
cdlh, Barcelona, July 2007 1

TCS for Machine Learning
Scientists

Barcelona July 2007
Colin de la Higuera

cdlh, Barcelona, July 20072

cdlh 2007

Outline
1. Strings
2. Order
3. Distances
4. Kernels
5. Trees
6. Graphs
7. Some algorithmic

notions and
complexity theory
for machine learning

8. Complexity of
algorithms

9. Complexity of
problems

10.Complexity classes
11.Stochastic classes
12.Stochastic

algorithms
13.A hardness proof

using RP≠NP

cdlh, Barcelona, July 20073

cdlh 2007

Disclaimer

The view is that the essential bits of linear
algebra and statistics are taught elsewhere.
If not they should also be in a lecture on
basic TCS for ML.
There are not always fixed name for
mathematical objects in TCS. This is one
choice.

cdlh, Barcelona, July 20074

cdlh 2007

1 Alphabet and strings

An alphabet Σ is a finite nonempty set of
symbols called letters.
A string w over Σ is a finite sequence
a1 …an of letters.
Let |w| denote the length of w. In this case
we have |w| = |a1…an| = n.
The empty string is denoted by λ (in
certain books notation ε is used for the
empty string).

cdlh, Barcelona, July 20075

cdlh 2007

Alternatively a string w of length n can be
viewed as a mapping [n] Σ :
if w = a1a2…an we have w(1) = a1, w(2) =
a2 …, w(n) = an.
Given a∈Σ , and w a string over Σ, |w|a
denotes the number of occurrences of
letter a in w.
Note that [n]={1,…,n} with [0]=∅

cdlh, Barcelona, July 20076

cdlh 2007

Letters of the alphabet will be indicated by
a, b, c,…, strings over the alphabet by u,
v,… , z

cdlh, Barcelona, July 20077

cdlh 2007

Let Σ* be the set of all finite strings over
alphabet.
Given a string w, x is a substring of w if
there are two strings l and r such that
w = lxr. In that case we will also say that w
is a superstring of x.

cdlh, Barcelona, July 20078

cdlh 2007

We can count the number of occurrences
of a given string u as a substring of a
string w and denote this value by |w|u =
|{l∈Σ* : ∃r∈Σ* ∧ w = lur}|.

cdlh, Barcelona, July 20079

cdlh 2007

x is a subsequence of w if it can be
obtained from w by erasing letters from w.
Alternatively: ∀x, y, z, x1, x2 ∈ Σ*, ∀a∈Σ :

x is a subsequence of x,
x1x2 is a subsequence of x1ax2
if x is a subsequence of y and y is a
subsequence of z then x is a subsequence
of z.

cdlh, Barcelona, July 200710

cdlh 2007

Basic combinatorics on
strings

Let n=|w| and p=|Σ|
Then the number of…

At least At most

n+1 Prefixes of w n+1

n+1 Substrings of w n(n+1)/2+1

n+1 Subsequences of w 2n

cdlh, Barcelona, July 200711

cdlh 2007

Algorithmics

There are many algorithms to compute the
maximal subsequence of 2 strings
But computing the maximal subsequence
of n strings is NP-hard.
Yet in the case of substrings this is easy.

cdlh, Barcelona, July 200712

cdlh 2007

Knuth-Morris-Pratt algorithm
Does string s appear as substring of string u?
Step 1 compute T[i] the table indicating the
longest correct prefix if things go wrong.
T[i]=k ⇔ s1…sk=si-k…si-1.
Complexity is O(|s|)

i 1 2 3 4 5 6 7

s[i] a b c d a b d

T[i] 0 0 0 0 0 1 2

T[7]=2 means that if
we fail when parsing
d, we can still count

on the first 2
characters been

parsed.

cdlh, Barcelona, July 200713

cdlh 2007

KMP (Step 2)
m ← 0; *m position where s starts*\
i ← 1; *i is over s and u*\
while (m + i ≤|u| & i ≤ |s|)

if (u[m + i] = s[i]) ++i *matches*\
else *doesn’t match\

m ←m+ i - T[i]-1; *go back T[i] in u\
i ← T[i]+1

if (i > |s|) return m+1 *found s*\
else return m + i *not found*\

cdlh, Barcelona, July 200714

cdlh 2007

A run with abac in
aaabcacabacac

i 1 2 3 4

s[i] a b a c

T[i] 0 0 0 1

aaabcacabacac

m 0 0 0 1
1 1

a
a

a
a

2 2 5 7 7 7 7
i 1 2 2 2 3 2 1

a
a

4
s a b b b a b

32
b a
b a

c
u a a a b c c c

cdlh, Barcelona, July 200715

cdlh 2007

Conclusion

Many algorithms and data structures
(tries).
Complexity of KMP=O(|s|+|u|)
Research is often about constants…

cdlh, Barcelona, July 200716

cdlh 2007

2 Order! Order!

Suppose we have a total order relation
over the letters of an alphabet Σ. We
denote by ≤alpha this order, which is usually
called the alphabetical order.
a ≤alpha b ≤alpha c…

cdlh, Barcelona, July 200717

cdlh 2007

Different orders can be
defined over Σ:

the prefix order: x ≤pref y if
∃w ∈ Σ* : y = xw;

the lexicographic order: x ≤lex y if
either x ≤pref y or
x = uaw ∧ y = ubz ∧ a ≤alpha b.

cdlh, Barcelona, July 200718

cdlh 2007

A more interesting order for grammatical
inference is the hierarchical order (also
sometimes called the length-lexicographic
or length-lex order):
If x and y belong to Σ*, x ≤length-lex y if

|x| < |y|∨ (|x| = |y| ∧ x ≤lex y).
The first strings, according to the
hierarchical order, with Σ = {a, b} will be
{λ, a, b, aa, ab, ba, bb, aaa,…}.

cdlh, Barcelona, July 200719

cdlh 2007

Example

Let = {a, b, c} with a<alpha b<alpha c. Then
aab ≤lex ab,
but ab ≤length-lex aab. And the two strings
are incomparable for ≤pref.

