX* aeX (single
symbol insertion)
o w=uav, w'=ubv and u, veX*, a,beX, (single
. Symbol substitution)
s
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o Examples

o abc — ac
o ac — abc
o abc — aec
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O

We will consider the reflexive and
transitive closure of this derivation, and
denote wkw' if and only if w rewrites into
w' by k operations of single symbol
deletion, single symbol insertion and
single symbol substitution.
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o Given 2 strings w and w', the Levenshtein
distance between w and w' denoted

d(w,w") Is the smallest k such that wWSw',

o Example: d(abaa, aab) = 2. abaa rewrites
Into aab via (for instance) a deletion of the
b and a substitution of the last a by a b.
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A confusion matrix

a b C A
a 0 1 1 1
b 1 0 1 1
C 1 1 0 1
A 1 1 1 0

38 cdlh, Barcelona, July 2007




Another confusion matrix

a b C A
0 0.7 0.4 1
0.7 0 0.6 0.8
0.4 0.6 0 0.7
1 0.8 0.7 0
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A similarity matrix using an

evolution model
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Conditions

o C(a,b)< C(a,A)+C(A,b)

o C(a,b)= C(b,a)

o Basically C has to respect the triangle
iInequality
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o Aligning

@abaacaba
d=2+2+0=4

bacaab



o Aligning
@abaacaba

d=3+0+1=4

bacaab



General algorithm

o What does not work:

Compute all possible sequences of
modifications, recursively.

o Something like:
d(ua,vb)=1+min(d(ua,v), d(u,vb), d(u,v))
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The formula for dynamic
programming

d(ua,vb)=
If a=b, d(u,v)
If a=Db,
{- d(u,vb)+C(a,7)
min < «d(u,v)+C(a,b)

e d(ua,v)+C(A\,b)
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o Complexity

o Time and space O(|ul.|v|)

o Note that if normalizing by dividing by the
sum of lengths [d(u,Vv)=d (u,v) / (|u]+]|Vv])]
you end up with something that is not a
distance:

dy(ab,aba)=0.2
d\(aba,ba)=0.2
dy(ab,ba)=0.5
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Extensions

o Can add other operations such as
Inversion uabv—ubav

o Can work on circular strings
o Can work on languages
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o A. V. Aho, Algorithms for Finding Patterns In
Strings, in: Handbook of Theoretical Computer
Science (Elsevier, Amsterdam, 1990) 290-300.

o L. Miclet, Méthodes Structurelles pour la Recon-
naissance des Formes (Eyrolles, Paris, 1984).

o R. Wagner and M. Fisher, The string-to-string
Correction Problem, Journal of the ACM 21
(1974) 168-178.
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Note (recent (?) idea, re Bunke et al.)

o Another possibility is to choose n strings,
and given another string w, associate the
feature vector <d(w,w,),d(w,w,),...>.

o How do we choose the strings?
o Has this been tried?
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4 Kernels

o A kernel is a function x : AxA—R such
that there exists a feature mapping
¢ . A >R", and k(X,y)=< ¢(X), d(y) >.

0 <9(X), p(Y)>=0,(X)-91(y) + §o(X)-d,(y) +...+
(I)n(x)(l)n(y)

o (dot product)
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Some important points

o The «k function is explicit, the feature
mapping ¢ may only be implicit.

o Instead of taking R" any Hilbert space will
do.

o If the kernel function i1s built from a feature
mapping ¢, this respects the kernel
conditions.
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Crucial points

o Function ¢ should have a meaning.

o The
Inex
com
O(|x

computation of k(x,y), should be
pensive: we are going to be doing this
putation many times. Typically

*+lyl) or O(|x].1y])-

o But notice that 1(x,y)=2;_, = ¢.(X)-d;(y)
o With | that can be infinite!
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Some string kernels (1)

o The Parikh kernel:

(I)(u):(lulal’ |u|a21 |u|a3""1 |u|a|2|)
k(aaba, bbac)=[aaba|_ *|bbac| +
|aaba|, *|bbac|, + |aaba|.*|bbac|.=
3*1+1*2+0*1=5
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Some string kernels (2)

o The spectrum kernel:

o Take alength p. Lets,, s,, ..., S, be an
enumeration of all strings in P

(I)(u):(lulsl’ |U|52, |u|331"'1 |u|sk)

k(aaba, bbac)=1 (for p=2)
(only ba in common!)

