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Bandits
Finite action set A = {1, 2, . . . , k}

For each a ∈ A there is an unknown distribution Pa
Learner chooses At ∈ A and observes reward Rt ∼ PAt

Learner wants to maximise∑n
t=1Rt



The learning objective
Let µa be the mean of Pa and µ∗ = maxa∈A µa

The optimal action is a∗ = argmaxa µa

Our task is to minimise the regret

Rn = nµ∗ − E

[
n∑
t=1

Rt

]

The price paid by the learner for not knowing µ



A little step into statisticsGiven independent and identically distributed
X,X1, X2, . . . , Xn with mean µ and variance σ2

The empirical mean is µ̂ =
1

n

n∑
t=1

Xt

What does the distribution of µ look like?
We know E[µ̂] = µ and Var[µ̂] = σ2/n

Chebyshev’s inequality:

P (|µ̂− µ| ≥ ε) ≤ σ2

nε2
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Subgaussian random variables
The moment generating function of X is

MX(λ) = E[exp(λX)]

A random variable is σ-subgaussian if
MX(λ) ≤ exp(σ2λ2/2) for all λ ∈ R

Gaussian X ∼ N (µ, σ2) X − µ is σ-subgaussian
Bernoulli X ∼ B(µ) X − µ is 1

2 -subgaussian



Tail bound for σ-subgaussian sums:
P (µ̂− µ ≥ ε)

= inf
λ>0

P (exp (λ(µ̂− µ)) ≥ exp(λε))

≤ inf
λ>0

exp(−λε)E [exp (λ(µ̂− µ))]

= inf
λ>0

exp(−λε)
n∏
t=1

E
[
exp

(
λ(Xt − µ)

n

)]
≤ inf

λ>0
exp(−λε)

n∏
t=1

exp

(
σ2λ2

2n2

)
= inf

λ>0
exp

(
σ2λ2

2n
− λε

)
= exp

(
−nε

2

2σ2

)

P (|Z| ≥ c) ≤ E[|Z|]/c0 = d
dλ

(
σ2λ2

2n
− λε

)
= λσ2/n− ελ(µ̂− µ) =

∑n
t=1

λ(Xt−µ)
n

exp(λ(X − µ)) ≤ exp(λ2σ2/2)
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Last slide we proved that
P (µ̂− µ ≥ ε) ≤ exp

(
−nε

2

2σ2

)
Equating the right-hand side with δ and rearrangingthings a little,

P

(
µ̂− µ ≥

√
2σ2 log(1/δ)

n

)
≤ δ

for any δ ∈ (0, 1). Chebyshev’s only gives
P

(
µ̂− µ ≥

√
σ2

nδ

)
≤ δ



Concentration of measure summary
Understanding the distribution of the empirical mean isimportant
Without assumptions Chebyshev’s is about the bestyou can do
Subgaussian assumption leads to much strongerresults
Method is called Chernoff’s method

There are whole books on this topic



Assumptions
We assume X − µa is 1-subgaussian when X ∼ Pa forall actions

Subgaussian bandits



Optimism principle
“You should act as if you are in the nicest plausibleworld possible”

Guarantees either (a) optimality or (b) exploration
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“Nicest” In bandits, we want the mean to be large
“Plausible” The mean cannot be much larger than theempirical mean

Upper Confidence Bound Algorithm
Choose each arm once and then

At = argmaxa µ̂a(t− 1) +

√
2 log(1/δ)

Ta(t− 1)

µ̂a(t) = empirical mean of arm a after round t
Ta(t) = number of plays of arm a after round t
δ = confidence level
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Regret analysis
Step 1 Decompose the regret over the arms
Step 2 On a “good” event prove that suboptimal armsare not played too often
Step 3 Show the “good” event occurs with highprobability



∆a = µ∗ − µa

Ta(t) =
∑t

s=1 1(As = a)

Regret decomposition

Rn = nµ∗ − E

[
n∑
t=1

Rt

]

= E

[
n∑
t=1

(µ∗ −Rt)

]

= E

[
n∑
t=1

∆At

]

= E

[
n∑
t=1

∑
a∈A

1(At = a)∆a

]
=
∑
a∈A

∆aE[Ta(n)]
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Assume for all t that µ̂a∗(t− 1) +

√
2 log(1/δ)

Ta∗(t− 1)
≥ µ∗

µa +

√
2 log(1/δ)

Ta(t− 1)
≥ µ̂a(t− 1)

Now suppose that At = a in round t
µa + 2

√
2 log(1/δ)