cdlh, Barcelona, July 200720

cdlh 2007

3 Distances

What is the issue?
4 types of distances
The edit distance

cdlh, Barcelona, July 200721

cdlh 2007

The problem

A class of objects or representations C
A function C2→R+

Such that the closer x and y are one to
each other, the smaller is d(x,y).

cdlh, Barcelona, July 200722

cdlh 2007

The problem

A class of objects/representations C
A function C2→R
which has the following properties:

d(x,x)=0
d(x,y)=d(y,x)
d(x,y)≥0

And sometimes
d(x,y)=0 ⇒ x=y
d(x,y)+d(y,z)≥d(x,z)

cdlh, Barcelona, July 200723

cdlh 2007

Summarizing

A metric is a function C2→R
which has the following properties:

d(x,y)=0⇔ x=y
d(x,y)=d(y,x)
d(x,y)+d(y,z)≥d(x,z)

cdlh, Barcelona, July 200724

cdlh 2007

Pros and cons

A distance is more flexible
A metric gives us extra properties that we
can use in an algorithm

cdlh, Barcelona, July 200725

cdlh 2007

Four types of distances (1)

Compute the number of modifications of
some type allowing to change A to B.
Perhaps normalize this distance according
to the sizes of A and B or to the number of
possible paths
Typically, the edit distance

cdlh, Barcelona, July 200726

cdlh 2007

Four types of distances (2)

Compute a similarity between A and B.
This is a positive measure s(A,B).
Convert it into a metric by one of at least 2
methods.

cdlh, Barcelona, July 200727

cdlh 2007

Method 1

Let d(A,B)=2-s(A,B)

If A=B, then d(A,B)=0
Typically the prefix distance, or the
distance on trees:
S(t1,t2)=min{|x|: t1(x)≠t2(x)}

cdlh, Barcelona, July 200728

cdlh 2007

Method 2

d(A,B)= s(A,A)-s(A,B)-s(B,A)+s(B,B)
Conditions

d(x,y)=0 ⇒ x=y
d(x,y)+d(y,z)≥d(x,z)

only hold for some special conditions on s.

cdlh, Barcelona, July 200729

cdlh 2007

Four types of distances (3)

Find a finite set of measurable features
Compute a numerical vector for A and B (vA
and vB). These vectors are elements of Rn.
Use some distance dv over Rn

d(A,B)=dv(vA, vB)
A B

α

cdlh, Barcelona, July 200730

cdlh 2007

Four types of distances (4)

Find an infinite (enumerable) set of
measurable features
Compute a numerical vector for A and B
(vA and vB). These vectors are elements of
R∞.
Use some distance dv over R∞

d(A,B)=dv(vA, vB)

cdlh, Barcelona, July 200731

cdlh 2007

The edit distance

Defined by Levens(h)tein, 1966
Algorithm proposed by Wagner and
Fisher, 1974
Many variants, studies, extensions, since

cdlh, Barcelona, July 200732

cdlh 2007

cdlh, Barcelona, July 200733

cdlh 2007

Basic operations

Insertion
Deletion
Substitution
Other operations:

inversion

cdlh, Barcelona, July 200734

cdlh 2007

Given two strings w and w' in Σ*, w
rewrites into w' in one step if one of the
following correction rules holds:
w=uav , w'=uv and u, v∈Σ*, a∈Σ (single
symbol deletion)
w=uv, w'=uav and u, v∈Σ*, a∈Σ (single
symbol insertion)
w=uav, w'=ubv and u, v∈Σ*, a,b∈Σ, (single
symbol substitution)

cdlh, Barcelona, July 200735

cdlh 2007

Examples

abc → ac
ac → abc
abc → aec

cdlh, Barcelona, July 200736

cdlh 2007

We will consider the reflexive and
transitive closure of this derivation, and
denote w→w' if and only if w rewrites into
w' by k operations of single symbol
deletion, single symbol insertion and
single symbol substitution.

k

cdlh, Barcelona, July 200737

cdlh 2007

Given 2 strings w and w', the Levenshtein
distance between w and w' denoted
d(w,w') is the smallest k such that w→w'.

Example: d(abaa, aab) = 2. abaa rewrites
into aab via (for instance) a deletion of the
b and a substitution of the last a by a b.

k

cdlh, Barcelona, July 200738

cdlh 2007

A confusion matrix

a b c λ

a 0 1 1 1

b 1 0 1 1

c 1 1 0 1

λ 1 1 1 0

cdlh, Barcelona, July 200739

cdlh 2007

Another confusion matrix

a b c λ

a 0 0.7 0.4 1

b 0.7 0 0.6 0.8

c 0.4 0.6 0 0.7

λ 1 0.8 0.7 0

cdlh, Barcelona, July 200740

cdlh 2007

A similarity matrix using an
evolution modelC 9

S -1 4
T -1 1 5
P -3 -1 -1 7
A 0 1 0 -1 4
G -3 0 -2 -2 0 6
N -3 1 0 -2 -2 0 6
D -3 0 -1 -1 -2 -1 1 6
E -4 0 -1 -1 -1 -2 0 2 5
Q -3 0 -1 -1 -1 -2 0 0 2 5
H -3 -1 -2 -2 -2 -2 1 -1 0 0 8
R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5
K -3 0 -1 -1 -1 -2 0 -1 1 1 -1 2 5
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5
I -1 -2 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4
L -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4
V -1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7
W -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11

C S T P A G N D E Q H R K M I L V F Y W

BLOSUM62 matrix

cdlh, Barcelona, July 200741

cdlh 2007

Conditions

C(a,b)< C(a,λ)+C(λ,b)
C(a,b)= C(b,a)
Basically C has to respect the triangle
inequality

cdlh, Barcelona, July 200742

cdlh 2007

Aligning

a b a a c a b a

b a c a a b
d=2+2+0=4

cdlh, Barcelona, July 200743

cdlh 2007

Aligning

a b a a c a b a

b a c a a b
d=3+0+1=4

cdlh, Barcelona, July 200744

cdlh 2007

General algorithm

What does not work:
Compute all possible sequences of
modifications, recursively.