In other fields n-grams !

Computation time O(p |X| [y|)
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Some string kernels (3)

o The all-subsequences kernel:
o Lets,,s,, ..., S,,... be an enumeration of all
strings in *
o Denote by ¢*(u), the number of times s appears
as a subsequence in u.
¢A(U)=(9A(U)s1s 9P( W)szs OA( U)szrs G (U o--)
k(aaba, bbac)=6
k(aaba, abac)=7+3+2+1=13

58 cdlh, Barcelona, July 2007



Some string kernels (4)

The gap-weighted subsequences kernel:
Lets,, S,, ..., S,,... be an enumeration of all
strings in *

Let A be a constant > 0

Denote by ¢,(u); be the number of times s
appears as a subsequence in u of length |

Then ¢,(u) Is the sum of all ¢,(u)s;,
Example: u=‘caat’, let s="at’, then ¢,(u)= A*+ A°
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o Curiously a typical value, for theoretical
proofs, of A Is 2. But a value between O
and 1 is more meaningful.

o O(|x| |y]) computation time.
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How Is a kernel computed?

o Through dynamic programming

o We do not compute function ¢

o Example of the all-subsequences kernel
KOD= k(Xg,--- %5 Yi---Y5)

Aux[]] (at step I): number of alignments
where x; is paired with y;.
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General idea (1) Suppose we
know (at step 1)

X;..X: 4
X
Aux|j] |
vji<m
Y,
Yi--Yj1

The number of alignments of X;..x;
with y,..y; where x; Is matched with y;
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General idea (2)

Xl' 'Xi-l
X
Aux|j] |
VI<m
y.
Y1--Yj1 |

Notice that AuX[j] =K]i-1][j-1]




General idea (3)

An alignment between x,..x; and
Y;..Y IS either an alignment where
X; IS matched with one of the y; (and
the number of these Is Aux|m]), or
an alignment where Xx; Is not
matched with anyone (so that Is
K[i-1][m].



K(Xq,-- X0y Vq---Yi)

/

For | €[1,m] K[O][j]=1 All matchings of x.
For i E[l,n] with earlier y

last < 0; Aux|[0] « O; Match x; with y,
For je[1l,m] /
Aux [K] <« Aux[last]

it (x;=y; ) then Aux[j] <-Aux[last]+K[i-1][}-1]
last « K;
For | €[1,m]
% KIil[i] <« K[i-1][j]+Aux[j]

900)
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The arrays K and Aux for cata and gatta

A g a t t a

) 1 1 1 1 1 1

Aux | O 0 0 0 0 0

c 1 1 1 1 1 1

K/ Aux | O 0 1 1 1 2
N a 1 1 2 2 2 3
\ Aux 0 0 0 2 4 4
t 1 1 2 4 6 7

Aux | O 0 1 1 1 7

a 1 1 3 5 7 14

Ref. Shawe Taylor and Christianini
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Why not try something else ?

o The all-substrings kernel:

olLets,s,, ..., S, ... be an enumeration of
all strings in *

(I)(u):(lulsl’ |U|52, |u|331"'1 |u|sn ’)
k(aaba, bbac)=7 (1+3+2+0+0..+1+0...)

o No formula ?
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Or an alternative edit kernel

o k(X,y) Is the number of possible matchings
In a best alignment between x and y.

o Is this positive definite (Mercer’s
conditions)?
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Or counting substrings only
once?

o ¢,(x) Is the maximum n such that u" is a
subsequence of X.

o No nice way of computing things...
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5 Trees

o A tree domain (or Dewey tree) Is a set of
strings over alphabet {1,2,...,n} which is
prefix closed:

o uv € Dom(t) = u € Dom(t).
o Example: {A\, 1, 2, 3, 21, 22, 31, 311}

o Note: often start counting from O (sic)
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o A ranked alphabet is an alphabet X, with a
rank (arity) function p: £— {0,..,n}

o A tree is a function from a tree domain to
a ranked alphabet, which respects
p(u)=k = ukeDom(t) and u(k+1) ¢ Dom(t)

