Bandits and Exploration

(and a few MDPs)

Tor Lattimore

Contents

- What and why of bandit problems
- A little statistics
- How to solve bandit problems
- Scaling up to RL

Bandits

- Reinforcement learning $S_{1}, A_{1}, R_{1}, S_{2}, A_{2}, R_{2}, \ldots$
- Bandits $A_{1}, R_{1}, A_{2}, R_{2}, \ldots$

Learning is important

$$
S_{1}
$$

Balancing exploration/exploitation important No planning

Bandits

Finite action set $\mathcal{A}=\{1,2, \ldots, k\}$
For each $a \in \mathcal{A}$ there is an unknown distribution P_{a}
Learner chooses $A_{t} \in \mathcal{A}$ and observes reward $R_{t} \sim P_{A_{t}}$
Learner wants to maximise $\sum_{t=1}^{n} R_{t}$

The learning objective

Let μ_{a} be the mean of P_{a} and $\mu^{*}=\max _{a \in \mathcal{A}} \mu_{a}$
The optimal action is $a^{*}=\operatorname{argmax}_{a} \mu_{a}$
Our task is to minimise the regret

$$
\mathfrak{R}_{n}=n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right]
$$

The price paid by the learner for not knowing μ

A little step into statistics

 Given independent and identically distributed $X, X_{1}, X_{2}, \ldots, X_{n}$ with mean $\boldsymbol{\mu}$ and variance $\boldsymbol{\sigma}^{2}$The empirical mean is $\hat{\mu}=\frac{1}{n} \sum_{t=1}^{n} X_{t}$

A little step into statistics

Given independent and identically distributed $X, X_{1}, X_{2}, \ldots, X_{n}$ with mean $\boldsymbol{\mu}$ and variance $\boldsymbol{\sigma}^{2}$

The empirical mean is $\hat{\mu}=\frac{1}{n} \sum_{t=1}^{n} X_{t}$
What does the distribution of μ look like?
We know $\mathbb{E}[\hat{\mu}]=\mu$ and $\operatorname{Var}[\hat{\mu}]=\sigma^{2} / n$
Chebyshev's inequality:
$\mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon) \leq \frac{\sigma^{2}}{n \varepsilon^{2}}$

Subgaussian random variables

The moment generating function of X is

$$
M_{X}(\lambda)=\mathbb{E}[\exp (\lambda X)]
$$

A random variable is σ-subgaussian if

$$
M_{X}(\lambda) \leq \exp \left(\sigma^{2} \lambda^{2} / 2\right) \quad \text { for all } \lambda \in \mathbb{R}
$$

Gaussian $\quad X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad X-\mu$ is σ-subgaussian Bernoulli $\quad X \sim \mathcal{B}(\mu) \quad X-\mu$ is $\frac{1}{2}$-subgaussian

Tail bound for σ-subgaussian sums:

$\mathbb{P}(\hat{\mu}-\mu \geq \varepsilon)$

$$
\exp (\lambda(X-\mu)) \leq \exp \left(\lambda^{2} \sigma^{2} / 2\right)
$$

Tail bound for σ-subgaussian sums:

$$
\mathbb{P}(\hat{\mu}-\mu \geq \varepsilon)=\inf _{\lambda>0} \mathbb{P}(\exp (\lambda(\hat{\mu}-\mu)) \geq \exp (\lambda \varepsilon))
$$

$\exp (\lambda(X-\mu)) \leq \exp \left(\lambda^{2} \sigma^{2} / 2\right)$

Tail bound for σ-subgaussian sums:

$$
\begin{aligned}
\mathbb{P}(\hat{\mu}-\mu \geq \varepsilon) & =\inf _{\lambda>0} \mathbb{P}(\exp (\lambda(\hat{\mu}-\mu)) \geq \exp (\lambda \varepsilon)) \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \mathbb{E}[\exp (\lambda(\hat{\mu}-\mu))]
\end{aligned}
$$

Tail bound for σ-subgaussian sums:

$$
\begin{aligned}
\mathbb{P}(\hat{\mu}-\mu \geq \varepsilon) & =\inf _{\lambda>0} \mathbb{P}(\exp (\lambda(\hat{\mu}-\mu)) \geq \exp (\lambda \varepsilon)) \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \mathbb{E}[\exp (\lambda(\hat{\mu}-\mu))] \\
& =\inf _{\lambda>0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \mathbb{E}\left[\exp \left(\frac{\lambda\left(X_{t}-\mu\right)}{n}\right)\right]
\end{aligned}
$$

