CIFAR ML/RL Summer School

Natural Language Understanding

Graham Neubig

What Does it Mean to "Understand" Language?

Language modeling: P(text)

"Does this sound like good English/French/...?"

Text classification: P(label | text)

- "Is this review a positive review?"
- "What topic does this article belong to?"

Sequence transduction: P(text | text)

- "How do you say this in Japanese?"
- "How do you respond to this comment?"

Language Analysis: P(labels/tree/graph | text)

- "Is this word a person, place or thing"?
- "What is the syntactic structure of this sentence?"
- "What is the latent meaning of this sentence?"

· etc. etc.

Language Modeling: Models of P(text)

Are These Sentences OK?

- Jane went to the store.
- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.
- The food truck went to Jane.

Engineering Solutions

- Jane went to the store.
- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.

- Create a grammar of the language
- Consider
 morphology and exceptions
 Semantic categories,
 preferences
- The food truck went to Jane. } And their exceptions

Are These Sentences OK?

- ジェインは店へ行った。
- は店行ったジェインは。
- ジェインは店へ行た。
- 店はジェインへ行った。
- 屋台はジェインのところへ行った。

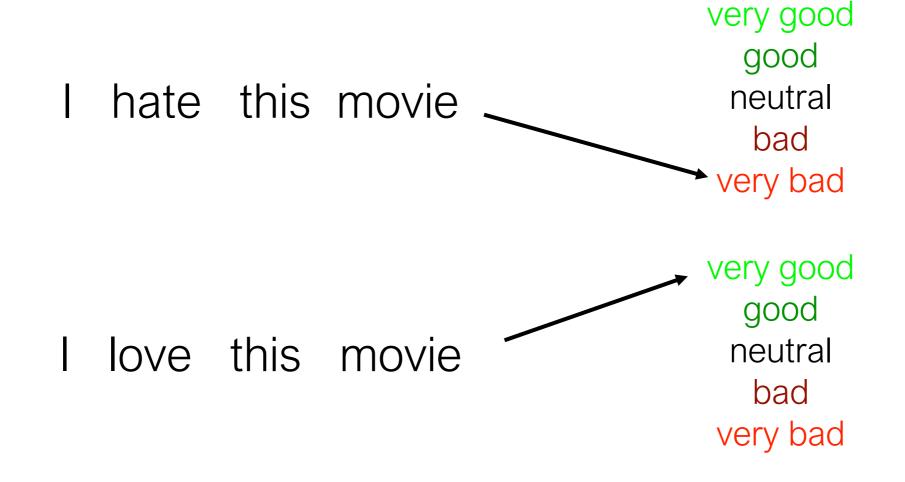
Phenomena to Handle

- Morphology
- Syntax
- Semantics/World Knowledge
- Discourse
- Pragmatics
- Multilinguality

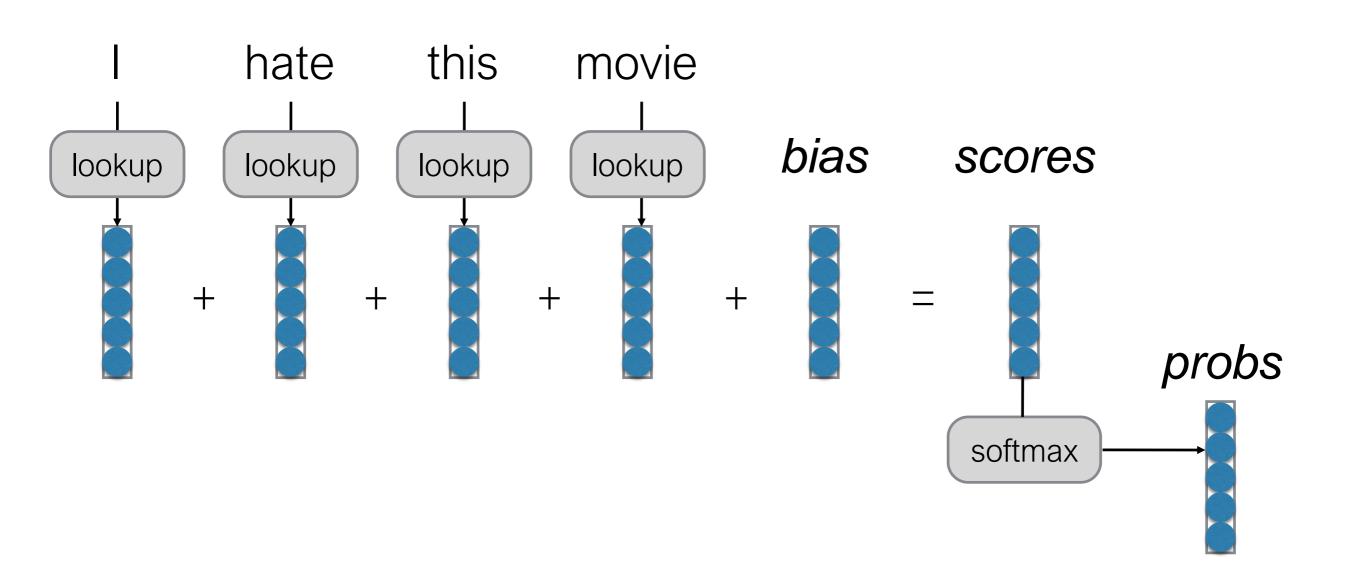
Neural networks give us a flexible tool to handle these phenomena

A Slight Simplification: Sentence Classification Models of P(label | text)

An Example Prediction Problem: Sentence Classification



A First Try: Bag of Words (BOW)



What do Our Vectors Represent?

- Each word has its own 5 elements corresponding to [very good, good, neutral, bad, very bad]
- "hate" will have a high value for "very bad", etc.

Build It, Break It

I don't love this movie

very good good neutral bad very bad

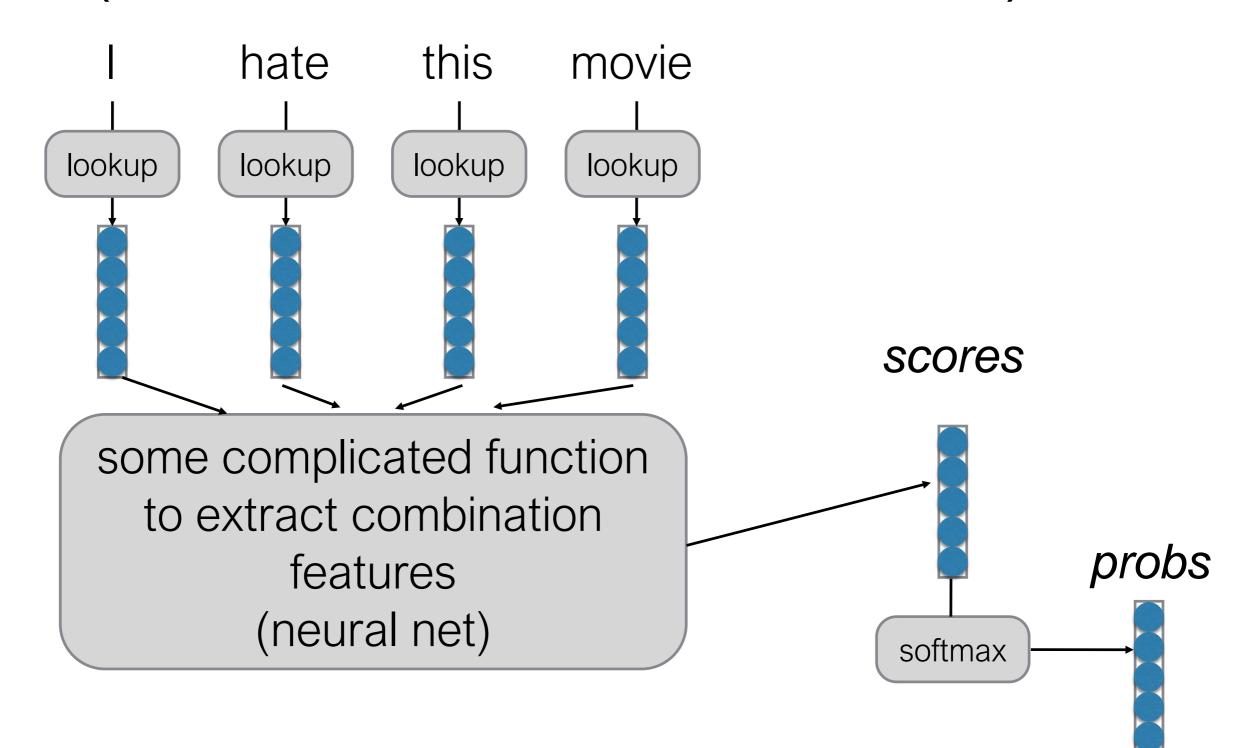
There's nothing I don't love about this movie