72 cdlh, Barcelona, July 2007



An example

21 22 31

311
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o Variants (1)

o Rooted trees (as graphs)

But also unrooted...
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Binary trees

f
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Exercises

o Some combinatorics on trees...

o How many
Dewey trees are there with 2, 3, n nodes?
binary trees are there with 2, 3, n nodes?
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Some vocabulary

/ r
o The root of a tree
o Internal node/—\
o Leaf in a tree a g
o The frontier of a tree
o The siblings a
o The ancestor (¢ of )
o The descendant ( of())
(&

o © Father-son...Mother daughter !
/7900)
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About binary trees

full binary tree - every node has zero or
two children.

perfect (complete) binary tree - full
binary tree + leaves are at the same
depth.
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About algorithms

o An edit distance can be computed
o Tree kernels exist
o Finding patterns is possible

o General rule: we can do on trees what we
can do on strings, at least in the ordered
casel

o But it is usually more difficult to describe.
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Set of trees...

IS a forest
o Sequence of trees...
IS a hedge!
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A graph

IS undirected, (V,E), where V is the set of
vertices (a vertex), and E the set of edges.

o You may have loops.

o An edge Is undirected, so a set of 2 vertices
{a,b} or of 1 vertex {a} (for a loop). An edge
IS Incident to 2 vertices. It has 2 extremities.
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A digraph

Is a G=(V,A) where V Is a set of vertices
and A Is a set of arcs. An arc Is directed
and has a start and an end.
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Some vocabulary

Undirected graphs Di-graphs

o an edge O an arc

o a chain o a path

o acycle o a circuit

o connected o strongly connected
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What makes graphs so
attractive?

o We can represent many situations with
graphs.

o From the modelling point of view, graphs
are great.
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Why not use them more?

o Because the comb
hard.

o Key problem: grap
o Are graphs G1 anc

Inatorics are really

N Isomorphism.
G2 iIsomorphic?

o Why is it a key pro
—or matching
—or a good distan

nlem?

ce (metric)

~or a good kernel
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Isomorphic?
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Isomorphic?

2 ?

A

b
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Conclusion

o Algorithms matter.

o In machine learning, some basic
operations are performed an enormous
number of times. One should look out for
the definitions algorithmically reasonable.
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e o/ Some algorithmic notions
and complexity theory for
machine learning

o Concrete complexity (or complexity of the
algorithms

o Complexity of the problems
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Why are complexity issues
going to be important?

o Because the volumes of data for ML are
very large

o Because since we can learn with
randomized algorithms we might be able
to solve combinatorially hard problems
thanks to a learning problem

o Because mastering complexity theory Is
one key to successful ML applications.
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o 8 Complexity of algorithms

o Goal is to say some thing about how fast
an algorithm is.

o Alternatives are:
Testing (stopwatch)
Maths
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Maths

o We could test on
A best case
An average case
A worse case
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Best case

o We can encode detection of the best case
In the algorithm, so this is meaningless
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Average case

o Appealing

o Where is the distribution over which we
average?

o But sometimes we can use Monte-Carlo
algorithms to have average complexity
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Worse case

o Gives us an upper bound

o Can sometimes transform the worse case
to average case through randomisation
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Notation O(f(n))

o This is the set of all functions
asymptotically bounded (by above) by f(n)
o So for example in O(n?) we find

n—n? n—nlogn, n—n, n—1,
n—7, n— 5n%+317n+423017

Exists dn,, 3 k>0, Vn=n,, g(n) <k - f(n)
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Alternative notations

o Q(f(n))
This Is the set of all functions asymptotically
bounded (by underneath) by f(n)

o O(i(n))

This Is the set of all functions:- asymptotically
bounded (by both sides) by f(n)

n,, 3 ky,k, >0, Yn=n,, k; - f(n) <g(n) <k, - f(n)

900>
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f(n)

g(n)

n
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Some remarks

o This model is known as the RAM model. It
IS nowadays attacked, specifically for
large masses of data.

o It Is usually accepted that an algorithm
whose complexity is polynomial is OK. If
we are in Q(2"), no.
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O Complexity of problems

o A problem has to be well defined, Ie
different experts will agree about what a
correct solution is.