Something like:
d(ua,vb)=1+min(d(ua,v), d(u,vb), d(u,v))

cdlh, Barcelona, July 200745

cdlh 2007

The formula for dynamic
programming

d(ua,vb)=
if a=b, d(u,v)
if a≠b,

• d(u,vb)+C(a,λ)
• d(u,v)+C(a,b)
• d(ua,v)+C(λ,b)

min

cdlh, Barcelona, July 200746

cdlh 2007

b 6 5 4 4 3 3 4 3 4
a 5

4
3
2
1
0
λ

4 4 3 2 3 3 3 3
a 3 3 2 2 3 2 3 4
c 2 2 2 2 2 3 4 5
a 1 2 1 2 3 4 5 6
b 1 1 2 3 4 5 6 7
λ 1 2 3 4 5 6 7 8

a b a a c a b a

cdlh, Barcelona, July 200747

cdlh 2007

b 6 5 4 4 3 3 4 3 4
a 5

4
3
2
1
0
λ

4 4 3 2 3 3 3 3
a 3 3 2 2 3 2 3 4
c 2 2 2 2 2 3 4 5
a 1 2 1 2 3 4 5 6
b 1 1 2 3 4 5 6 7
λ 1 2 3 4 5 6 7 8

a b a a c a b a

cdlh, Barcelona, July 200748

cdlh 2007

a b a a c a b a

b a c a a b
b 6 5 4 4 3 3 4 3 4
a 5

4
3
2
1
0
λ

4 4 3 2 3 3 3 3
a 3 3 2 2 3 2 3 4
c 2 2 2 2 2 3 4 5
a 1 2 1 2 3 4 5 6
b 1 1 2 3 4 5 6 7
λ 1 2 3 4 5 6 7 8

a b a a c a b a

cdlh, Barcelona, July 200749

cdlh 2007

Complexity

Time and space O(|u|.|v|)
Note that if normalizing by dividing by the
sum of lengths [dN(u,v)=de(u,v) / (|u|+|v|)]
you end up with something that is not a
distance:

dN(ab,aba)=0.2
dN(aba,ba)=0.2
dN(ab,ba)=0.5

cdlh, Barcelona, July 200750

cdlh 2007

Extensions

Can add other operations such as
inversion uabv→ubav
Can work on circular strings
Can work on languages

cdlh, Barcelona, July 200751

cdlh 2007

A. V. Aho, Algorithms for Finding Patterns in
Strings, in: Handbook of Theoretical Computer
Science (Elsevier, Amsterdam, 1990) 290-300.
L. Miclet, Méthodes Structurelles pour la Recon-
naissance des Formes (Eyrolles, Paris, 1984).
R. Wagner and M. Fisher, The string-to-string
Correction Problem, Journal of the ACM 21
(1974) 168-178.

cdlh, Barcelona, July 200752

cdlh 2007

Note (recent (?) idea, re Bunke et al.)

Another possibility is to choose n strings,
and given another string w, associate the
feature vector <d(w,w1),d(w,w2),…>.
How do we choose the strings?
Has this been tried?

cdlh, Barcelona, July 200753

cdlh 2007

4 Kernels

A kernel is a function κ : A×A→R such
that there exists a feature mapping
φ : A →Rn, and κ(x,y)=< φ(x), φ(y) >.
<φ(x), φ(y)>=φ1(x)·φ1(y) + φ2(x)·φ2(y) +…+
φn(x)·φn(y)

(dot product)

cdlh, Barcelona, July 200754

cdlh 2007

Some important points

The κ function is explicit, the feature
mapping φ may only be implicit.
Instead of taking Rn any Hilbert space will
do.
If the kernel function is built from a feature
mapping φ, this respects the kernel
conditions.

cdlh, Barcelona, July 200755

cdlh 2007

Crucial points

Function φ should have a meaning.
The computation of κ(x,y), should be
inexpensive: we are going to be doing this
computation many times. Typically
O(|x|+|y|) or O(|x|.|y|).

But notice that κ(x,y)=Σi∈ I = φi(x)·φi(y)
With I that can be infinite!

cdlh, Barcelona, July 200756

cdlh 2007

Some string kernels (1)

The Parikh kernel:
φ(u)=(|u|a1, |u|a2, |u|a3,…, |u|a|Σ|)
κ(aaba, bbac)=|aaba|a*|bbac|a+
|aaba|b*|bbac|b + |aaba|c*|bbac|c=
3*1+1*2+0*1=5

cdlh, Barcelona, July 200757

cdlh 2007

Some string kernels (2)

The spectrum kernel:
Take a length p. Let s1, s2, …, sk be an
enumeration of all strings in Σp

φ(u)=(|u|s1, |u|s2, |u|s3,…, |u|sk)
κ(aaba, bbac)=1 (for p=2)

(only ba in common!)
In other fields n-grams !
Computation time O(p |x| |y|)

cdlh, Barcelona, July 200758

cdlh 2007

Some string kernels (3)

The all-subsequences kernel:
Let s1, s2, …, sn,… be an enumeration of all
strings in Σ+

Denote by φA(u)s the number of times s appears
as a subsequence in u.

φA(u)=(φA(u)s1, φA(u)s2, φA(u)s3,…, φA(u)sn ,…)
κ(aaba, bbac)=6
κ(aaba, abac)=7+3+2+1=13

cdlh, Barcelona, July 200759

cdlh 2007

Some string kernels (4)
The gap-weighted subsequences kernel:
Let s1, s2, …, sn,… be an enumeration of all
strings in Σ+

Let λ be a constant > 0
Denote by φj(u)s,i be the number of times s
appears as a subsequence in u of length i
Then φj(u) is the sum of all φj(u)sj,I

Example: u=‘caat’, let sj=‘at’, then φj(u)= λ2+ λ3

cdlh, Barcelona, July 200760

cdlh 2007

Curiously a typical value, for theoretical
proofs, of λ is 2. But a value between 0
and 1 is more meaningful.
O(|x| |y|) computation time.

cdlh, Barcelona, July 200761

cdlh 2007

How is a kernel computed?

