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Bandits
Finite action set A = {1,2,...,k}

For each a € A there is an unknown distribution P,
Learner chooses A; € A and observes reward R, ~ Py,

Learner wants to maximise > ;. | R;




The learning objective

Let ., be the mean of P, and p* = max,c .4 jtq
The optimal action is a* = argmax, y,

Our task is to minimise the regret

ZRt

The price paid by the learner for not knowing p




A little step into statistics
Given independent and identically distributed
X, X1, Xo, ..., X, with mean p and variance o>

. U
The empirical meanis i = — ) X,
n t=1



A little step into statistics
Given independent and identically distributed
X, X1, Xo, ..., X, with mean p and variance o>

The empirical mean is i = 1 DX,

n

t=1

What does the distribution of u look like?
We know E[] = p and Var[ji] = 0%/n
Chebyshev's inequality: :
o2 P(X(/e-:) !?(X)/us)
P(\ﬂ—MIZS)Sn—g \

X
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Subgaussian random variables
The moment generating function of X is

My () = Efexp(AX)]

A random variable is o-subgaussian if

My (\) < exp(c?)\?/2) forall A € R

Gaussian X ~ N(u,0%) X — pis o-subgaussian

Bernoulli X ~ B(u) X — pis 3-subgaussian




Tail bound for o-subgaussian sums:
P(ip—p>e)

exp(A(X — p)) < exp(X0?/2) W
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Tail bound for o-subgaussian sums:
P(i—p=e) =nfP(exp (At — n)) = exp(Ac))

< ;\r;% exp(—Ae)E [exp (A(ft — )]

exp(MX — 1)) < exp(No?/2) } P(|2Z] > ¢) < B]|Z])/c



Tail bound for o-subgaussian sums:
P(i—p=e) =nfP(exp (At — n)) = exp(Ac))
< inf exp(—=Ae)E [exp (A(/t — p))]

_ ;;:eXp(AS) ﬁE [eXp (W)]

t=1

exp(A(X — p)) < exp(N20?/2) w i —p) =30, AXi—p)

n



Tail bound for o-subgaussian sums:
P(i—p=e) =nfP(exp (At — n)) = exp(Ac))
< mf exp(—Ae)E [exp (A(it — p))]

A>0
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n
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Tail bound for o-subgaussian sums:
P(i—p=¢) =infPexp (Aa —p)

xp(Ae))
< }\r;gexp( Ae)E [exp (A(fr — p))]

1o (52

t=1

2)\2
< inf
irioexp —Xe) Hexp( )
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— inf e | = e
e (G —2¢) =ow (<55

) 2
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exp(A(X — p)) < exp(N0?/2) W 0= 5 ( S Ag) = Ao?/n —¢




Last slide we proved that

2
P(ji—p>¢) < exp (—gi)

o2

Equating the right-hand side with § and rearranging
things a little,

. (ﬂu> \/202105(1/5)> s

forany o € (0,1). Chebyshev’s only gives

2
P(ﬂ—uz “—) <5
no




Concentration of measure summary

Understanding the distribution of the empirical mean is
important

Without assumptions Chebyshev's is about the best
you can do

Subgaussian assumption leads to much stronger

results -
(@)
Method is called Chernoff's method L=

There are whole books on this topic



Assumptions

We assume X — p, is 1-subgaussian when X ~ P, for
all actions

Subgaussian bandits



Optimism principle

“You should act as if you are in the nicest plausible
world possible”




Optimism principle

“You should act as if you are in the nicest plausible
world possible”

Guarantees either (a) optimality or (b) exploration



“Nicest” In bandits, we want the mean to be large

“Plausible” The mean cannot be much larger than the
empirical mean



“Nicest” In bandits, we want the mean to be large

“Plausible” The mean cannot be much larger than the
empirical mean

Upper Confidence Bound Algorithm

Choose each arm once and then

21og(1/6)

A; = argmax,, i (t — 1) + Tt —1)

fi.(t) = empirical mean of arm a after round ¢
T,(t) = number of plays of arm a after round ¢
d = confidence level



Regret analysis

Step 1 Decompose the regret over the arms

Step 2 On a “good” event prove that suboptimal arms
are not played too often

Step 3 Show the “good” event occurs with high
probability



Regret decomposition Ay = p* — pig

T,(t) = Zi:l 1(A; = a)
=np’ — Z Ry




Regret decomposition Ay = p* — pig

Ta(t) = Yemy 1(As = a)
n =N — ZRt

n

> (W =R

t=1

=E




Regret decomposition Ay = p* — pig

T.(t) = X!y 1(A, = a)
=3-n

W= np —

=E|) (W - R)

Lt=1




Regret decomposition Ay = 1 — fig

T.(t) = X!y 1(A, = a)
=3-n

W= np —
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Regret decomposition Ay = 1 — fig