o For example ‘learn a formula from this
data’ is ill defined, as Is ‘where are the
Interest points in this image?’.

o For a problem to be well defined we need

a description of the instances of the
problem and of the solution.
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o Typology of problems (1)

o Counting problems
o How many x in | such that f(x)
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o Typology of problems (2)

o Search/optimisation problems
o Find X minimising f
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@ Typology of problems (3)

o Decision problems
o Is x (in | ) such that f(x)?
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About the parameters

o We need to encode the instances In a fair
and reasonable way.

o Then we consider the parameters that
define the size of the encoding
o Typically
Size(n)=log n
Size(w)=|w| (when |Z|>2)
s Size(G=(V,E))=|V|? or |V]| - |E]|

9% S
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What Is a good encoding?

o An encoding Is reasonable If it encodes
sufficient different objects.

o le with n bits you have 2"*1 encodings so
optimally you should have 2"*! different
objects.

o Allow for redundancy and syntactic sugatrr,
so Q(p(2"*1)) different languages.
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o Simplifying

o Only decision problems !
Answer Is YES or NO

o A problem is a Il, and the size of an
Instance Is n.

o With a problem I, we associate the co-
problem co-I1

o The set of positive instances for IT is
denoted I+(I1,)
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10 Complexity Classes

o P : deterministic polynomial time

o NP: non deterministic polynomial
time
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Turing machines

o Only one tape
o Alphabet of 2 symbols
o An input of length n
o We can count:
number of steps till halting
size of tape used for computation
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» .. ..
Determinism and non determinism

o Determinism: at each moment, only one
rule can be applied.

o Non determinism: various rules can be
applied “in parallel”. The language
recognised Is that of the (positive)
Instances where there is at least one
accepting computation.
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e ~ Computation tree for non determinism
|

p(n)!
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Pand NP

oll eP <« I My 3 p() Viel(IT):
#steps (My(1)) < p(size())

oIl e NP < 3 My 3 p() Viel+(I1):
#steps (My(1)) < p(size())



o Programming point of view

o P : the program works in polynomial
time
o NP : the program takes wild guesses,

and if guesses were correct will find the
solution in polynomial time.
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Turing Reduction

o IT, <¥. 11, (I1, reduces to IL,) if there
exists a polynomial algorithm solving
[T, using an oracle that consults I1, .

o There Is another type of reduction,
usually called ‘polynomial’
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Reduction

o IT, <*I1, (I1, reduces to I1,) if there
exists a polynomial transformation
of the instances of I1, into those of
I1, such that

le I, < y(l)e I1,.
Then I, Is at least as hard as I1,
(polynomially speaking)

900>
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o Complete problems

o A problem IT is C-complete if any
other problem from C reduces to I1

o A complete problem is ‘the hardest’
of its class.

o Nearly all classes have complete
problems.
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Example of complete
problems

o SAT is NP-complete

o ‘Is there a path from x to y in graph G?’
IS P-complete

o SAT of a Boolean quantified closed
formula is P -SPACE complete

o Equivalence between two NFA Is
P-SPACE complete
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SPACE Classes

We want to measure how much tape
IS needed, without taking into
account the computation time.
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P-SPACE

IS the class of problems solvable by a
deterministic Turing machine that
uses only polynomial space.

o NPc P-SPACT

General opinion Is that the inclusion Is
strict.
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NP -SPACE

o Is the class of problems solvable by a
nondeterministic Turing machine that
uses only polynomial space.

o Savitch theorem

P-SPACE=NP-SPACE




log-SPACE

L=log-SPACE
L is the class of problems that use only
poly-logarithmic space.
Obviously reading the input does not
get counted.

Lc P

General opinion Is that the inclusion Is

oy Strict.
800)

122 cdlh, Barcelona, July 2007



L P-SPACE  P-SPACE= NP-SPACE

W S
Ps
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P-SPACT= NP-SPACE




11 Stochastic classes

o Algorithms that use function random()

o Are there problems that deterministic
machines cannot solve but that
probabilistic ones can?
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11.1 Probabillistic Turing
machines (PTM)

o These are non deterministic machines
that answer YES when the majority of

computations answer YES,;

o The accepted set is that of those

iInstances for which the majority of
computations give YES.

o PP is the class of those decision
0%90 problems solvable by polynomial PTMs

0>
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PP is a useless class...