Through dynamic programming
We do not compute function φ
Example of the all-subsequences kernel

K[i][j]= κ(x1,…xi, y1…yj)
Aux[j] (at step i): number of alignments
where xi is paired with yj.

cdlh, Barcelona, July 200762

cdlh 2007

General idea (1) Suppose we
know (at step i)

xi

yjy1..yj-1

x1..xi-1

Aux[j]
∀j≤m

The number of alignments of x1..xi
with y1..yj where xi is matched with yj

cdlh, Barcelona, July 200763

cdlh 2007

General idea (2)

xi

yjy1..yj-1

x1..xi-1

Aux[j]
∀j≤m

Notice that Aux[j] =K[i-1][j-1]

cdlh, Barcelona, July 200764

cdlh 2007

General idea (3)

An alignment between x1..xi and
y1..ym is either an alignment where
xi is matched with one of the yj (and
the number of these is Aux[m]), or
an alignment where xi is not
matched with anyone (so that is
K[i-1][m].

cdlh, Barcelona, July 200765

cdlh 2007

κ(x1,…xn, y1…ym)

For j ∈[1,m] K[0][j]=1
For i ∈[1,n]

last ← 0; Aux[0] ← 0;
For j∈[1,m]

Aux [k] ← Aux[last]
if (xi=yj) then Aux[j] ←Aux[last]+K[i-1][j-1]
last ← k;

For j ∈[1,m]
K[i][j] ← K[i-1][j]+Aux[j]

All matchings of xi
with earlier y

Match xi with yj

λ always matches

cdlh, Barcelona, July 200766

cdlh 2007

The arrays K and Aux for cata and gatta
λ g a t t a

λ 1 1 1 1 1 1
Aux 0 0 0 0 0 0

c 1 1 1 1 1 1
Aux 0 0 1 1 1 2

a 1 1 2 2 2 3
Aux 0 0 0 2 4 4

t 1 1 2 4 6 7
Aux 0 0 1 1 1 7

a 1 1 3 5 7 14

Ref: Shawe Taylor and Christianini

κ

cdlh, Barcelona, July 200767

cdlh 2007

The all-substrings kernel:
Let s1, s2, …, sn,… be an enumeration of
all strings in Σ+

φ(u)=(|u|s1, |u|s2, |u|s3,…, |u|sn ,…)
κ(aaba, bbac)=7 (1+3+2+0+0..+1+0…)

No formula ?

Why not try something else ?

cdlh, Barcelona, July 200768

cdlh 2007

Or an alternative edit kernel

κ(x,y) is the number of possible matchings
in a best alignment between x and y.
Is this positive definite (Mercer’s
conditions)?

cdlh, Barcelona, July 200769

cdlh 2007

Or counting substrings only
once?

φu(x) is the maximum n such that un is a
subsequence of x.
No nice way of computing things…

cdlh, Barcelona, July 200770

cdlh 2007

Bibliography

Kernel Methods for Pattern Analysis.
J. Shawe Taylor and N. Christianini. CUP
Articles by A. Clark and C. Watkins (et al.)
(2006-2007)

cdlh, Barcelona, July 200771

cdlh 2007

5 Trees

A tree domain (or Dewey tree) is a set of
strings over alphabet {1,2,…,n} which is
prefix closed:
uv ∈ Dom(t) ⇒ u ∈ Dom(t).
Example: {λ, 1, 2, 3, 21, 22, 31, 311}

Note: often start counting from 0 (sic)

cdlh, Barcelona, July 200772

cdlh 2007

A ranked alphabet is an alphabet Σ, with a
rank (arity) function ρ: Σ→ {0,..,n}
A tree is a function from a tree domain to
a ranked alphabet, which respects
ρ(u)=k ⇒ uk∈Dom(t) and u(k+1) ∉ Dom(t)

cdlh, Barcelona, July 200773

cdlh 2007

An example

a

a b

g h

f

h

b

1

21 22

2 3

λ

31

311

cdlh, Barcelona, July 200774

cdlh 2007

Variants (1)

Rooted trees (as graphs)

a

a b

g

h

f

h

b
But also unrooted…

cdlh, Barcelona, July 200775

cdlh 2007

Binary trees

a

g h

f

h

b

a

g h

f

h

b

≠

cdlh, Barcelona, July 200776

cdlh 2007

Exercises

Some combinatorics on trees…
How many

Dewey trees are there with 2, 3, n nodes?
binary trees are there with 2, 3, n nodes?

cdlh, Barcelona, July 200777

cdlh 2007

Some vocabulary

The root of a tree
Internal node
Leaf in a tree
The frontier of a tree
The siblings
The ancestor (of)
The descendant (of)
Father-son…Mother daughter !

a

a b

g h

f

h

b

cdlh, Barcelona, July 200778

cdlh 2007

About binary trees

full binary tree every node has zero or
two children.

perfect (complete) binary tree full
binary tree + leaves are at the same
depth.

cdlh, Barcelona, July 200779

cdlh 2007

About algorithms

An edit distance can be computed
Tree kernels exist
Finding patterns is possible
General rule: we can do on trees what we
can do on strings, at least in the ordered
case!
But it is usually more difficult to describe.

cdlh, Barcelona, July 200780

cdlh 2007

Set of trees…

is a forest
Sequence of trees…
is a hedge!

cdlh, Barcelona, July 200781

cdlh 2007

6 Graphs

gc d

a b
e

h

f

cdlh, Barcelona, July 200782

cdlh 2007

A graph

is undirected, (V,E), where V is the set of
vertices (a vertex), and E the set of edges.
You may have loops.
An edge is undirected, so a set of 2 vertices
{a,b} or of 1 vertex {a} (for a loop). An edge
is incident to 2 vertices. It has 2 extremities.

cdlh, Barcelona, July 200783

cdlh 2007

A digraph

is a G=(V,A) where V is a set of vertices
and A is a set of arcs. An arc is directed
and has a start and an end.

cdlh, Barcelona, July 200784

cdlh 2007

Some vocabulary

Undirected graphs
an edge
a chain
a cycle
connected

Di-graphs
an arc
a path
a circuit
strongly connected

cdlh, Barcelona, July 200785

cdlh 2007

What makes graphs so
attractive?