very good good neutral bad very bad

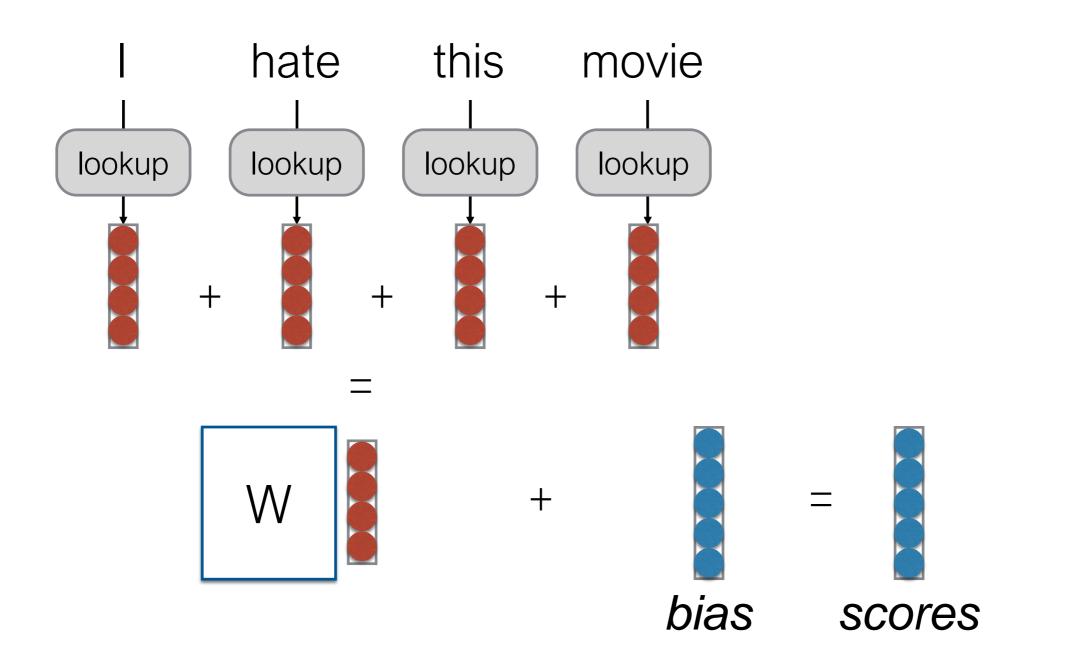
Combination Features

- Does it contain "don't" and "love"?
- Does it contain "don't", "i", "love", and "nothing"?

Basic Idea of Neural Networks (for NLP Prediction Tasks)



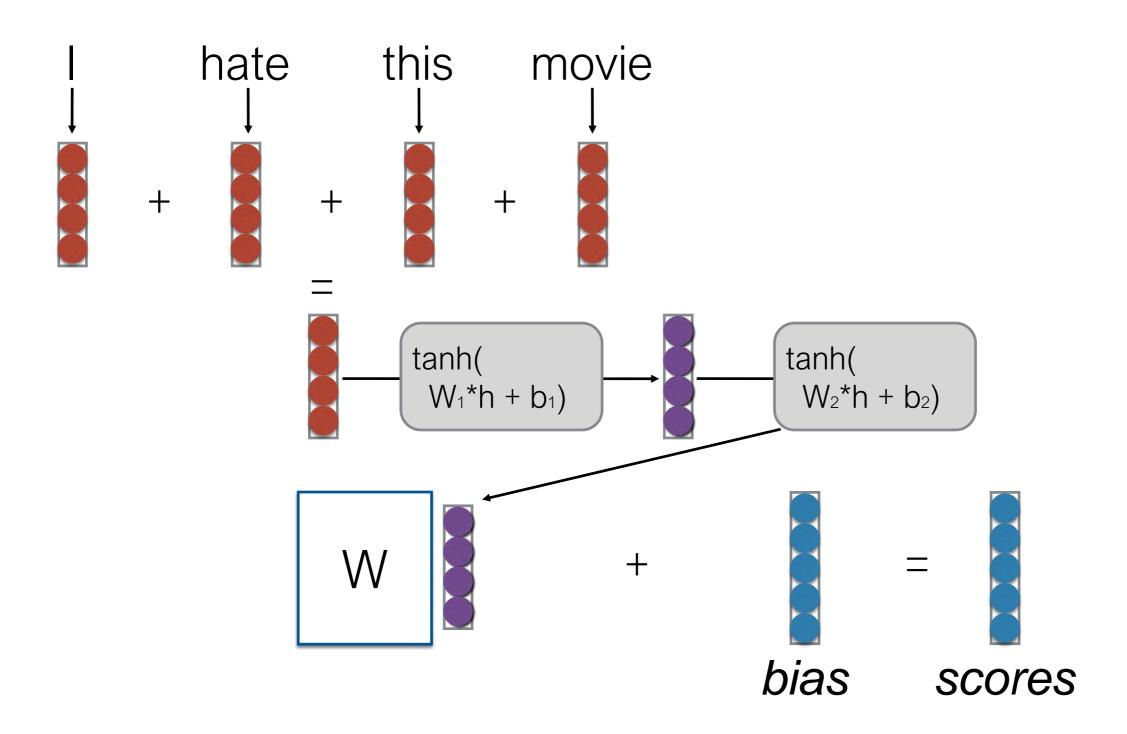
Continuous Bag of Words (CBOW)



What do Our Vectors Represent?

- Each vector has "features" (e.g. is this an animate object? is this a positive word, etc.)
- We sum these features, then use these to make predictions
- Still no combination features: only the expressive power of a linear model, but dimension reduced

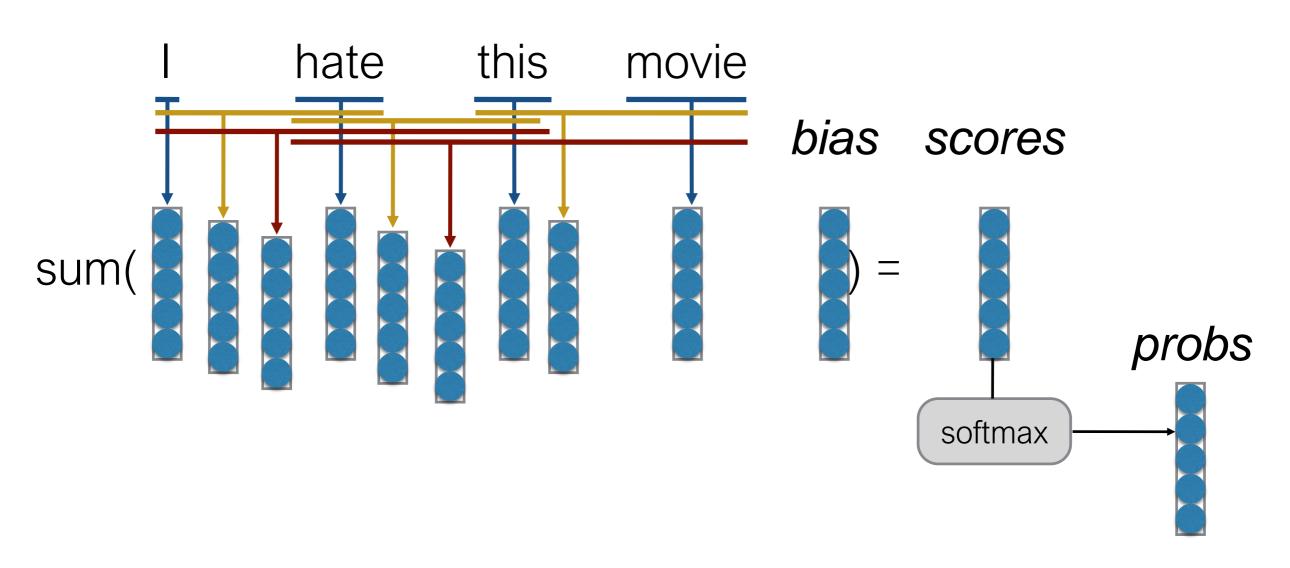
Deep CBOW



What do Our Vectors Represent?