Tail bound for σ-subgaussian sums:

$$
\begin{aligned}
\mathbb{P}(\hat{\mu}-\mu \geq \varepsilon) & =\inf _{\lambda>0} \mathbb{P}(\exp (\lambda(\hat{\mu}-\mu)) \geq \exp (\lambda \varepsilon)) \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \mathbb{E}[\exp (\lambda(\hat{\mu}-\mu))] \\
& =\inf _{\lambda>0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \mathbb{E}\left[\exp \left(\frac{\lambda\left(X_{t}-\mu\right)}{n}\right)\right] \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \exp \left(\frac{\sigma^{2} \lambda^{2}}{2 n^{2}}\right)
\end{aligned}
$$

Tail bound for σ-subgaussian sums:

$$
\begin{aligned}
\mathbb{P}(\hat{\mu}-\mu \geq \varepsilon) & =\inf _{\lambda>0} \mathbb{P}(\exp (\lambda(\hat{\mu}-\mu)) \geq \exp (\lambda \varepsilon)) \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \mathbb{E}[\exp (\lambda(\hat{\mu}-\mu))] \\
& =\inf _{\lambda>0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \mathbb{E}\left[\exp \left(\frac{\lambda\left(X_{t}-\mu\right)}{n}\right)\right] \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \exp \left(\frac{\sigma^{2} \lambda^{2}}{2 n^{2}}\right) \\
& =\inf _{\lambda>0} \exp \left(\frac{\sigma^{2} \lambda^{2}}{2 n}-\lambda \varepsilon\right)
\end{aligned}
$$

$$
\lambda(\hat{\mu}-\mu)=\sum_{t=1}^{n} \frac{\lambda\left(X_{t}-\mu\right)}{n}
$$

Tail bound for σ-subgaussian sums:

$$
\begin{aligned}
\mathbb{P}(\hat{\mu}-\mu \geq \varepsilon) & =\inf _{\lambda>0} \mathbb{P}(\exp (\lambda(\hat{\mu}-\mu)) \geq \exp (\lambda \varepsilon)) \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \mathbb{E}[\exp (\lambda(\hat{\mu}-\mu))] \\
& =\inf _{\lambda>0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \mathbb{E}\left[\exp \left(\frac{\lambda\left(X_{t}-\mu\right)}{n}\right)\right] \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \exp \left(\frac{\sigma^{2} \lambda^{2}}{2 n^{2}}\right) \\
& =\inf _{\lambda>0} \exp \left(\frac{\sigma^{2} \lambda^{2}}{2 n}-\lambda \varepsilon\right)
\end{aligned}
$$

$$
0=\frac{d}{d \lambda}\left(\frac{\sigma^{2} \lambda^{2}}{2 n}-\lambda \varepsilon\right)=\lambda \sigma^{2} / n-\varepsilon
$$

Tail bound for σ-subgaussian sums:

$$
\begin{aligned}
\mathbb{P}(\hat{\mu}-\mu \geq \varepsilon) & =\inf _{\lambda>0} \mathbb{P}(\exp (\lambda(\hat{\mu}-\mu)) \geq \exp (\lambda \varepsilon)) \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \mathbb{E}[\exp (\lambda(\hat{\mu}-\mu))] \\
& =\inf _{\lambda>0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \mathbb{E}\left[\exp \left(\frac{\lambda\left(X_{t}-\mu\right)}{n}\right)\right] \\
& \leq \inf _{\lambda>0} \exp (-\lambda \varepsilon) \prod_{t=1}^{n} \exp \left(\frac{\sigma^{2} \lambda^{2}}{2 n^{2}}\right) \\
& =\inf _{\lambda>0} \exp \left(\frac{\sigma^{2} \lambda^{2}}{2 n}-\lambda \varepsilon\right)=\exp \left(-\frac{n \varepsilon^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

$$
0=\frac{d}{d \lambda}\left(\frac{\sigma^{2} \lambda^{2}}{2 n}-\lambda \varepsilon\right)=\lambda \sigma^{2} / n-\varepsilon
$$

Last slide we proved that

$$
\mathbb{P}(\hat{\mu}-\mu \geq \varepsilon) \leq \exp \left(-\frac{n \varepsilon^{2}}{2 \sigma^{2}}\right)
$$