If probabillity of correctness is only G + Zlnj

an exponential (in n) number of iterations
IS needed to do better than random choice.
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BPP: Bounded away from P

o BPP is the class of decision problems
solvable by a PTM for which the probability of

being correct is at least 1/2+0, with 6 a
constant>0.

o It is believed that NP and BPP are
incomparable, with the NP-complete in
NP\BPP, and some symmetrical problems in
BPANP.

900>
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o Hierarchy

P < BPP < BQ?P
NP-complete n BQP =J

Quantic machines should not be able
to solve NP-hard problems

129 cdlh, Barcelona , July 2007



11.2 Randomized Turing
Machines (RTM)

These are non deterministic machines
such that

either no computation accepts
either half of them do
(instead of half, any fraction >0 is OK)

130 cdlh, Barcelona, July 2007



RP

o RP s the class of decision problems
solvable by a RTM

o PcRPc NP
o Inclusions are believed to be strict
o Example: Composite e RP
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An example of a problem in RP

Product Polynomial Inequivalence

o 2 sets of rational polynomials
P,...P

Q;...Q,
o Answer : YES when HiS o Pi# H <n Q

This problem seems neither to be in $ nor in
co-NP.
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o Example

o (X-2)(x2+x-21)(x3-4)
0 (X%-X+6)(x+14)(x+1)(x-2)(x+1)

o Notice that developing both polynomials is
too expensive.

133 cdlh, Barcelona, July 2007



LPP=RPN co-RP

o ZPP : Zero error probabilistic polynomial
time

o Use in parallel the algorithm for RP and

the one for co-RP

o These algorithms are called ‘Las Vegas’

o They are always right but the complexity is
In average polynomial.
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‘Monte-Carlo’ Algorithms

o Negative instance = answer is NO
o Positive instance = Pr(answer is YES) > 0.5

o They can be wrong, but by Iterating we can
get the error arbitrarily small.

o Solve problems from RP
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‘Las Vegas’ algorithms

o Always correct
o In the worse case too slow
o In average case, polynomial time.
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Another example of ‘Monte-
Carlo’ algorithm

Checking the product of matrices.
Consider 3 matrices A, B and C
Question AB=C ?
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Natural idea

o Multiply A by B and compare with C
o Complexity

O(n3) brute force algorithm

O(n?%37) Strassen algorithm
o But we can do better!



Algorithm

generate S, bit vector
compute X=(SA)B
compute Y=5SC

If X #Y return TRUE
else return FALSE

o O(n)
o O(n?)
o O(n?)
o O(n)



o Example

o O1 -

71 2 3 ) /3
A: 4 5 6 B: 1
\7 3 9/ \2
/11 29 37\
C= 29 65 91
C 47 99 45
%900) \_ /
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(1,1,0)| 4 9 6 | 5709

7 8 9
\_ _/
3 1 4 )
579 1 5 9 |=(4094128)
2 6 5
(11 29 37
(11.0)) 29 65 91| =(4094,128)
47 99 45
R \_ _/
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"1 2 3)
011)| 4 5 6 |= (11,13, 15)
7 8 9
\_ _/
"3 1 4 )
1 5 9 |=(76,166,236)
2 6 5
(11 29 37
OLD1 29 65 91| —(76,164,136)
47 99 45
0% \ J
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C Proof

o Let D=C-AB =0

o Let V be a wrong column of D
o Consider a bit vector S,

If SV=0, then S’V = 0 with

S’=S xor (0...0, 1, 0...0)

-~

-1
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o Pr(S)=Pr(S’)

o Choosing a random S, we have SD =0
with probabillity at least 1/2

o Repeating the experiment...



O Error

o If C=AB the answer Is always NO

o If CAB the error made (when
answering NO instead of YES) Is

(1/2)k (if k experiments)



Quicksort: an example of
‘Las Vegas’ algorithm

o Complexity of Quicksort=0(n?)