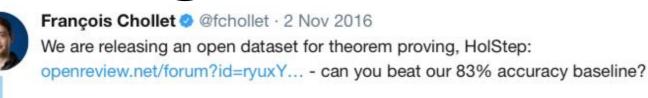
- Now things are more interesting!
- We can learn feature combinations (a node in the second layer might be "feature 1 AND feature 5 are active")
- e.g. capture things such as "not" AND "hate"
- BUT! Cannot handle "not hate"

Modeling Sentences w/ n-grams



Why Bag of n-grams?

- Allow us to capture combination features in a simple way "don't love", "not the best"
- Works pretty well



(7) 123

Hal Daumé III @haldaume3 · 2 Nov 2016

.@fchollet sure, I'll play. 85%, took me about an hour. (totally possible I did something wrong in preprocessing though!)

```
of examples per pass = 2013046
used = 5
      ed example sum = 10065230,000000
cat test/* | ./holstep2vw.pl | vw --binary -i model.ngram6 -t
/erage loss = 0.146743
                                       ot = token12e(+_)

`T/; s/^.\s*//; my $stepTok = $_;

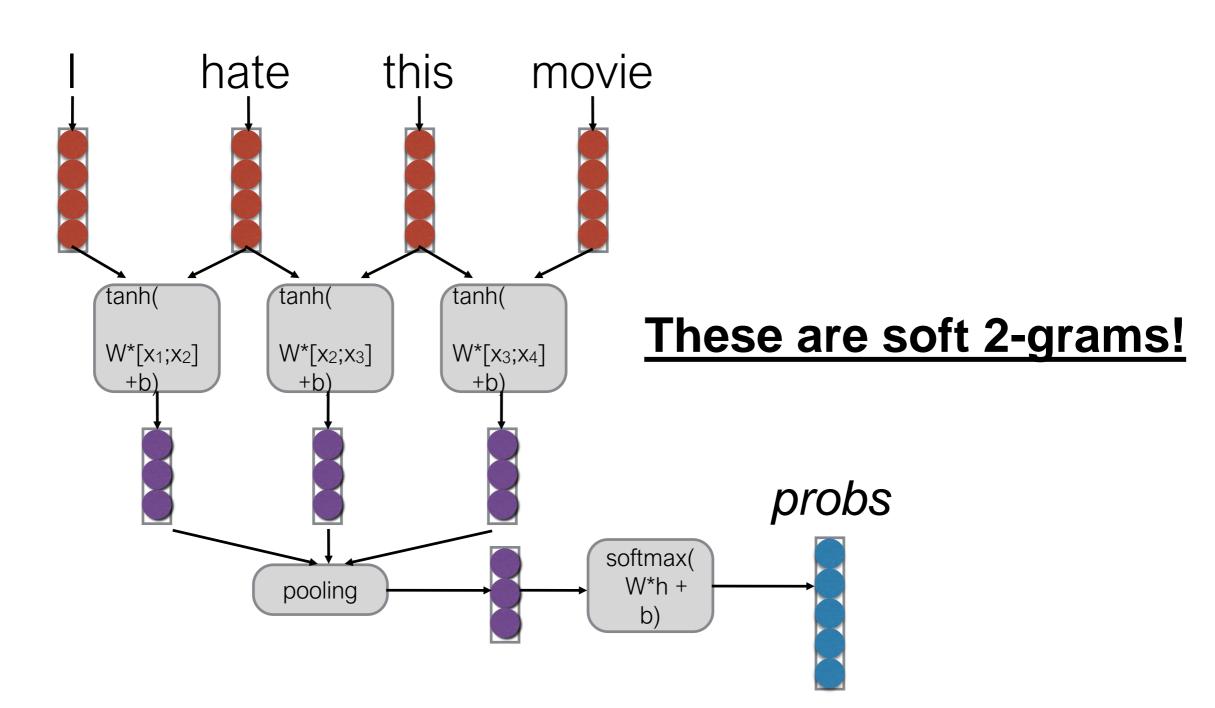
' lo ' , vw($con_Name) , ' ld ' .
                                                                   . vw($conjText) . ' ly ' . vw($depText) .
   t) "n";
} else { die i_; }
  my ($t) = 0_;
chomp $t; $t =" s/:/_C_/g; $t =" s/\\I/_P_/g;
return $t;
         8/([()]+)/ 11 /93
```

What Problems w/ Bag of n-grams?

- Leads to sparsity: many of the n-grams will never be seen in a training corpus
- No sharing between similar words/n-grams

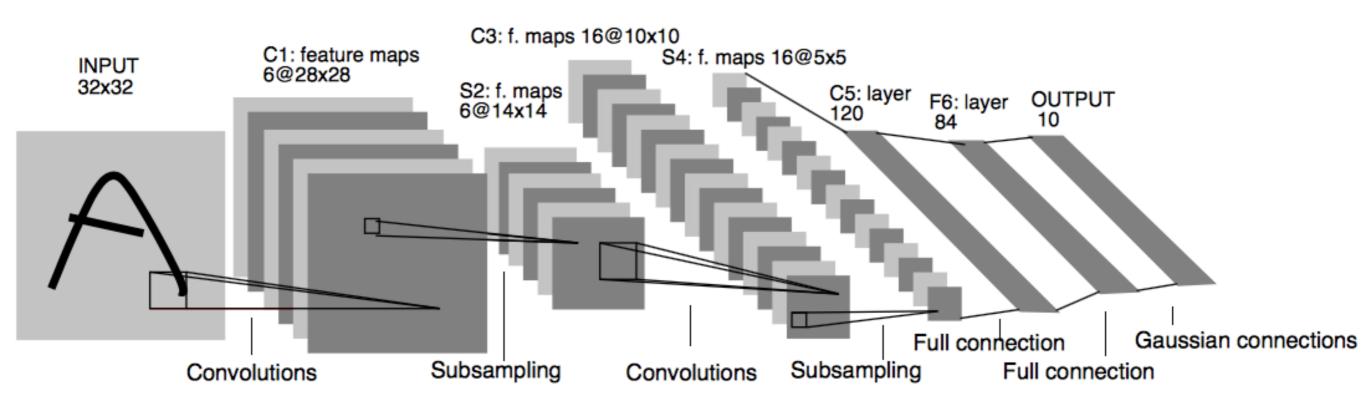
Time Delay Neural Networks

(Waibel et al. 1989)



Convolutional Networks

(LeCun et al. 1997)



Parameter extraction performs a 2D sweep, not 1D

CNNs/TDNNs for Text

(Collobert and Weston 2011)

- Generally 1D convolution ≈ Time Delay Neural Network
 - But often uses terminology/functions borrowed from image processing
- Two main paradigms:
 - Context window modeling: For tagging, etc. get the surrounding context before tagging
 - Sentence modeling: Do convolution to extract ngrams, pooling to combine over whole sentence

Pooling

- Calculate some reduction function feature-wise
- Max pooling: "Did you see this feature anywhere in the range?" (most common)
- Average pooling: "How prevalent is this feature over the entire range"
- k-Max pooling: "Did you see this feature up to k times?"
- Dynamic pooling: "Did you see this feature in the beginning? In the middle? In the end?"

Weaknesses of CNNs

- CNNs are great for short-distance feature extractors
- But don't have holistic view of the sentence to capture long-distance dependencies

Long-distance Dependencies in Language

Agreement in number, gender, etc.

He does not have very much confidence in himself. She does not have very much confidence in herself.

Selectional preference

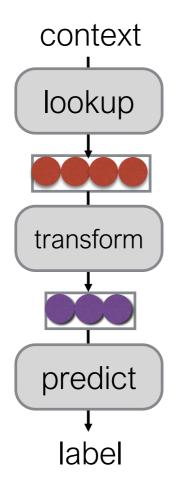
The **reign** has lasted as long as the life of the **queen**. The **rain** has lasted as long as the life of the **clouds**.