Ta(t− 1)
≥ µ̂a(t− 1) +

√
2 log(1/δ)

Ta(t− 1)

≥ µ̂a∗(t− 1) +

√
2 log(1/δ)

Ta∗(t− 1)
≥ µa∗

Hence
Ta(t− 1) ≤ 8 log(1/δ)

∆2
a

=⇒ Ta(n) ≤ 1 +
8 log(1/δ)

∆2
a
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Let µ̂a,s be the empirical mean of arm a after s plays
The concentration theorem shows that

P

(
µ̂a,s ≥ µa +

√
2 log(1/δ)

s

)
≤ δ

Combining with a union bound,
P

(
exists s ≤ n : µ̂a,s ≥ µa +

√
2 log(1/δ)

s

)
≤ nδ

P (∪iBi) ≤
∑

i P (Bi)



Putting it together

Rn =
∑
a∈A

∆aE[Ta(n)]

≤
∑

a∈A:∆a>0

∆a

(
2δn2 + 1 +

8 log(1/δ)

∆2
a

)
≤

∑
a∈A:∆a>0

3∆a +
16 log(n)

∆a



Sanity checking our results
We have proven the regret of UCB is at most

Rn ≤
∑

a∈A:∆a>0

3∆a +
16 log(n)

∆a

Is this good?

1
0

50

100

∆



Problem independent bound
Rn =

∑
a∈A

∆aE[Ta(n)]

=
∑

a∈A:∆a≤∆

∆aE[Ta(n)] +
∑

a∈A∆a>∆

∆aE[Ta(n)]

≤ n∆ +
∑

a∈A:∆a>∆

3∆a +
16 log(n)

∆a

≤ n∆ +
16K log(n)

∆
+ 3

∑
a∈A

∆a

≤ 8
√
nk log(n) + 3

∑
a∈A

∆a ≤ 8
√
nk log(n) + 3k
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There is a lot more..
• Improving constants
• Different noise models
• Linear bandits: A ⊂ Rd and µa = 〈µ, a〉
• Other kinds of structure: A ⊂ Rd and µa = f(a)with f ‘smooth’
• Changing action sets
• Delayed rewards
• Non-stationary bandits
• Best arm identification
• Adversarial model
Lots of fun still to be had, but this is an RLworkshop



Exploration in reinforcement learning(“We want states”)

Exploration in reinforcement
learning (“We want states”)



Episodic MDPs
An episodic MDP is a tuple (S,A, P,H, r, µ)

• S is a finite set of states
• A is a finite set of actions
• P is the transition kernel
• H is the episode length
• r : S ×A → [0, 1] is the reward function
• µ is the distribution of the initial state

Assumption Only P is unknown
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S = {1, 2, 3} and H = 4



Policies and values
A policy π is a function from histories to actions
The value of a policy π is

vπ = E

[
H∑
h=1

r(Sh, Ah)

]



Dynamic programming
Think of P (s, a) = (P (s, a, 1), . . . , P (s, a, |S|))

The optimal value function is defined inductively
v0(s) = 0

qh(s, a) = r(s, a) + 〈P (s, a), vh−1〉

vh(s) = max
a∈A

qh(s, a)

πh(s) = argmaxa∈A qh(s, a)

P = {x ∈ [0, 1]|S| : ‖x‖1 = 1}



Learning and regret
In each episode the learner chooses a policy πt
Observes a trajectory St1, At

1, S
t
2, A

t
2, . . . , S

t
H , A

t
H

Regret over n episodes is
Rn =

n∑
t=1

R(t) = E

[
n∑
t=1

〈µ, v∗H − vπ
t

H 〉

]



Optimism for RL
Same idea!
Estimate the things you don’t know (transitions)
Build confidence intervals around the unknowns
Act as if the world is as nice as plausible



Estimation and confidence intervals
The empirical transitions are given by

Ts,a(t) = # plays action a in state s
P̂t(s, a, s

′) = # prop. transitions to s′ from s taking a

The confidence set is `1-ball about vector P̂t(s, a)

Ct(s, a) =

{
p ∈ P :

∥∥∥p− P̂t(s, a)
∥∥∥

1
≤

√
2|S| log(2/δ)

Ts,a(t)

}

P = {x ∈ [0, 1]|S| : ‖x‖1 = 1}
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2|S| log(2/δ)

Ts,a(t)