We can represent many situations with
graphs.
From the modelling point of view, graphs
are great.

cdlh, Barcelona, July 200786

cdlh 2007

Why not use them more?

Because the combinatorics are really
hard.
Key problem: graph isomorphism.
Are graphs G1 and G2 isomorphic?
Why is it a key problem?

For matching
For a good distance (metric)
For a good kernel

cdlh, Barcelona, July 200787

cdlh 2007

Isomorphic?

?
?

?

b

ed

f
c

a

G1 G2

?

?

?

cdlh, Barcelona, July 200788

cdlh 2007

Isomorphic?

?

?

h

g

b

e

d

f

c
a

G1

G2

?

?

?

?

?

?

cdlh, Barcelona, July 200789

cdlh 2007

Conclusion

Algorithms matter.
In machine learning, some basic
operations are performed an enormous
number of times. One should look out for
the definitions algorithmically reasonable.

cdlh, Barcelona, July 200790

cdlh 2007

7 Some algorithmic notions
and complexity theory for
machine learning

Concrete complexity (or complexity of the
algorithms
Complexity of the problems

cdlh, Barcelona, July 200791

cdlh 2007

Why are complexity issues
going to be important?

Because the volumes of data for ML are
very large
Because since we can learn with
randomized algorithms we might be able
to solve combinatorially hard problems
thanks to a learning problem
Because mastering complexity theory is
one key to successful ML applications.

cdlh, Barcelona, July 200792

cdlh 2007

8 Complexity of algorithms

Goal is to say some thing about how fast
an algorithm is.
Alternatives are:

Testing (stopwatch)
Maths

cdlh, Barcelona, July 200793

cdlh 2007

Maths

We could test on
A best case
An average case
A worse case

cdlh, Barcelona, July 200794

cdlh 2007

Best case

We can encode detection of the best case
in the algorithm, so this is meaningless

cdlh, Barcelona, July 200795

cdlh 2007

Average case

Appealing
Where is the distribution over which we
average?
But sometimes we can use Monte-Carlo
algorithms to have average complexity

cdlh, Barcelona, July 200796

cdlh 2007

Worse case

Gives us an upper bound
Can sometimes transform the worse case
to average case through randomisation

cdlh, Barcelona, July 200797

cdlh 2007

Notation O(f(n))

This is the set of all functions
asymptotically bounded (by above) by f(n)
So for example in O(n2) we find
n → n2, n → n log n, n → n, n → 1,
n →7, n → 5n2+317n+423017

Exists ∃n0, ∃ k >0, ∀n≥n0, g(n) ≤k · f(n)

cdlh, Barcelona, July 200798

cdlh 2007

Alternative notations

Ω(f(n))
This is the set of all functions asymptotically
bounded (by underneath) by f(n)

Θ(f(n))
This is the set of all functions· asymptotically
bounded (by both sides) by f(n)

∃n0, ∃ k1,k2 >0, ∀n≥n0, k1 · f(n) ≤g(n) ≤k2 · f(n)

cdlh, Barcelona, July 200799

cdlh 2007
n

f(n)
g(n)

cdlh, Barcelona, July 2007100

cdlh 2007

Some remarks

This model is known as the RAM model. It
is nowadays attacked, specifically for
large masses of data.
It is usually accepted that an algorithm
whose complexity is polynomial is OK. If
we are in Ω(2n), no.

cdlh, Barcelona, July 2007101

cdlh 2007

9 Complexity of problems

A problem has to be well defined, ie
different experts will agree about what a
correct solution is.
For example ‘learn a formula from this
data’ is ill defined, as is ‘where are the
interest points in this image?’.
For a problem to be well defined we need
a description of the instances of the
problem and of the solution.

cdlh, Barcelona, July 2007102

cdlh 2007

Typology of problems (1)

Counting problems
How many x in I such that f(x)

cdlh, Barcelona, July 2007103

cdlh 2007

Typology of problems (2)

Search/optimisation problems
Find x minimising f

cdlh, Barcelona, July 2007104

cdlh 2007

Typology of problems (3)

Decision problems
Is x (in I) such that f(x)?

cdlh, Barcelona, July 2007105

cdlh 2007

About the parameters

We need to encode the instances in a fair
and reasonable way.
Then we consider the parameters that
define the size of the encoding
Typically

Size(n)=log n
Size(w)=|w| (when |Σ|≥2)
Size(G=(V,E))=|V|2 or |V| · |E|

cdlh, Barcelona, July 2007106

cdlh 2007

What is a good encoding?