Recurrent Neural Networks

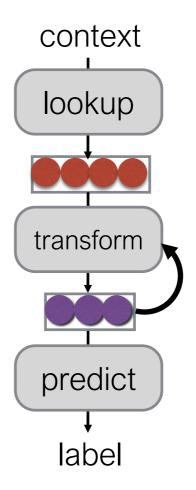
(Elman 1990)

Tools to "remember" information

Feed-forward NN

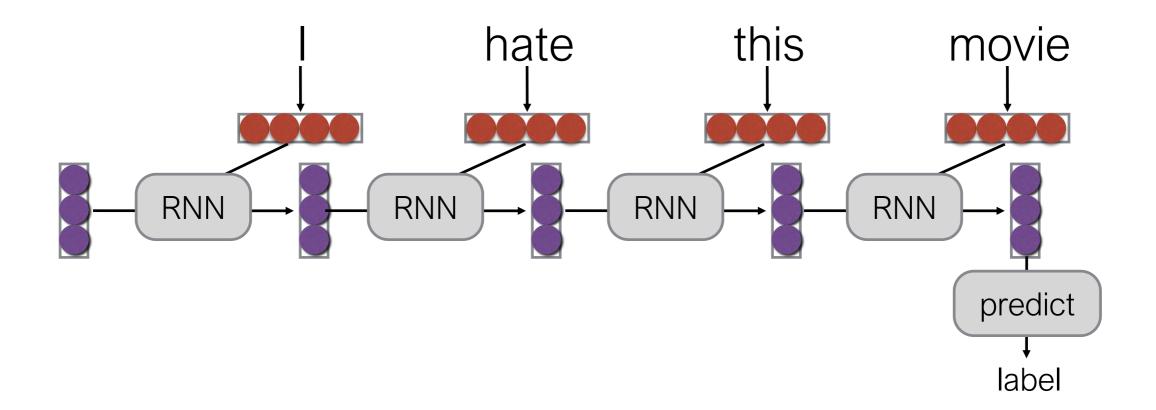


Recurrent NN



Making Predictions w/ RNNs

What does processing a sequence look like?



Weaknesses of RNNs

- Indirect passing of information, credit assignment more difficult
 - Made better by LSTMs/GRUs/etc. but not perfect
- Can be slow, due to incremental processing

Back to Language Modeling: Models of P(text)

Are These Sentences OK?

- Jane went to the store.
- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.
- The food truck went to Jane.

What Can we Do w/ LMs?

Score sentences:

```
Jane went to the store . \rightarrow high store to Jane went the . \rightarrow low (same as calculating loss for training)
```

Generate sentences:

```
while didn't choose end-of-sentence symbol:calculate probabilitysample a new word from the probability distribution
```

Calculating the Probability of a Sentence

$$P(X) = \prod_{i=1}^{I} P(x_i \mid x_1, \dots, x_{i-1})$$
Next Word Context

This is a classification problem over the next word!

$$P(x_i \mid x_1, \ldots, x_{i-1})$$

How do we do this?!?!

Count-based Language Models

Count up the frequency and divide:

$$P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) := \frac{c(x_{i-n+1}, \dots, x_i)}{c(x_{i-n+1}, \dots, x_{i-1})}$$

Add smoothing, to deal with zero counts:

$$P(x_i \mid x_{i-n+1}, \dots, x_{i-1}) = \lambda P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) + (1 - \lambda)P(x_i \mid x_{1-n+2}, \dots, x_{i-1})$$

Problems w/ Count-based Models

Cannot share strength among similar words

she bought a car she purchased a car

she bought a bicycle she purchased a bicycle

Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith

Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

An Alternative: Featurized Models

- Calculate features of the context
- Based on the features, calculate probabilities
- Optimize feature weights using gradient descent, etc.

Example:

Previous words: "giving a"

$$b = \begin{pmatrix} 3.0 \\ 2.5 \\ -0.2 \\ 0.1 \\ 1.2 \end{pmatrix}$$

$$N_{1,a} = \begin{pmatrix} -6.0 \\ -5.1 \\ 0.2 \\ 0.1 \\ 0.5 \end{pmatrix}$$

$$W_{2,giving} = \begin{pmatrix} -0.2 \\ -0.3 \\ 1.0 \\ 2.0 \\ -1.2 \end{pmatrix}$$

$$S = \begin{cases} -3.2 \\ -2.9 \\ 1.0 \\ 2.2 \\ 0.6 \\ \dots \end{cases}$$

Words we're predicting

How likely are they?

How likely are they given prev. word is "a"?

How likely are they given 2nd prev. word is "giving"?

Total score

Softmax

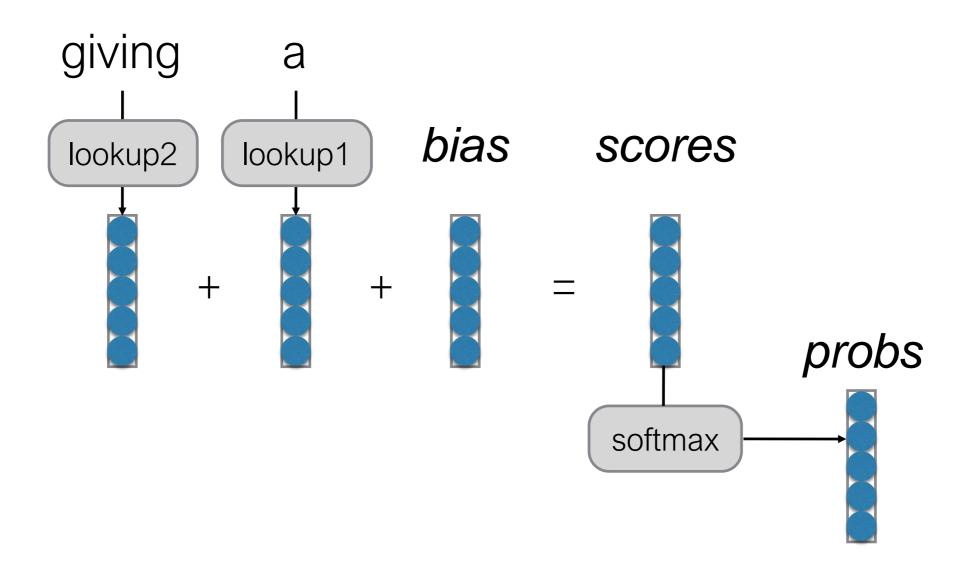
 Convert scores into probabilities by taking the exponent and normalizing (softmax)

$$P(x_i \mid x_{i-n+1}^{i-1}) = \frac{e^{s(x_i \mid x_{i-n+1}^{i-1})}}{\sum_{\tilde{x}_i} e^{s(\tilde{x}_i \mid x_{i-n+1}^{i-1})}}$$

$$s = \begin{pmatrix} -3.2 \\ -2.9 \\ 1.0 \\ 2.2 \\ 0.6 \end{pmatrix} \longrightarrow p = \begin{pmatrix} 0.002 \\ 0.003 \\ 0.329 \\ 0.444 \\ 0.090 \end{pmatrix}$$

. . .

A Computation Graph View



Each vector is size of output vocabulary

What Problems are Handled?