To(t) = Yomi 1(As = a)
=3-n

n

=E|) (W - R)

Lt=1

W= np —




Assume for all ¢ that

Ha



Assume for all ¢ that fg«(t — 1) +

To(t—1) —
2log(1/0) _ .
oV T _
Ha + Ta(t . 1) - lua(t 1)
Now suppose that A; = a in round ¢
2log(1/6) _ . 2log(1/9)
BN A SN _ — oV



2log(1/0
Assume for all ¢ that fg«(t — 1) + 2log(1/9) > i

a —— 2> [t — 1

Now suppose that A; = a in round ¢

2log(1/6) _ . 2log(1/9)
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2log(1/0
Assume for all ¢ that fg«(t — 1) + 2log(1/9) > i

a —— 2> [t — 1

Now suppose that A; = a in round ¢

2log(1/6) _ . 2log(1/9)
S A A=)

. 21og(1/6)
> [ (t — 21084/ )
2 fa(E =) 4y [ ) 2 Ha

8log(1/0 8log(1/6
7, 1) < SO gy <1y BB



Let i, s be the empirical mean of arm « after s plays

The concentration theorem shows that
2log(1/6
P(ﬂww M) s
S

Combining with a union bound,

. 2log(1/6
P (eXIStSs <Nt flgs > [ + M) <nd
S

P(UiB;) <> P(B;)



Putting it together
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Sanity checking our results

We have proven the regret of UCB is at most

16 log(n)
M Y, Mt —1
acA:A>0
100 2
Is this good? 50 !
0 L —




Problem independent bound

Ry =Y AE[T,(n)]



Problem independent bound

mn - Z AGE[Ta(n)]
= Y AETM+ Y AE[T(n)

acA: A <A aC AN >A



Problem independent bound

acA: A <A aC AN >A
161
<ant Y 3a, 4 0180




Problem independent bound

Ry =Y AE[T,(n)]

acA

= Y AETM+ Y AE[T(n)

acA: A <A aC AN >A
16log(n)
< nA 34,
<nA+ > =%
acA:Ag>A

16K 1
nA 4 ——~ og +3 g A,
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Problem independent bound

iRn - Z AaE[Ta(n)]
= Y AETM+ Y AE[T(n)

acA: A <A aC AN >A
16log(n)
< nA 34,
<nA+ Y =%
acA:Ag>A

16 K1
<nA+4 ——m—= 6 og 35 A,
acA

< 8y/nklog(n) + 3 A, < 8/nklog(n) + 3k

acA



There is a lot more..

- Improving constants

- Different noise models

- Linear bandits: A ¢ R? and p, = (i1, a)

- Other kinds of structure: A ¢ R?and p, = f(a)
with f ‘smooth’

- Changing action sets

- Delayed rewards

- Non-stationary bandits

- Best arm identification

- Adversarial model

Lots of fun still to be had, but this is an RL
workshop



Exploration in reinforcement
learning (“We want states”)



Episodic MDPs
An episodic MDP is a tuple (S, A, P, H,r, i)

- Sis afinite set of states

- Ais afinite set of actions

- P is the transition kernel

- H is the episode length

- r:S8xA—|0,1] is the reward function
- is the distribution of the initial state



Episodic MDPs
An episodic MDP is a tuple (S, A, P, H,r, i)

- Sis afinite set of states

- Ais afinite set of actions

- P is the transition kernel

- H is the episode length

- r:S8xA—|0,1] is the reward function
- is the distribution of the initial state

Assumption Only P is unknown



S={1,2,3}and H =4

O -0 O
NAYAY
0&1@6‘06‘0 ®

eV,




Policies and values

A policy 7 is a function from histories to actions

The value of a policy 7 is

v =E ZT(Sh,Ah)

h=1




Dynamic programming
Think of P(s,a) = (P(s,a,1),..., P(s,a,|S|))
The optimal value function is defined inductively
vo(s) = 0
an(s,a) = r(s,a) + (P(s,a), vp_1)

vn(s) = max gy (s, a)

mh(s) = argmax, 4 qn(s, a)

=0, faly = 1)



Learning and regret

In each episode the learner chooses a policy =
Observes a trajectory S%, A}, S AL, ..., St AL,

Regret over n episodes is

R, = zn: R =E
t=1

> vy — vﬁ)]

t=1



Optimism for RL

Same idea!
Estimate the things you don’t know (transitions)
Build confidence intervals around the unknowns

Act as if the world is as nice as plausible



Estimation and confidence intervals

The empirical transitions are given by

Ts.(t) = # plays action a in state s
P,(s,a, s") = # prop. transitions to s’ from s taking a