Equating the right-hand side with δ and rearranging things a little,

$$
\mathbb{P}\left(\hat{\mu}-\mu \geq \sqrt{\frac{2 \sigma^{2} \log (1 / \delta)}{n}}\right) \leq \delta
$$

for any $\delta \in(0,1)$. Chebyshev's only gives

$$
\mathbb{P}\left(\hat{\mu}-\mu \geq \sqrt{\frac{\sigma^{2}}{n \delta}}\right) \leq \delta
$$

Concentration of measure summary

Understanding the distribution of the empirical mean is important

Without assumptions Chebyshev's is about the best you can do

Subgaussian assumption leads to much stronger results

Method is called Chernoff's method
There are whole books on this topic

Assumptions

We assume $X-\mu_{a}$ is 1-subgaussian when $X \sim P_{a}$ for all actions

Subgaussian bandits

Optimism principle

"You should act as if you are in the nicest plausible world possible"

Optimism principle

"You should act as if you are in the nicest plausible world possible"

Guarantees either (a) optimality or (b) exploration

"Nicest" In bandits, we want the mean to be large

"Plausible" The mean cannot be much larger than the empirical mean

"Nicest" In bandits, we want the mean to be large
"Plausible" The mean cannot be much larger than the empirical mean

Upper Confidence Bound Algorithm

Choose each arm once and then

$$
A_{t}=\operatorname{argmax}_{a} \hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}}
$$

$\hat{\mu}_{a}(t)=$ empirical mean of arm a after round t $T_{a}(t)=$ number of plays of arm a after round t $\delta=$ confidence level

Regret analysis

Step 1 Decompose the regret over the arms

Step 2 On a "good" event prove that suboptimal arms are not played too often

Step 3 Show the "good" event occurs with high probability

Regret decomposition

$$
\Re_{n}=n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right]
$$

$T_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)$

Regret decomposition

$$
\Delta_{a}=\mu^{*}-\mu_{a}
$$

$$
\begin{aligned}
\mathfrak{R}_{n} & =n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n}\left(\mu^{*}-R_{t}\right)\right]
\end{aligned}
$$

$$
T_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)
$$

Regret decomposition

$$
\begin{aligned}
\mathfrak{R}_{n} & =n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n}\left(\mu^{*}-R_{t}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \Delta_{A_{t}}\right]
\end{aligned}
$$

Regret decomposition

$$
\begin{aligned}
\mathfrak{R}_{n} & =n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n}\left(\mu^{*}-R_{t}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \Delta_{A_{t}}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \sum_{a \in \mathcal{A}} \mathbb{1}\left(A_{t}=a\right) \Delta_{a}\right]
\end{aligned}
$$

$$
T_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)
$$

Regret decomposition

$$
\begin{aligned}
\mathfrak{R}_{n} & =n \mu^{*}-\mathbb{E}\left[\sum_{t=1}^{n} R_{t}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n}\left(\mu^{*}-R_{t}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \Delta_{A_{t}}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{n} \sum_{a \in \mathcal{A}} \mathbb{1}\left(A_{t}=a\right) \Delta_{a}\right] \\
& =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]
\end{aligned}
$$

$$
T_{a}(t)=\sum_{s=1}^{t} \mathbb{1}\left(A_{s}=a\right)
$$

Assume for all t that

$$
\begin{aligned}
& \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu^{*} \\
& \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1)
\end{aligned}
$$

Assume for all t that

$$
\begin{aligned}
& \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu^{*} \\
& \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1)
\end{aligned}
$$

Now suppose that $A_{t}=a$ in round t

$$
\mu_{a}+2 \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}}
$$

Assume for all t that

$$
\begin{aligned}
& \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu^{*} \\
& \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1)
\end{aligned}
$$

Now suppose that $A_{t}=a$ in round t

$$
\begin{aligned}
\mu_{a}+2 \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} & \geq \hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \\
& \geq \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu_{a^{*}}
\end{aligned}
$$

Assume for all t that

$$
\begin{aligned}
& \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu^{*} \\
& \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1)
\end{aligned}
$$

Now suppose that $A_{t}=a$ in round t

$$
\begin{aligned}
\mu_{a}+2 \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} & \geq \hat{\mu}_{a}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t-1)}} \\
& \geq \hat{\mu}_{a^{*}}(t-1)+\sqrt{\frac{2 \log (1 / \delta)}{T_{a^{*}}(t-1)}} \geq \mu_{a^{*}}
\end{aligned}
$$