Cannot share strength among similar words

she bought a car she purchased a car

she bought a bicycle she purchased a bicycle

- → not solved yet (😩)
- Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith

→ solved! (₩)

Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer

→ not solved yet (😩)

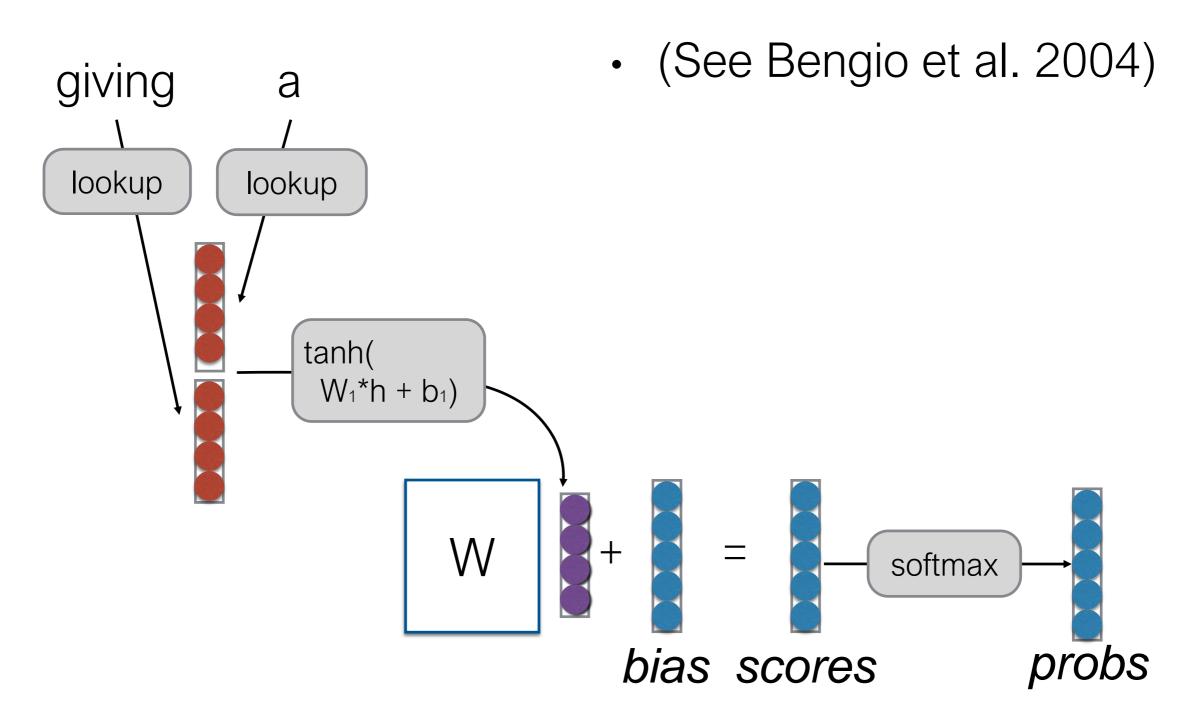
Linear Models can't Learn Feature Combinations

```
farmers eat steak → high farmers eat hay → low
```

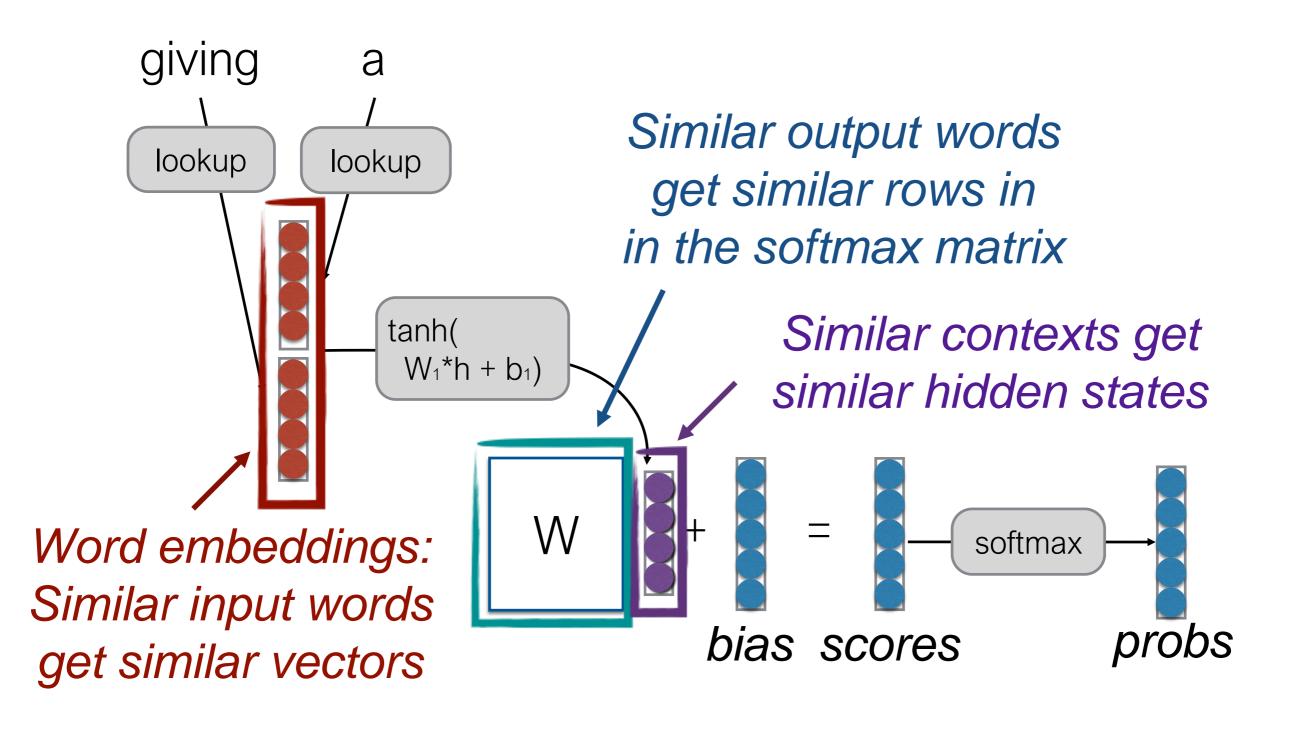
cows eat steak \rightarrow **low** cows eat hay \rightarrow **high**

- These can't be expressed by linear features
- What can we do?
 - Remember combinations as features (individual scores for "farmers eat", "cows eat")
 - → Feature space explosion!
 - Neural nets

Neural Language Models



Where is Strength Shared?



What Problems are Handled?

Cannot share strength among similar words

she bought a car she purchased a car

she bought a bicycle she purchased a bicycle

→ solved, and similar contexts as well! (₩)

Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith

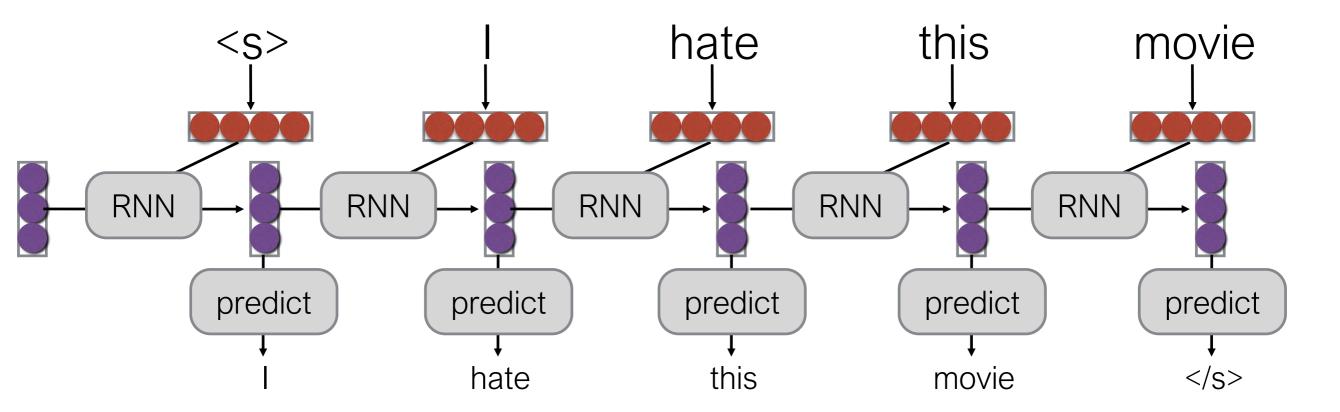
→ solved! (₩)

Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer

→ not solved yet (😩)

RNN Language Models



Can handle long-range dependencies, as long as we can learn!