This Is the worse case, being unlucky with
the pivot choice.

o If we choose it randomly we have an
average complexity O(n 1og n)
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®"13 The hardness of learning

3-term-DNF by 3-term-DNF

o references:
Pitt & Valiant 1988, Computational
Limitations on learning from examples 1,
JACM 35 965-984.
Examples and Proofs: Kearns & Vazirani,
An Introduction to Computational Learning
Theory, MIT press, 1994

148 cdlh, Barcelona, July 2007



o A formula in disjunctive normal form:
o X={Uy,,..,u.}

oF=T,vT,vTI,

o each T, Is a conjunction of literals
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O sizes

o An example: <0,1,....0,1>

N

o a formula: max 9n

o To efficiently learn a 3-term-DNF, you
have to be polynomial in: 1/, 1/6, and n.
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Theorem:

If RP=NP the class of 3-term-DNF is not
polynomially learnable by 3-term-DNF.
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Definition:

A hypothesis h Is consistent with a
set of labelled examples
S={<Xq,by>,... <X, D> I

Vx.eS h(x)=b
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3-colouring

o Instances: a graph G=(V, A)

o Question: does there exist a way to
colour V In 3 colours such that 2 adjacent
nodes have different colours?

o Remember: 3-colouring is NP-complete
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Our problem

o Name: 3-term-DNF consistent

o Instances: a set of positive examples S+
and a set of negative examples S-

o Question: does there exist a 3-term-DNF
consistent with S+ and S-?
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Reduce 3-colouring to
« consistent hypothesis »

Remember:

o Have to transform an instance of 3-
colouring to an instance of « consistent
hypothesis »

o And that the graph is 3 colourable iff the
set of examples admits a consistent 3-
term-DNF
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Reduction

build from G=(V, A): Sg+uU Sg-

Vie[n] <v(i),1>eSc+ where v(i)=(1,1,..,1,0,1,..1)
)
I

(i, j) €A <a(i, j),0>eSe-

where a(l, j):(l""1’?""’?’1’"’1)
J
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S+
(011111, 1)
(101111, 1)
(110111, 1)
(111011, 1)
(111101, 1)
(111110, 1)

cdlh, Barcelona, July 2007

Se-
(001111, 0)
(011011, 0)
(011101, 0)
(100111, 0)
(101110, 0)
(110110, 0)
(111100, 0)



Sg+
(011111, 1)
(101111, 1)
(110111, 1)
(111011, 1)
(111101, 1)
(111110, 1)

T

yellow

T

red
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Sg-
(001111, 0)
(011011, 0)
(011101, 0)
(100111, 0)
(101110, 0)
(110110, 0)
(111100, 0)

=X, AXoAXy AXeAXg
Toie=X1AX3AXg
=Xy AXgAXgAXg



Sg+
(011111, 1)
(101111, 1)
(110111, 1)
(111011, 1)
(111101, 1)
(111110, 1)

T

yellow

T

red
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Sg-
(001111, 0)
(011011, 0)
(011101, 0)
(100111, 0)
(101110, 0)
(110110, 0)
(111100, 0)

=X, AXoAXy AXeAXg
Toie=X1AX3AXg
=Xy AXgAXgAXg



Where did we win?

o Finding a 3-term-DNF consistent is
exactly PAC-learning 3-term DNF

o Suppose we have a polynomial
earning algorithm L that learns 3-term-
DNF PAC.

o Let S be a set of examples
o Take £=1/(2]SI)
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® o We learn with the uniform distribution over S
with an algorithm L.

o If there exists a consistent 3-term-DNF, then
with probability at least 1-othe error is less
than & so there is In fact no error !

o If there exists no consistent 3-term-DNF, L
will not find anything.

o So just by looking at the results we know In
which case we are.
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Therefore:

o L I1s a randomized learner that checks in
polynomial time if a sample S admits a
consistent 3-term-DNF.

o If S does not admit a consistent 3-term-DNF L
answers « no » with probability 1.

o If S admit a consistent 3-term-DNF L
answers« yes », with probability 1-¢.

o In this case we have 3-colouring e RP.
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Careful

o The class 3-term-DNF is polynomially
PAC learnable by 3-CNF !
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General conclusion

_ots of other TCS topics in ML.
_ogics (decision trees, ILP)

Higher graph theory (graphical models,
clustering, HMMs and DFA)

Formal language theory
... and there never is enough algorithmics !
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