Hence

$$
T_{a}(t-1) \leq \frac{8 \log (1 / \delta)}{\Delta_{a}^{2}} \Longrightarrow T_{a}(n) \leq 1+\frac{8 \log (1 / \delta)}{\Delta_{a}^{2}}
$$

Let $\hat{\mu}_{a, s}$ be the empirical mean of arm a after s plays

The concentration theorem shows that

$$
\mathbb{P}\left(\hat{\mu}_{a, s} \geq \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{s}}\right) \leq \delta
$$

Combining with a union bound,

$$
\mathbb{P}\left(\text { exists } s \leq n: \hat{\mu}_{a, s} \geq \mu_{a}+\sqrt{\frac{2 \log (1 / \delta)}{s}}\right) \leq n \delta
$$

$$
\mathbb{P}\left(\cup_{i} B_{i}\right) \leq \sum_{i} \mathbb{P}\left(B_{i}\right)
$$

Putting it together

$$
\left.\begin{array}{rl}
\Re_{n} & =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& \leq \sum_{a \in A \cdot A} \Delta_{a}>0 \\
& \leq \sum_{a \in A}\left(2 \delta \Delta_{a}>0\right.
\end{array} 3 \Delta_{a}+\frac{16 \log (n)}{\Delta_{a}}-\frac{8 \log (1 / \delta)}{\Delta_{a}^{2}}\right) .
$$

Sanity checking our results

We have proven the regret of UCB is at most

$$
\Re_{n} \leq \sum_{a \in \mathcal{A}: \Delta_{a}>0} 3 \Delta_{a}+\frac{16 \log (n)}{\Delta_{a}}
$$

Problem independent bound

$$
\mathfrak{R}_{n}=\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]
$$

Problem independent bound

$$
\begin{aligned}
\Re_{n} & =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& =\sum_{a \in \mathcal{A} \cdot \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]+\sum_{a \in \mathcal{A} \Delta_{a}>\Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]
\end{aligned}
$$

Problem independent bound

$$
\begin{aligned}
\Re_{n} & =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& =\sum_{a \in \mathcal{A}: \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]+\sum_{a \in \mathcal{A} \Delta_{a}>\Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& \leq n \Delta+\sum_{a \in \mathcal{A}: \Delta_{a}>\Delta} 3 \Delta_{a}+\frac{16 \log (n)}{\Delta_{a}}
\end{aligned}
$$

Problem independent bound

$$
\begin{aligned}
\Re_{n} & =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& =\sum_{a \in \mathcal{A}: \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]+\sum_{a \in \mathcal{A} \Delta_{a}>\Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& \leq n \Delta+\sum_{a \in \mathcal{A}: \Delta_{a}>\Delta} 3 \Delta_{a}+\frac{16 \log (n)}{\Delta_{a}} \\
& \leq n \Delta+\frac{16 K \log (n)}{\Delta}+3 \sum_{a \in \mathcal{A}} \Delta_{a}
\end{aligned}
$$

Problem independent bound

$$
\begin{aligned}
\Re_{n} & =\sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& =\sum_{a \in \mathcal{A}: \Delta_{a} \leq \Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right]+\sum_{a \in \mathcal{A} \Delta_{a}>\Delta} \Delta_{a} \mathbb{E}\left[T_{a}(n)\right] \\
& \leq n \Delta+\sum_{a \in \mathcal{A}: \Delta_{a}>\Delta} 3 \Delta_{a}+\frac{16 \log (n)}{\Delta_{a}} \\
& \leq n \Delta+\frac{16 K \log (n)}{\Delta}+3 \sum_{a \in \mathcal{A}} \Delta_{a} \\
& \leq 8 \sqrt{n k \log (n)}+3 \sum_{a \in \mathcal{A}} \Delta_{a} \leq 8 \sqrt{n k \log (n)}+3 k
\end{aligned}
$$

There is a lot more..