Evaluation of LMs

Log-likelihood:

$$LL(\mathcal{E}_{test}) = \sum_{E \in \mathcal{E}_{test}} \log P(E)$$

Per-word Log Likelihood:

$$WLL(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} \log P(E)$$

Per-word (Cross) Entropy:

$$H(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} -\log_2 P(E)$$
 • Perplexity:

$$ppl(\mathcal{E}_{test}) = 2^{H(\mathcal{E}_{test})} = e^{-WLL(\mathcal{E}_{test})}$$

Sequence Transduction: Models of P(text | text)

Conditioned Language Models

 Not just generate text, generate text according to some specification

Input X

Structured Data

English

Document

Utterance

Image

Speech

Output Y (Text)

NL Description

Japanese

Short Description

Response

Text

Transcript

Task

NL Generation

Translation

Summarization

Response Generation

Image Captioning

Speech Recognition

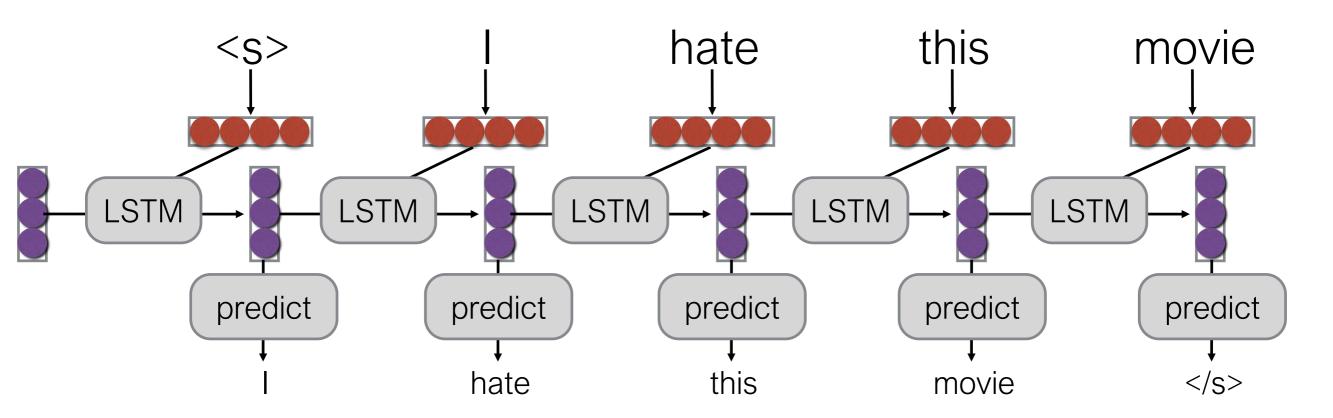
Calculating the Probability of a Sentence

$$P(X) = \prod_{i=1}^{I} P(x_i \mid x_1, \dots, x_{i-1})$$
Next Word Context

Conditional Language Models

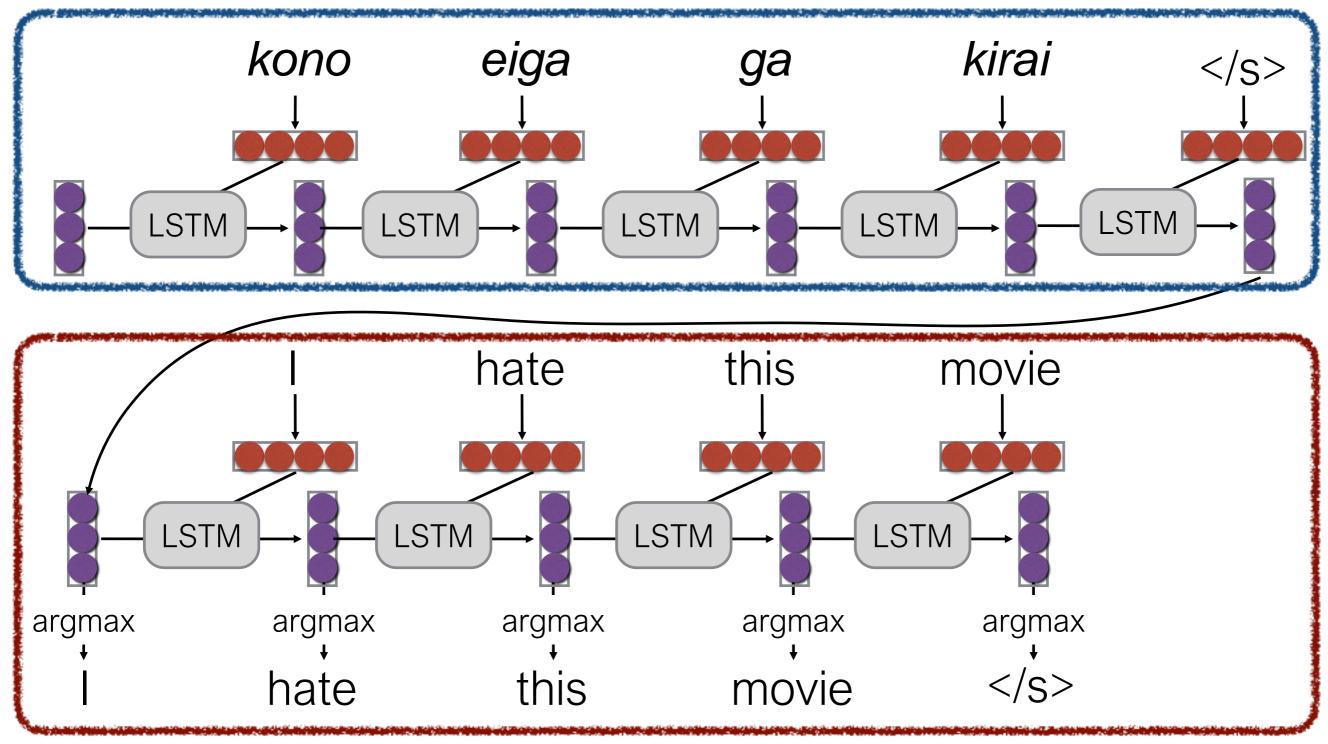
$$P(Y|X) = \prod_{j=1}^{J} P(y_j \mid X, y_1, \dots, y_{j-1})$$
Added Context!

(One Type of) Language Model (Mikolov et al. 2011)



(One Type of) Conditional Language Model (Sutskever et al. 2014)

Encoder



Decoder

The Generation Problem

- We have a model of P(Y|X), how do we use it to generate a sentence?
- Two methods:
 - **Sampling:** Try to generate a *random* sentence according to the probability distribution.
 - Argmax: Try to generate the sentence with the highest probability.

Ancestral Sampling

Randomly generate words one-by-one.

while
$$y_{j-1} != "": $y_j \sim P(y_j \mid X, y_1, ..., y_{j-1})$$$

 An exact method for sampling from P(X), no further work needed.

Argmax Search

 Greedy search: One by one, pick the single highestprobability word

```
while y_{j-1} != "</s>": 
 <math>y_j = argmax P(y_j | X, y_1, ..., y_{j-1})
```

Beam search: keep multiple hypotheses

Representing Sentences as Vectors

Problem!

"You can't cram the meaning of a whole %&!\$ing sentence into a single \$&!*ing vector!"

— Ray Mooney

 But what if we could use multiple vectors, based on the length of the sentence.

this is an example -----

this is an example ——

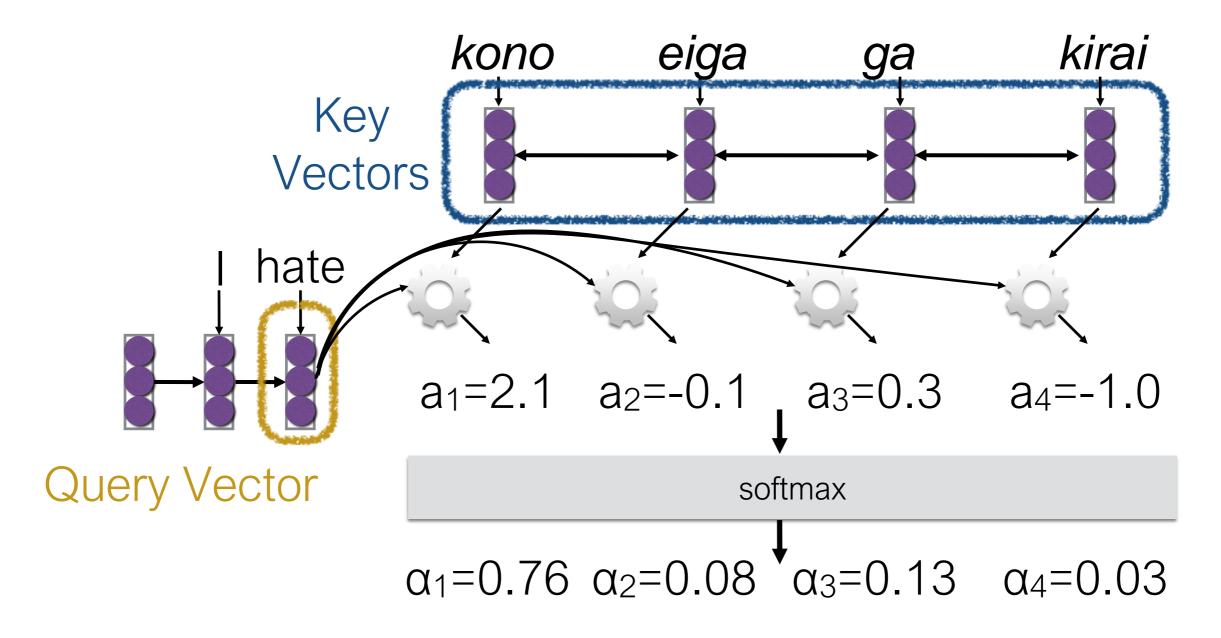
"Attention"!