}

P = {x ∈ [0, 1]|S| : ‖x‖1 = 1}



Optimistic dynamic programming
At the start of phase t,

ṽ0(s) = 0

q̃h(s, a) = r(s, a) + max
p∈Ct−1(s,a)

〈p, ṽh−1〉

ṽh(s) = max
a∈A

q̃h(s, a)

πth(s) = argmaxa∈A q̃h(s, a)

P̃h(s) = argmaxp∈Ct−1(s,πh(s))〈p, ṽh−1〉



UCB for reinforcement learning
Three steps in each episode
Step 1 Compute empirical estimate of transitions andconfidence intervals
Step 2 Use optimistic dynamic programming to find apolicy
Step 3 Implement policy for entire episode
Algorithm is called Upper Confidence Bounds for Reinforcement
Learning (UCRL)



Analysing UCRL
Use optimism
With high probability P (s, a) ∈ Ct(s, a) for all t and s, a

Assuming this holds, then
〈µ, vH − vπ

t

H 〉 = 〈µ, vH〉 − 〈µ, vπ
t

H 〉
≤ 〈µ, ṽπt

H 〉 − 〈µ, vπ
t

H 〉
= 〈µ, ṽπt

H − vπ
t

H 〉

Useful because it’s much easier to compare valuesunder the same policy
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Value differences
Decompose the value difference:
〈µ, ṽπt

H − vπ
t

H 〉=E

[
H∑
h=1

〈P̃ t
H−h+1(S

t
h, A

t
h)− P (Sth, A

t
h), ṽ

πt

H−h〉

]

We might look at the proof later



Applying Hölder’s inequality
R(t) . E

[
H∑
h=1

〈P̃H−h+1(Sh, Ah)− P (Sh, Ah), ṽ
π
H−h〉

]

≤ E

[
H∑
h=1

∥∥∥P̃H−h+1(Sh, Ah)− P (Sh, Ah)
∥∥∥

1
‖ṽπH−h‖∞

]

. HE

[
H∑
h=1

√
|S| log(1/δ)

TSh,Ah
(t− 1)

]

. HE

[∑
s,a

Ts,a(t− 1, t)

√
|S| log(1/δ)

Ts,a(t− 1)

]

Hölder’s inequality: 〈x, y〉 ≤ ‖x‖1 ‖y‖∞
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Hölder’s inequality: 〈x, y〉 ≤ ‖x‖1 ‖y‖∞
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n∑
t=1

R(t) ≤ HE

[∑
s,a

n∑
t=1

Ts,a(t− 1, t)

√
|S| log(1/δ)

Ts,a(t− 1)

]

. HE

[∑
s,a

√
|S|Ts,a(n) log(1/δ)

]

≤ HE

√|S|2|A|∑
s,a

Ts,a(n) log(1/δ)


= H|S|

√
|A|Hn log(1/δ)

∫ f ′(x)√
f(x)

dx = 2
√
f(x)



At last...
With ‘high probability’ the regret of UCRL is

Rn = O
(
|S|H

√
n|A| log(1/δ)

)
Lower bound Any algorithm has regret at least

Rn = Ω
(
H
√
n|A||S| log(1/δ)

)



Takeaways

• A little concentration of measure
• Optimism as a principle for algorithm design
• Optimism for bandits (UCB) and MDPs (UCRL)



Let us reflect for a moment

How big is H√n|A||S| log(1/δ)?

|S| = 220 Oh /
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Big challenges
• Exploring in large unstructured MDPs is hopeless
• Combining exploration with functionapproximation
• Bringing in bias
• Optimism is not universal
• All known exploration principles are either (a)known to be suboptimal or (b) hopelessly
intractible

• Model free exploration
Great time to be in RL (theory and practice!)



“Bandit Algorithms” book
Joint work with Csaba Szepesvári
Free online at http://banditalgs.com

http://banditalgs.com


Reading
• UCB. Tze Leung Lai. Adaptive Treatment Allocationand the Multi-Armed Bandit Problem, 1987
• UCRL. Auer et al. Near-optimal Regret Bounds forReinforcement Learning, 2010

Useful keywords Posterior sampling, informationdirected sampling, Bellman rank, randomized valuefunctions. Preface with ‘deep’ for more buzz



Categorical concentration
Let X,X1, X2, . . . , Xn be independent and identicallydistributed with Xt ∈ [k]

Let pi = P (X = i) and p̂i = 1
n

∑n
t=1 1(Xt = i)

You can have fun proving that
P

(
‖p− p̂‖1 ≥

√
2k log(2/δ)

n

)
≤ δ


