Lecture 1: Learning without Over-learning

Isabelle Guyon

isabelle@clopinet.com

Machine Learning

• Learning machines include:

- Linear discriminant (including Naïve Bayes)
- Kernel methods
- Neural networks
- Decision trees

• Learning is tuning:

- Parameters (weights **w** or α , threshold b)
- Hyperparameters (basis functions, kernels, number of units)

How to Train?

- Define a risk functional R[f(**x**,**w**)]
- Find a method to optimize it, typically "gradient descent"

$$w_j \leftarrow w_j - \eta \partial R / \partial w_j$$

or any optimization method (mathematical programming, simulated annealing, genetic algorithms, etc.)

What is a Risk Functional?

• A function of the parameters of the learning machine, assessing how much it is expected to fail on a given task.

Example Risk Functionals

Classification:
 –the error rate

- Regression:
 - -the mean square error

Fit / Robustness Tradeoff

Overfitting

Ockham's Razor

- Principle proposed by William of Ockham in the fourteenth century: "Pluralitas non est ponenda sine neccesitate".
- Of two theories providing similarly good predictions, prefer the simplest one.
- Shave off unnecessary parameters of your models.

The Power of Amnesia

- The human brain is made out of billions of cells or Neurons, which are highly interconnected by synapses.
- Exposure to enriched environments with extra sensory and social stimulation enhances the connectivity of the synapses, but children and adolescents can lose them up to 20 million per day.

Artificial Neurons

McCulloch and Pitts, 1943

$$f(\mathbf{x}) = \mathbf{w} \bullet \mathbf{x} + \mathbf{b}$$

Hebb's Rule

Link to "Naïve Bayes"

$$\gamma \in [0, 1]$$
, decay parameter

$$w_j \leftarrow (1-\gamma) w_j + y_i x_{ij}$$

Weigh decay

$$w_j \leftarrow w_j + y_i x_{ij}$$

Hebb's rule

Weight Decay

Overfitting Avoidance

Weight Decay for MLP

Theoretical Foundations

- Structural Risk Minimization
- Bayesian priors
- Minimum Description Length
- Bayes/variance tradeoff

Risk Minimization

 Learning problem: find the best function f(x; w) minimizing a risk functional

$$R[f] = \int L(f(\mathbf{x}; \mathbf{w}), \mathbf{y}) dP(\mathbf{x}, \mathbf{y})$$
Ioss function
Unknown distribution

Examples are given:

 $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots (\mathbf{x}_m, \mathbf{y}_m)$

Loss Functions

Approximations of R[f]

- Empirical risk: $R_{train}[f] = (1/n) \Sigma_{i=1:m} L(f(\mathbf{x}_i; \mathbf{w}), y_i)$
 - 0/1 loss $\mathbf{1}(F(\mathbf{x}_i) \neq y_i)$: $R_{train}[\mathbf{f}] = error rate$
 - square loss $(f(\mathbf{x}_i)-y_i)^2$:

R_{train}[f] = mean square error

• Guaranteed risk:

With *high* probability (1- δ), $R[f] \leq R_{qua}[f]$

$$\mathsf{R}_{\mathsf{gua}}[\mathsf{f}] = \mathsf{R}_{\mathsf{train}}[\mathsf{f}] + \varepsilon(\delta, \mathsf{C})$$

Structural Risk Minimization

SRM Example

$$S_1\!\!\subset S_2\!\subset \ldots \,S_N$$

- Rank with $||\mathbf{w}||^2 = \sum_i w_i^2$ $S_k = \{ \mathbf{w} \mid ||\mathbf{w}||^2 < \omega_k^2 \}, \ \omega_1 < \omega_2 < \ldots < \omega_k$
- Minimization under constraint: min $R_{train}[f]$ s.t. $||w||^2 < \omega_k^2$

capacity

R

• Lagrangian: $R_{reg}[f,\gamma] = R_{train}[f] + \gamma ||\mathbf{w}||^{2}$

Gradient Descent

$$\mathsf{R}_{\mathsf{reg}}[\mathsf{f}] = \mathsf{R}_{\mathsf{emp}}[\mathsf{f}] + \lambda ||\mathbf{w}||^2$$