(Bahdanau et al. 2015)

- Encode each word in the sentence into a vector
- When decoding, perform a linear combination of these vectors, weighted by "attention weights"
- Use this combination in picking the next word

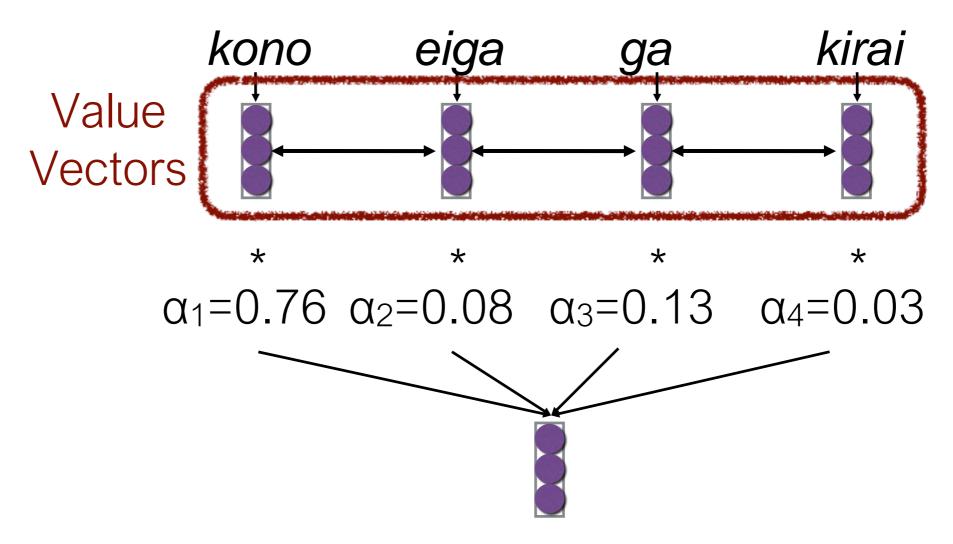
Calculating Attention (1)

- Use "query" vector (decoder state) and "key" vectors (all encoder states)
- For each query-key pair, calculate weight
- Normalize to add to one using softmax



Calculating Attention (2)

 Combine together value vectors (usually encoder states, like key vectors) by taking the weighted sum



Use this in any part of the model you like

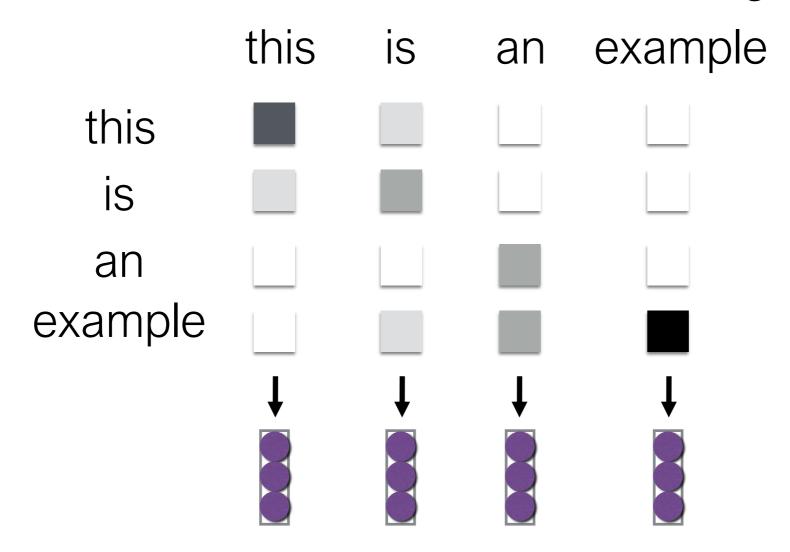
A Graphical Example



Intra-Attention / Self Attention

(Cheng et al. 2016)

 Each element in the sentence attends to other elements → context sensitive encodings!

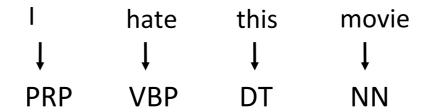


Excellent results for translation in Vaswani et al. (2017)

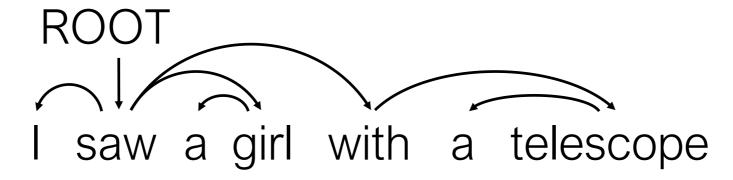
Language Analysis: Models of P(structure | text)

Analysis Tasks

Tagging:



Syntactic Parsing:

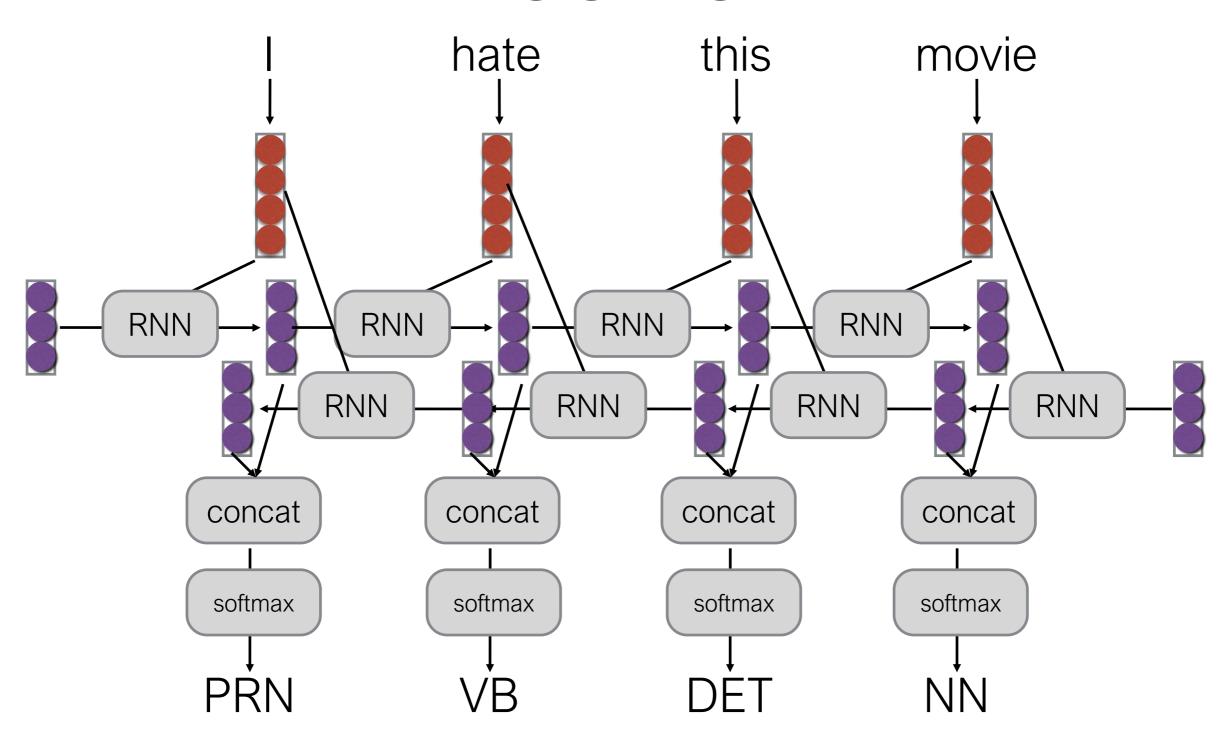


Semantic Parsing:

```
x: "what is the population of iowa?"
y: _answer ( NV , (
 _population ( NV , V1 ) , _const (
                                         shutil.copy(
   V0 , _stateid ( iowa ) ) ) )
                                             'file.txt', 'file2.txt')
```