Estimation and confidence intervals

The empirical transitions are given by

Ts.(t) = # plays action a in state s
P,(s,a, s") = # prop. transitions to s’ from s taking a

The confidence set is ¢;-ball about vector Pi(s, a)

Ci(s,a) = {p eP: Hp — pt(S,a)Hl < \/QSjioig/é)}

=0, faly = 1)



Optimistic dynamic programming
At the start of phase ¢,
QNJO(S) =0

Gn(s,a) =r(s,a) + max (p,0p_1)
peCi_1(s,a)

Up(s) = max gy(s, a)
acA
my(s) = argmax,c 4 Gu(s, a)

Ph(s) - argmaXpGCt_l(s,ﬂh(s))<p7 6h—1>



UCB for reinforcement learning
Three steps in each episode

Step 1 Compute empirical estimate of transitions and
confidence intervals

Step 2 Use optimistic dynamic programming to find a
policy

Step 3 Implement policy for entire episode

Algorithm is called Upper Confidence Bounds for Reinforcement
Learning (UCRL)



Analysing UCRL

Use optimism

With high probability P(s,a) € Ci(s,a) forall t and s, a



Analysing UCRL
Use optimism
With high probability P(s,a) € Ci(s,a) forall t and s, a

Assuming this holds, then

t

<:u7UH _UIZ> - <H;UH> - <:UJ7UH>

Useful because it's much easier to compare values
under the same policy



Value differences

Decompose the value difference:

H
<:LL7UH - UH Z PH he ( SmAt (SZ,AU 55 h)
h=1

We might look at the proof later



Applying Holder’s inequality

RO SE | Y (Prni1(Sh An) — P(Sn, An), T _)
h-1

( Hélder's inequality: (z,v) < ||z, ¥l



Applying Holder’s inequality

"
RO <E Z(pH—h—&—l(Sh;Ah) — P(5h, Ah),@}rfﬁ]

L h=1

i
<E Z H]5Hh+1(5h, Ap) — P(Sh, Ah)Hl ||?7}rfh|oo]
=

( Hélder's inequality: (z,4) < ||z, ¥l



Applying Holder’s inequality
T H

RO SE | (Prrsa (S An) — P(Sh, Ar), @M]
h 1

IA
&=

Z | Pa-sa(S1, 4 = Ps, 0 ||@;}h|oo]

|S|log(1/9)
DT

( Hélder's inequality: (z,v) < ||z, ¥l



Applying Holder’s inequality
T H

RO SE | (Prrsa (S An) — P(Sh, Ar), @;}h>]
h 1

<E zﬂpH i1 (S An) = <sh,Ah>H1||@;fh|oo]

|S|1og(1/6)
<
S HE Z Toa (t — 1)

< HE ZTs,a(t—l,t) %]

( Hélder's inequality: (z,v) < ||z, ¥l



S R0 < HE |3 S Tt - 11 'i“(tg(_l/l‘;)]

L s,a t=1

< HE |3 \/IS/Tua(n) log(1/9)

< HE \/8|2|AZTM ) log 1/5]

— 1|S|\/[AHnlog(1/0)
{ j4

dx 27/ f



At last...

With ‘high probability’ the regret of UCRL is

R, = O (|S\H\/n|A] log(1 /5))

Lower bound Any algorithm has regret at least

R, = O (H\/n|A]|S| 1og(1/5))



Takeaways

- A little concentration of measure
- Optimism as a principle for algorithm design

- Optimism for bandits (UCB) and MDPs (UCRL)



Let us reflect for a moment



Let us reflect for a moment

How big is H/n|A||S|log(1/4)?
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Let us reflect for a moment

How big is H/n|A||S|log(1/4)?

ET L Al (e

_—

S| = 2% oh ®



Big challenges
- Exploring in large unstructured MDPs is hopeless

- Combining exploration with function
approximation

- Bringing in bias
- Optimism is not universal

- All known exploration principles are either (a)
known to be suboptimal or (b) hopelessly
intractible

- Model free exploration

Great time to be in RL (theory and practice!)



“Bandit Algorithms” book

Joint work with Csaba Szepesvari

Free online at http://banditalgs.com



http://banditalgs.com

Reading

- UCB. Tze Leung Lai. Adaptive Treatment Allocation
and the Multi-Armed Bandit Problem, 1987

- UCRL. Auer et al. Near-optimal Regret Bounds for
Reinforcement Learning, 2010

Useful keywords Posterior sampling, information
directed sampling, Bellman rank, randomized value
functions. preface with ‘deep’ for more buzz



Categorical concentration
Let X, X1, Xo,..., X, beindependent and identically
distributed with X; € [k]
Letp, =P (X =4)and p; = 2 57 | 1(X, = 1)
You can have fun proving that

2k10g(2/5)> iy

n =

P <||p —]5H1 >