An encoding is reasonable if it encodes
sufficient different objects.
Ie with n bits you have 2n+1 encodings so
optimally you should have 2n+1 different
objects.
Allow for redundancy and syntactic sugar,
so Ω(p(2n+1)) different languages.

cdlh, Barcelona, July 2007107

cdlh 2007

Simplifying

Only decision problems !
Answer is YES or NO

A problem is a Π, and the size of an
instance is n.
With a problem Π, we associate the co-
problem co-Π
The set of positive instances for Π is
denoted I+(Π,)

cdlh, Barcelona, July 2007108

cdlh 2007

10 Complexity Classes

P : deterministic polynomial time
NP: non deterministic polynomial
time

cdlh, Barcelona, July 2007109

cdlh 2007

Turing machines

Only one tape
Alphabet of 2 symbols
An input of length n
We can count:

number of steps till halting
size of tape used for computation

cdlh, Barcelona, July 2007110

cdlh 2007

Determinism and non determinism

Determinism: at each moment, only one
rule can be applied.
Non determinism: various rules can be
applied “in parallel”. The language
recognised is that of the (positive)
instances where there is at least one
accepting computation.

cdlh, Barcelona, July 2007111

cdlh 2007

Computation tree for non determinism

p(n)

cdlh, Barcelona, July 2007112

cdlh 2007

P and NP

Π ∈P ⇔ ∃ MD ∃ p() ∀i∈I(Π):
#steps (MD(i)) ≤ p(size(i))

Π ∈ NP ⇔ ∃ MN ∃ p() ∀i∈I+(Π):
#steps (MN(i)) ≤ p(size(i))

cdlh, Barcelona, July 2007113

cdlh 2007

Programming point of view

P : the program works in polynomial
time
NP : the program takes wild guesses,
and if guesses were correct will find the
solution in polynomial time.

cdlh, Barcelona, July 2007114

cdlh 2007

Turing Reduction

Π1 ≤P
T Π2 (Π1 reduces to Π2) if there

exists a polynomial algorithm solving
Π1 using an oracle that consults Π2 .

There is another type of reduction,
usually called ‘polynomial’

cdlh, Barcelona, July 2007115

cdlh 2007

Reduction

Π1 ≤PΠ2 (Π1 reduces to Π2) if there
exists a polynomial transformation ψ
of the instances of Π1 into those of
Π2 such that

i∈ Π1 ⇔ ψ(i)∈ Π2 .
Then Π2 is at least as hard as Π1

(polynomially speaking)

cdlh, Barcelona, July 2007116

cdlh 2007

Complete problems

A problem Π is C-complete if any
other problem from C reduces to Π
A complete problem is ‘the hardest’
of its class.
Nearly all classes have complete
problems.

cdlh, Barcelona, July 2007117

cdlh 2007

Example of complete
problems

SAT is NP-complete
‘Is there a path from x to y in graph G?’
is P-complete
SAT of a Boolean quantified closed
formula is P-SPACE complete
Equivalence between two NFA is
P-SPACE complete

cdlh, Barcelona, July 2007118

cdlh 2007

P

co-NP

NP

NPC

NP∩co-NP

cdlh, Barcelona, July 2007119

cdlh 2007

SPACE Classes

We want to measure how much tape
is needed, without taking into
account the computation time.

cdlh, Barcelona, July 2007120

cdlh 2007

P-SPACE

is the class of problems solvable by a
deterministic Turing machine that
uses only polynomial space.
NP⊆ P-SPACE

General opinion is that the inclusion is
strict.

cdlh, Barcelona, July 2007121

cdlh 2007

NP-SPACE

is the class of problems solvable by a
nondeterministic Turing machine that
uses only polynomial space.
Savitch theorem
P-SPACE=NP-SPACE

cdlh, Barcelona, July 2007122

cdlh 2007

log-SPACE
L=log-SPACE

L is the class of problems that use only
poly-logarithmic space.
Obviously reading the input does not
get counted.

L⊆ P
General opinion is that the inclusion is
strict.

cdlh, Barcelona, July 2007123

cdlh 2007

L

P

co-NP
NP

P-SPACE= NP-SPACE

NPC

L≠ P-SPACE

cdlh, Barcelona, July 2007124

cdlh 2007

L

RP
co
-
RP

P

co-NP
NP

BPP

ZPP

P-SPACE= NP-SPACE

NPC

cdlh, Barcelona, July 2007125

cdlh 2007

11 Stochastic classes
Algorithms that use function random()

Are there problems that deterministic
machines cannot solve but that
probabilistic ones can?

cdlh, Barcelona, July 2007126

cdlh 2007

11.1 Probabilistic Turing
machines (PTM)

These are non deterministic machines
that answer YES when the majority of
computations answer YES;
The accepted set is that of those
instances for which the majority of
computations give YES.
PP is the class of those decision
problems solvable by polynomial PTMs

cdlh, Barcelona, July 2007127

cdlh 2007

PP is a useless class…

If probability of correctness is only

an exponential (in n) number of iterations
is needed to do better than random choice.

⎟
⎠
⎞

⎜
⎝
⎛ + n2

1
2
1

cdlh, Barcelona, July 2007128

cdlh 2007

BPP: Bounded away from P

BPP is the class of decision problems
solvable by a PTM for which the probability of
being correct is at least 1/2+δ, with δ a
constant>0.
It is believed that NP and BPP are
incomparable, with the NP-complete in
NP\BPP, and some symmetrical problems in
BPP\NP.

cdlh, Barcelona, July 2007129

cdlh 2007

Hierarchy

P ⊆ BPP ⊆ BQP

NP-complete ∩ BQP = ∅

Quantic machines should not be able
to solve NP-hard problems

cdlh, Barcelona, July 2007130

cdlh 2007

11.2 Randomized Turing
Machines (RTM)

These are non deterministic machines
such that

either no computation accepts
either half of them do

(instead of half, any fraction >0 is OK)

cdlh, Barcelona, July 2007131

cdlh 2007

RP

RP is the class of decision problems
solvable by a RTM
P ⊆ RP ⊆ NP
Inclusions are believed to be strict
Example: Composite ∈RP

cdlh, Barcelona, July 2007132

cdlh 2007

An example of a problem in RP
Product Polynomial Inequivalence

2 sets of rational polynomials
P1…Pm

Q1…Qn

Answer : YES when ∏i≤ m Pi ≠ ∏ i≤ n Qi

This problem seems neither to be in P nor in
co-NP.

cdlh, Barcelona, July 2007133

cdlh 2007

Example

(x-2)(x2+x-21)(x3-4)
(x2-x+6)(x+14)(x+1)(x-2)(x+1)
Notice that developing both polynomials is
too expensive.