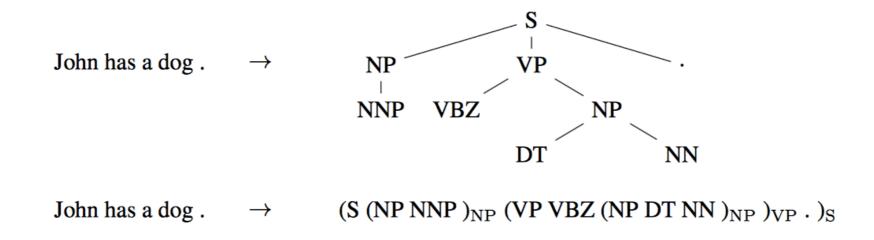
copy the content of file 'file.txt' to file 'file2.txt'

Simple Tagging: BiLSTMs



Simple Parsing: Linearized Tree + seq2seq

Convert a tree structure into a sequence of symbols



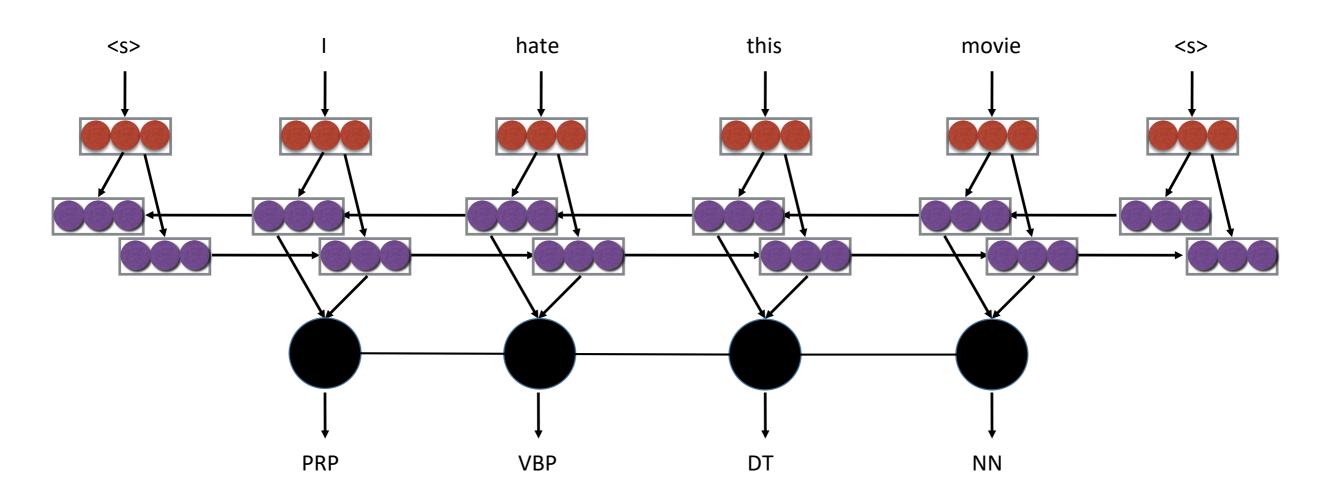
Solve using standard seq2seq model

Exploiting Problem Structure

- Simple methods can get you pretty far!
 - esp. if you have lots of training data
- But exploiting problem structure can get you farther

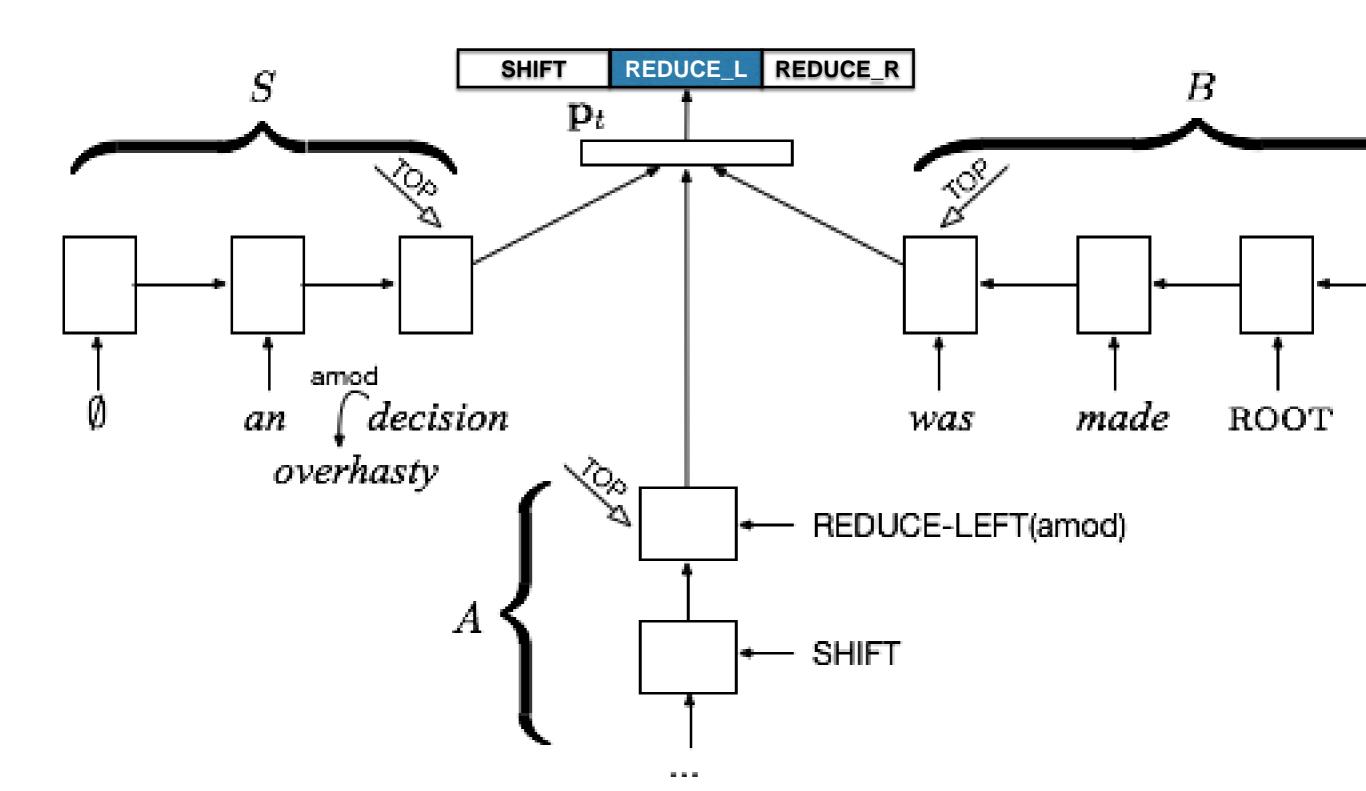
Better Tagging: BiLSTM Conditional Random Fields (e.g. Ma and Hovy 2015)

Add an additional layer that ensures consistency between tags



Training and prediction use dynamic programming

Better Parsing: Stack LSTMs (Dyer et al. 2015)



Overcoming Data Sparsity

- Unlike MT or language modeling, analysis tasks there is usually not enough data
- Strong allies:
 - Pre-trained word embeddings (e.g. FastText)
 - Pre-trained language models (e.g. Elmo)

Learn More!

Learn More!

- NLP is a big field, too big for 1.5 hours
- Lots of nice resources online, e.g.:
 - Stanford CS224n: Natural Language Processing with Deep Learning https://web.stanford.edu/class/cs224n/
 - CMU CS11-747: Neural Networks for Natural Language Processing http://phontron.com/class/nn4nlp2018/

Any Questions?