- Improving constants
- Different noise models
- Linear bandits: $\mathcal{A} \subset \mathbb{R}^{d}$ and $\mu_{a}=\langle\mu, a\rangle$
- Other kinds of structure: $\mathcal{A} \subset \mathbb{R}^{d}$ and $\mu_{a}=f(a)$ with f 'smooth'
- Changing action sets
- Delayed rewards
- Non-stationary bandits
- Best arm identification
- Adversarial model

Lots of fun still to be had, but this is an RL workshop

Exploration in reinforcement learning ("We want states")

Episodic MDPs

An episodic MDP is a tuple $(\mathcal{S}, \mathcal{A}, P, H, r, \mu)$

- \mathcal{S} is a finite set of states
- \mathcal{A} is a finite set of actions
- P is the transition kernel
- H is the episode length
- $r: \mathcal{S} \times \mathcal{A} \rightarrow[0,1]$ is the reward function
- μ is the distribution of the initial state

Episodic MDPs

An episodic MDP is a tuple $(\mathcal{S}, \mathcal{A}, P, H, r, \mu)$

- \mathcal{S} is a finite set of states
- \mathcal{A} is a finite set of actions
- P is the transition kernel
- H is the episode length
- $r: \mathcal{S} \times \mathcal{A} \rightarrow[0,1]$ is the reward function
- μ is the distribution of the initial state

Assumption Only P is unknown
$\mathcal{S}=\{1,2,3\}$ and $H=4$

Policies and values

A policy π is a function from histories to actions
The value of a policy π is

$$
v^{\pi}=\mathbb{E}\left[\sum_{h=1}^{H} r\left(S_{h}, A_{h}\right)\right]
$$

Dynamic programming

Think of $P(s, a)=(P(s, a, 1), \ldots, P(s, a,|\mathcal{S}|))$

The optimal value function is defined inductively

$$
\begin{aligned}
v_{0}(s) & =0 \\
q_{h}(s, a) & =r(s, a)+\left\langle P(s, a), v_{h-1}\right\rangle \\
v_{h}(s) & =\max _{a \in \mathcal{A}} q_{h}(s, a) \\
\pi_{h}(s) & =\operatorname{argmax}_{a \in \mathcal{A}} q_{h}(s, a)
\end{aligned}
$$

$$
\mathcal{P}=\left\{x \in[0,1]^{|\mathcal{S |}|}:\|x\|_{1}=1\right\}
$$

Learning and regret

In each episode the learner chooses a policy π^{t}
Observes a trajectory $S_{1}^{t}, A_{1}^{t}, S_{2}^{t}, A_{2}^{t}, \ldots, S_{H}^{t}, A_{H}^{t}$
Regret over n episodes is

$$
\mathfrak{R}_{n}=\sum_{t=1}^{n} \mathfrak{R}^{(t)}=\mathbb{E}\left[\sum_{t=1}^{n}\left\langle\mu, v_{H}^{*}-v_{H}^{\pi^{t}}\right\rangle\right]
$$

Optimism for RL

Same idea!

Estimate the things you don't know (transitions)
Build confidence intervals around the unknowns
Act as if the world is as nice as plausible

Estimation and confidence intervals

The empirical transitions are given by
$T_{s, a}(t)=\#$ plays action a in state s
$\hat{P}_{t}\left(s, a, s^{\prime}\right)=\#$ prop. transitions to s^{\prime} from s taking a

Estimation and confidence intervals

The empirical transitions are given by

$$
T_{s, a}(t)=\# \text { plays action } a \text { in state } s
$$

$\hat{P}_{t}\left(s, a, s^{\prime}\right)=\#$ prop. transitions to s^{\prime} from s taking a
The confidence set is ℓ_{1}-ball about vector $\hat{P}_{t}(s, a)$

$$
\mathcal{C}_{t}(s, a)=\left\{p \in \mathcal{P}:\left\|p-\hat{P}_{t}(s, a)\right\|_{1} \leq \sqrt{\frac{2|\mathcal{S}| \log (2 / \delta)}{T_{s, a}(t)}}\right\}
$$

$$
\mathcal{P}=\left\{x \in[0,1]^{|\mathcal{S |}|}:\|x\|_{1}=1\right\}
$$

Optimistic dynamic programming

At the start of phase t,

$$
\begin{aligned}
\tilde{v}_{0}(s) & =0 \\
\tilde{q}_{h}(s, a) & =r(s, a)+\max _{p \in \mathcal{C}_{t-1}(s, a)}\left\langle p, \tilde{v}_{h-1}\right\rangle \\
\tilde{v}_{h}(s) & =\max _{a \in \mathcal{A}} \tilde{q}_{h}(s, a) \\
\pi_{h}^{t}(s) & =\operatorname{argmax}_{a \in \mathcal{A}} \tilde{q}_{h}(s, a) \\
\tilde{P}_{h}(s) & =\operatorname{argmax}_{p \in \mathcal{C}_{t-1}\left(s, \pi_{h}(s)\right)}\left\langle p, \tilde{v}_{h-1}\right\rangle
\end{aligned}
$$