SRM/regularization

 $w_j \leftarrow w_j - \eta \; \partial R_{reg} / \partial w_j$

$$w_j \leftarrow w_j - \eta R_{emp} / \partial w_j - 2 \eta \lambda w_j$$

 $W_j \leftarrow (1 - \gamma) W_j - \eta R_{emp} / \partial W_j$ Weight decay

Multiple Structures

- Shrinkage (weight decay, ridge regression, SVM): $S_{k} = \{ \mathbf{w} \mid ||\mathbf{w}||_{2} < \omega_{k} \}, \ \omega_{1} < \omega_{2} < \ldots < \omega_{k}$ $\gamma_{1} > \gamma_{2} > \gamma_{3} > \ldots > \gamma_{k} \qquad (\gamma \text{ is the ridge})$
- Feature selection:

$$S_{k} = \{ \mathbf{w} \mid ||\mathbf{w}||_{\mathbf{0}} < \sigma_{k} \},\$$

$$\sigma_{1} < \sigma_{2} < \dots < \sigma_{k} \qquad (\sigma \text{ is the number of features})$$

• Data compression:

 $\kappa_1 < \kappa_2 < \ldots < \kappa_k$ (κ may be the number of clusters)

Hyper-parameter Selection

Learning = adjusting: parameters (w vector). hyper-parameters (γ, σ, κ).

• Cross-validation with K-folds:

For various values of γ , σ , κ :

- Adjust w on a fraction (K-1)/K of training examples *e.g.* 9/10th.
- Test on 1/K remaining examples *e.g.* 1/10th.
- Rotate examples and average test results (CV error).
- Select γ, σ, κ to minimize CV error.
- Re-compute w on all training examples using optimal γ , σ , κ .

Bayesian MAP \cong SRM

- Maximum A Posteriori (MAP):
 - $f = \operatorname{argmax} P(f|D)$ = argmax P(D|f) P(f) = argmin -log P(D|f) -log P(f)

Negative log likelihood Negative log prior = Empirical risk $R_{emp}[f]$ = Regularizer $\Omega[f]$

Structural Risk Minimization (SRM):

 $f = \operatorname{argmin} R_{emp}[f] + \Omega[f]$

Example: Gaussian Prior

- Linear model:
 f(x) = w.x
- Gaussian prior:

 W_1

 $\mathsf{P}(\mathsf{f}) = \exp - ||\mathbf{w}||^2 / \sigma^2$

• Regularizer:

 $\Omega[f] = -\log P(f) = \lambda ||\mathbf{w}||^2$

Minimum Description Length

- MDL: minimize the length of the "message".
- Two part code: transmit the model and the residual.
- $f = \operatorname{argmin} \log_2 P(D|f) \log_2 P(f)$

Residual: length of the shortest code to encode the data given the model

Length of the shortest code to encode the model (model complexity)

Bias-variance tradeoff

- f trained on a training set D of size m (m fixed)
- For the square loss:

The Effect of SRM

Reduces the variance...

...at the expense of introducing some bias.

Ensemble Methods

- Variance can also be reduced with committee machines.
- The committee members "vote" to make the final decision.
- Committee members are built e.g. with data subsamples.
- Each committee member should have a low bias (no use of ridge/weight decay).

Summary

- Weight decay is a powerful means of overfitting avoidance (||w||² regularizer).
- It has several theoretical justifications: SRM, Bayesian prior, MDL.
- It controls variance in the learning machine family, but introduces bias.
- Variance can also be controlled with ensemble methods.

Want to Learn More?

- Statistical Learning Theory, V. Vapnik. Theoretical book. Reference book on generatization, VC dimension, Structural Risk Minimization, SVMs, ISBN : 0471030031.
- Structural risk minimization for character recognition, *I. Guyon, V. Vapnik, B. Boser, L. Bottou, and S.A. Solla.* In J. E. Moody et al., editor, Advances in Neural Information Processing Systems 4 (NIPS 91), pages 471--479, San Mateo CA, Morgan Kaufmann, 1992. <u>http://clopinet.com/isabelle/Papers/srm.ps.Z</u>
- Kernel Ridge Regression Tutorial, *I. Guyon.* <u>http://clopinet.com/isabelle/Projects/ETH/KernelRidge.pdf</u>
- Feature Extraction: Foundations and Applications. *I. Guyon et al, Eds.* Book for practitioners with datasets of NIPS 2003 challenge, tutorials, best performing methods, Matlab code, teaching material. <u>http://clopinet.com/fextract-book</u>