cdlh, Barcelona, July 2007134

cdlh 2007

ZPP=RP∩ co-RP

ZPP : Zero error probabilistic polynomial
time
Use in parallel the algorithm for RP and
the one for co-RP
These algorithms are called ‘Las Vegas’
They are always right but the complexity is
in average polynomial.

cdlh, Barcelona, July 2007135

cdlh 2007

12 Stochastic Algorithms

cdlh, Barcelona, July 2007136

cdlh 2007

‘Monte-Carlo’ Algorithms
Negative instance ⇒ answer is NO
Positive instance ⇒ Pr(answer is YES) > 0.5
They can be wrong, but by iterating we can
get the error arbitrarily small.
Solve problems from RP

cdlh, Barcelona, July 2007137

cdlh 2007

‘Las Vegas’ algorithms

Always correct
In the worse case too slow
In average case, polynomial time.

cdlh, Barcelona, July 2007138

cdlh 2007

Another example of ‘Monte-
Carlo’ algorithm

Checking the product of matrices.
Consider 3 matrices A, B and C
Question AB≠C ?

cdlh, Barcelona, July 2007139

cdlh 2007

Natural idea

Multiply A by B and compare with C
Complexity

O(n3) brute force algorithm
O(n2.37) Strassen algorithm

But we can do better!

cdlh, Barcelona, July 2007140

cdlh 2007

Algorithm

generate S, bit vector
compute X=(SA)B
compute Y=SC
If X ≠ Y return TRUE

else return FALSE

O(n)
O(n2)
O(n2)
O(n)

cdlh, Barcelona, July 2007141

cdlh 2007

Example

1 2 3
4 5 6
7 8 9

3 1 4
1 5 9
2 6 5

1 1 2 9 3 7
2 9 6 5 9 1
4 7 9 9 4 5

B=A=

C=

cdlh, Barcelona, July 2007142

cdlh 2007

1 2 3
4 5 6
7 8 9

(1,1,0)

1 1 2 9 3 7
2 9 6 5 9 1
4 7 9 9 4 5

(1,1,0)

=(5,7,9)

3 1 4
1 5 9
2 6 5

(5,7,9) = (40,94,128)

=(40,94,128)

cdlh, Barcelona, July 2007143

cdlh 2007

1 2 3
4 5 6
7 8 9

(0,1,1)

1 1 2 9 3 7
2 9 6 5 9 1
4 7 9 9 4 5

(0,1,1)

= (11, 13, 15)

3 1 4
1 5 9
2 6 5

= (76,166,236)

=(76,164,136)

cdlh, Barcelona, July 2007144

cdlh 2007

Proof

Let D=C-AB ≠ 0
Let V be a wrong column of D
Consider a bit vector S,

if SV=0, then S’V ≠ 0 with
S’=S xor (0…0, 1, 0…0)

i-1

cdlh, Barcelona, July 2007145

cdlh 2007

Pr(S)=Pr(S’)

Choosing a random S, we have SD ≠ 0
with probability at least 1/2

Repeating the experiment...

cdlh, Barcelona, July 2007146

cdlh 2007

Error

If C=AB the answer is always NO

if C≠AB the error made (when
answering NO instead of YES) is
(1/2)k (if k experiments)

cdlh, Barcelona, July 2007147

cdlh 2007

Quicksort: an example of
‘Las Vegas’ algorithm

Complexity of Quicksort=O(n2)
This is the worse case, being unlucky with

the pivot choice.
If we choose it randomly we have an
average complexity O(n log n)

cdlh, Barcelona, July 2007148

cdlh 2007

13 The hardness of learning
3-term-DNF by 3-term-DNF

references:
Pitt & Valiant 1988, Computational
Limitations on learning from examples 1,
JACM 35 965-984.
Examples and Proofs: Kearns & Vazirani,
An Introduction to Computational Learning
Theory, MIT press, 1994

cdlh, Barcelona, July 2007149

cdlh 2007

A formula in disjunctive normal form:
X={u1,..,un}
F=T1 ∨ T2∨ T3

each Ti is a conjunction of literals

cdlh, Barcelona, July 2007150

cdlh 2007

sizes

An example: <0,1,….0,1>

a formula: max 9n
To efficiently learn a 3-term-DNF, you
have to be polynomial in: 1/ε, 1/δ, and n.

n

cdlh, Barcelona, July 2007151

cdlh 2007

Theorem:

If RP≠NP the class of 3-term-DNF is not
polynomially learnable by 3-term-DNF.

cdlh, Barcelona, July 2007152

cdlh 2007

Definition:

A hypothesis h is consistent with a
set of labelled examples
S={<x1,b1>,…<xp,bp>}, if

∀xi∈S h(xi)=bi

cdlh, Barcelona, July 2007153

cdlh 2007

3-colouring

Instances: a graph G=(V, A)
Question: does there exist a way to
colour V in 3 colours such that 2 adjacent
nodes have different colours?

Remember: 3-colouring is NP-complete

cdlh, Barcelona, July 2007154

cdlh 2007

Our problem

Name: 3-term-DNF consistent
Instances: a set of positive examples S+
and a set of negative examples S-
Question: does there exist a 3-term-DNF
consistent with S+ and S-?

cdlh, Barcelona, July 2007155

cdlh 2007

Reduce 3-colouring to
« consistent hypothesis »

Remember:
Have to transform an instance of 3-
colouring to an instance of « consistent
hypothesis »
And that the graph is 3 colourable iff the
set of examples admits a consistent 3-
term-DNF

cdlh, Barcelona, July 2007156

cdlh 2007

Reduction

build from G=(V, A): SG+∪ SG-
∀i∈[n] <v(i),1>∈SG+ where v(i)=(1,1,..,1,0,1,..1)

i
∀(i, j) ∈A <a(i, j),0>∈SG-

where a(i, j)=(1,..,1,0,...,0,1,..,1)

i j

cdlh, Barcelona, July 2007157

cdlh 2007

4

1

3
6

5

SG+ SG-
(011111, 1) (001111, 0)
(101111, 1) (011011, 0)
(110111, 1) (011101, 0)
(111011, 1) (100111, 0)
(111101, 1) (101110, 0)
(111110, 1) (110110, 0)