UCB for reinforcement learning

Three steps in each episode
Step 1 Compute empirical estimate of transitions and confidence intervals

Step 2 Use optimistic dynamic programming to find a policy

Step 3 Implement policy for entire episode

Algorithm is called Upper Confidence Bounds for Reinforcement Learning (UCRL)

Analysing UCRL

Use optimism

With high probability $P(s, a) \in \mathcal{C}_{t}(s, a)$ for all t and s, a

Analysing UCRL

Use optimism

With high probability $P(s, a) \in \mathcal{C}_{t}(s, a)$ for all t and s, a
Assuming this holds, then

$$
\begin{aligned}
\left\langle\mu, v_{H}-v_{H}^{\pi^{t}}\right\rangle & =\left\langle\mu, v_{H}\right\rangle-\left\langle\mu, v_{H}^{\pi^{t}}\right\rangle \\
& \leq\left\langle\mu, \tilde{v}_{H}^{\pi^{t}}\right\rangle-\left\langle\mu, v_{H}^{\pi^{t}}\right\rangle \\
& =\left\langle\mu, \tilde{v}_{H}^{\pi^{t}}-v_{H}^{\pi^{t}}\right\rangle
\end{aligned}
$$

Useful because it's much easier to compare values under the same policy

Value differences

Decompose the value difference:

$$
\left\langle\mu, \tilde{v}_{H}^{\pi^{t}}-v_{H}^{\pi^{t}}\right\rangle=\mathbb{E}\left[\sum_{h=1}^{H}\left\langle\tilde{P}_{H-h+1}^{t}\left(S_{h}^{t}, A_{h}^{t}\right)-P\left(S_{h}^{t}, A_{h}^{t}\right), \tilde{v}_{H-h}^{\pi^{t}}\right\rangle\right]
$$

We might look at the proof later

Applying Hölder's inequality

$$
\mathfrak{R}^{(t)} \lesssim \mathbb{E}\left[\sum_{h=1}^{H}\left\langle\tilde{P}_{H-h+1}\left(S_{h}, A_{h}\right)-P\left(S_{h}, A_{h}\right), \tilde{v}_{H-h}^{\pi}\right\rangle\right]
$$

Applying Hölder’s inequality

$$
\begin{aligned}
\mathfrak{R}^{(t)} & \lesssim \mathbb{E}\left[\sum_{h=1}^{H}\left\langle\tilde{P}_{H-h+1}\left(S_{h}, A_{h}\right)-P\left(S_{h}, A_{h}\right), \tilde{v}_{H-h}^{\pi}\right)\right] \\
& \leq \mathbb{E}\left[\sum_{h=1}^{H}\left\|\tilde{P}_{H-h+1}\left(S_{h}, A_{h}\right)-P\left(S_{h}, A_{h}\right)\right\|_{1}\left\|\tilde{v}_{H-h}^{\pi_{H}}\right\|_{\infty}\right]
\end{aligned}
$$

Applying Hölder’s inequality

$$
\begin{aligned}
\mathfrak{R}^{(t)} & \lesssim \mathbb{E}\left[\sum_{h=1}^{H}\left\langle\tilde{P}_{H-h+1}\left(S_{h}, A_{h}\right)-P\left(S_{h}, A_{h}\right), \tilde{v}_{H-h}^{\pi}\right\rangle\right] \\
& \leq \mathbb{E}\left[\sum_{h=1}^{H}\left\|\tilde{P}_{H-h+1}\left(S_{h}, A_{h}\right)-P\left(S_{h}, A_{h}\right)\right\|_{1}\left\|\tilde{v}_{H-h}^{\pi}\right\|_{\infty}\right] \\
& \lesssim H \mathbb{E}\left[\sum_{h=1}^{H} \sqrt{\frac{|\mathcal{S}| \log (1 / \delta)}{T_{S_{h}, A_{h}}(t-1)}}\right]
\end{aligned}
$$

Applying Hölder’s inequality

$$
\begin{aligned}
\mathfrak{R}^{(t)} & \lesssim \mathbb{E}\left[\sum_{h=1}^{H}\left\langle\tilde{P}_{H-h+1}\left(S_{h}, A_{h}\right)-P\left(S_{h}, A_{h}\right), \tilde{v}_{H-h}^{\pi}\right\rangle\right] \\
& \leq \mathbb{E}\left[\sum_{h=1}^{H}\left\|\tilde{P}_{H-h+1}\left(S_{h}, A_{h}\right)-P\left(S_{h}, A_{h}\right)\right\|_{1}\left\|\tilde{v}_{H-h}^{\pi}\right\|_{\infty}\right] \\
& \lesssim H \mathbb{E}\left[\sum_{h=1}^{H} \sqrt{\frac{|\mathcal{S}| \log (1 / \delta)}{T_{S_{h}, A_{h}}(t-1)}}\right] \\
& \lesssim H \mathbb{E}\left[\sum_{s, a} T_{s, a}(t-1, t) \sqrt{\frac{|\mathcal{S}| \log (1 / \delta)}{T_{s, a}(t-1)}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\sum_{t=1}^{n} \mathfrak{R}^{(t)} & \leq H \mathbb{E}\left[\sum_{s, a} \sum_{t=1}^{n} T_{s, a}(t-1, t) \sqrt{\frac{|\mathcal{S}| \log (1 / \delta)}{T_{s, a}(t-1)}}\right] \\
& \lesssim H \mathbb{E}\left[\sum_{s, a} \sqrt{|\mathcal{S}| T_{s, a}(n) \log (1 / \delta)}\right] \\
& \leq H \mathbb{E}\left[\sqrt{|\mathcal{S}|^{2}|\mathcal{A}| \sum_{s, a} T_{s, a}(n) \log (1 / \delta)}\right] \\
& =H|\mathcal{S}| \sqrt{|\mathcal{A}| H n \log (1 / \delta)}
\end{aligned}
$$

$$
\int \frac{f^{\prime}(x)}{\sqrt{f(x)}} d x=2 \sqrt{f(x)}
$$

At last...

With 'high probability' the regret of UCRL is

$$
\Re_{n}=O(|\mathcal{S}| H \sqrt{n|\mathcal{A}| \log (1 / \delta)})
$$

Lower bound Any algorithm has regret at least

$$
\Re_{n}=\Omega(H \sqrt{n|\mathcal{A}||\mathcal{S}| \log (1 / \delta)})
$$

Takeaways

- A little concentration of measure
- Optimism as a principle for algorithm design
- Optimism for bandits (UCB) and MDPs (UCRL)

Let us reflect for a moment

Let us reflect for a moment

How big is $H \sqrt{n|\mathcal{A}||\mathcal{S}| \log (1 / \delta)}$?

Let us reflect for a moment

How big is $H \sqrt{n|\mathcal{A}||\mathcal{S}| \log (1 / \delta)}$?

$|\mathcal{S}|=2^{20}$

Let us reflect for a moment

How big is $H \sqrt{n|\mathcal{A}||\mathcal{S}| \log (1 / \delta)}$?

$|\mathcal{S}|=2^{20} \quad$ Oh \odot

Big challenges

- Exploring in large unstructured MDPs is hopeless
- Combining exploration with function approximation
- Bringing in bias
- Optimism is not universal
- All known exploration principles are either (a) known to be suboptimal or (b) hopelessly intractible
- Model free exploration

Great time to be in RL (theory and practice!)

"Bandit Algorithms" book

Joint work with Csaba Szepesvári
Free online at http://banditalgs.com

Reading

- UCB. Tze Leung Lai. Adaptive Treatment Allocation and the Multi-Armed Bandit Problem, 1987
- UCRL. Auer et al. Near-optimal Regret Bounds for Reinforcement Learning, 2010

Useful keywords Posterior sampling, information directed sampling, Bellman rank, randomized value functions. Preface with 'deep' for more buzz

Categorical concentration

Let $X, X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed with $X_{t} \in[k]$

Let $p_{i}=\mathbb{P}(X=i)$ and $\hat{p}_{i}=\frac{1}{n} \sum_{t=1}^{n} \mathbb{1}\left(X_{t}=i\right)$
You can have fun proving that

$$
\mathbb{P}\left(\|p-\hat{p}\|_{1} \geq \sqrt{\frac{2 k \log (2 / \delta)}{n}}\right) \leq \delta
$$