(111100, 0)

2

cdlh, Barcelona, July 2007158

cdlh 2007

4

1

3
6

5

SG+ SG-
(011111, 1) (001111, 0)
(101111, 1) (011011, 0)
(110111, 1) (011101, 0)
(111011, 1) (100111, 0)
(111101, 1) (101110, 0)
(111110, 1) (110110, 0)

(111100, 0)

Tyellow=x1∧x2∧x4 ∧x5∧x6
Tblue=x1∧x3∧x6
Tred=x2∧x3∧x4∧x5

2

cdlh, Barcelona, July 2007159

cdlh 2007

4

1

3
6

5

SG+ SG-
(011111, 1) (001111, 0)
(101111, 1) (011011, 0)
(110111, 1) (011101, 0)
(111011, 1) (100111, 0)
(111101, 1) (101110, 0)
(111110, 1) (110110, 0)

(111100, 0)

Tyellow=x1∧x2∧x4 ∧x5∧x6
Tblue=x1∧x3∧x6
Tred=x2∧x3∧x4∧x5

2

cdlh, Barcelona, July 2007160

cdlh 2007

Where did we win?

Finding a 3-term-DNF consistent is
exactly PAC-learning 3-term DNF
Suppose we have a polynomial
learning algorithm L that learns 3-term-
DNF PAC.
Let S be a set of examples
Take ε =1/(2⎪S⎪)

cdlh, Barcelona, July 2007161

cdlh 2007

We learn with the uniform distribution over S
with an algorithm L.
If there exists a consistent 3-term-DNF, then
with probability at least 1-δ the error is less
than ε: so there is in fact no error !
If there exists no consistent 3-term-DNF, L
will not find anything.
So just by looking at the results we know in
which case we are.

cdlh, Barcelona, July 2007162

cdlh 2007

Therefore:
L is a randomized learner that checks in
polynomial time if a sample S admits a
consistent 3-term-DNF.
If S does not admit a consistent 3-term-DNF L
answers « no » with probability 1.
If S admit a consistent 3-term-DNF L
answers« yes », with probability 1-δ.
In this case we have 3-colouring ∈RP.

cdlh, Barcelona, July 2007163

cdlh 2007

Careful

The class 3-term-DNF is polynomially
PAC learnable by 3-CNF !

cdlh, Barcelona, July 2007164

cdlh 2007

General conclusion

Lots of other TCS topics in ML.
Logics (decision trees, ILP)
Higher graph theory (graphical models,

clustering, HMMs and DFA)
Formal language theory
… and there never is enough algorithmics !

	TCS for Machine Learning Scientists
	Outline
	Disclaimer
	1 Alphabet and strings
	Basic combinatorics on strings
	Algorithmics
	Knuth-Morris-Pratt algorithm
	KMP (Step 2)
	A run with abac in aaabcacabacac
	Conclusion
	2 Order! Order!
	Different orders can be defined over :
	Example
	3 Distances
	The problem
	The problem
	Summarizing
	Pros and cons
	Four types of distances (1)
	Four types of distances (2)
	Method 1
	Method 2
	Four types of distances (3)
	Four types of distances (4)
	The edit distance
	Basic operations
	Examples
	A confusion matrix
	Another confusion matrix
	A similarity matrix using an evolution model
	Conditions
	Aligning
	Aligning
	General algorithm
	The formula for dynamic programming
	Complexity
	Extensions
	Note (recent (?) idea, re Bunke et al.)
	4 Kernels
	Some important points
	Crucial points
	Some string kernels (1)
	Some string kernels (2)
	Some string kernels (3)
	Some string kernels (4)
	How is a kernel computed?
	General idea (1) Suppose we know (at step i)
	General idea (2)
	General idea (3)
	(x1,…xn, y1…ym)
	The arrays K and Aux for cata and gatta
	Or an alternative edit kernel
	Or counting substrings only once?
	Bibliography
	5 Trees
	An example
	Variants (1)
	Binary trees
	Exercises
	Some vocabulary
	About binary trees
	About algorithms
	Set of trees…
	6 Graphs
	A graph
	A digraph
	Some vocabulary
	What makes graphs so attractive?
	Why not use them more?
	Isomorphic?
	Isomorphic?
	Conclusion
	7 Some algorithmic notions and complexity theory for machine learning
	Why are complexity issues going to be important?
	8 Complexity of algorithms
	Maths
	Best case
	Average case
	Worse case
	Notation O(f(n))
	Alternative notations
	Some remarks
	9 Complexity of problems
	Typology of problems (1)
	Typology of problems (2)
	Typology of problems (3)
	About the parameters
	What is a good encoding?
	Simplifying
	10 Complexity Classes
	Turing machines
	Determinism and non determinism
	Computation tree for non determinism
	P and NP
	Programming point of view
	Turing Reduction
	Reduction
	Complete problems
	Example of complete problems
	SPACE Classes
	P-SPACE
	NP-SPACE
	log-SPACE
	11 Stochastic classes
	11.1 Probabilistic Turing machines (PTM)
	PP is a useless class…
	BPP: Bounded away from P
	Hierarchy
	11.2 Randomized Turing Machines (RTM)
	RP
	An example of a problem in RP
	Example
	ZPP=RP co-RP
	12 Stochastic Algorithms
	‘Monte-Carlo’ Algorithms
	‘Las Vegas’ algorithms
	Another example of ‘Monte-Carlo’ algorithm
	Natural idea
	Algorithm
	Example
	Proof
	Error
	Quicksort: an example of ‘Las Vegas’ algorithm
	13 The hardness of learning 3-term-DNF by 3-term-DNF
	sizes
	Theorem:
	Definition:
	3-colouring
	Our problem
	Reduce 3-colouring to « consistent hypothesis »
	Reduction
	Where did we win?
	Therefore:
	Careful
	General conclusion

