Generative Models

David Duvenaud
Deep Learning Summer School 2018

¹ VECTOR
INSTITUTE

ML as a bag of tricks

Fast special cases:

- K-means
- Kernel Density Estimation
- SVMs
- Boosting
- Random Forests

Extensible family:

- Mixture of Gaussians
- Latent variable models
- Gaussian processes
- Deep neural nets
- Bayesian neural nets

Regularization as bag of tricks

Fast special cases:
Extensible family:

- Early stopping
- Ensembling
- L2 Regularization
- Stochastic variational inference
- Gradient noise
- Dropout
- Expectation-Maximization

A language of models

- Hidden Markov Models, Mixture of Gaussians, Logistic Regression, VAEs, Normalizing flows
- These are simply examples from a composable language of probabilistic models.

Al as a bag of tricks

Russel and Norvig's parts of AI: Extensible family:

- Machine learning
- Natural language processing
- Knowledge representation
- Automated reasoning
- Computer vision
- Robotics

Losses are log-likelihoods

- Squared loss is just unnormalized Normal log-pdf
- "Cross-entropy" now means Categorical log-pmf ?!
- Actual definition: $H(p, q)=-\sum_{x} p(x) \log q(x)$
- "Teacher forcing" is just evaluating the likelihood of a sequential model

$$
p(x)=\prod_{i} p_{\theta}\left(x_{i} \mid x_{<i}\right)
$$

What are Generative Models?

- Discriminative: Trained to answer a single query, p(class |image)
- Generative: Trained to model data distribution too: p(class, image) or simply p(image)
- Any distribution can be conditioned and sampled from (with some work).
- Can do ancestral sampling if $p(x, z)=p(z) p(x \mid z)$

Why should you care?

- Modeling the joint distribution lets us answer any query about the domain: p(class | image), p(image | class), p(bottom of image | top of image)
- Conditional probability is an extension of logic that tells us how to combine evidence automatically
- Generative models are composable. Useful for modeling and semi-supervised learning.
- Samples let us check the models
- Latent variables sometimes interpretable

[1]

[2]
[4]

Gaussian mixture model
Linear dynamical system

[3]

Hidden Markov model

Switching LDS

Mixture of Experts

Driven LDS

Canonical correlations analysis

IO-HMM

Factorial HMM

admixture / LDA / NMF
[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.
Courtesy of Matthew Johnson

Differentiable latent-variable models

- Model distributions implicitly by a variable pushed through a deep net:

$$
y=f_{\theta}(x)
$$

- Approximate intractable distribution by a tractable distribution parameterized by a deep net:

$$
p(y \mid x)=\mathcal{N}\left(y \mid \mu=f_{\theta}(x), \Sigma=g_{\theta}(x)\right)
$$

- Optimize all parameters using stochastic gradient descent

4 Main Approaches

- Sequential Models

$$
p(x)=\prod_{i} p_{\theta}\left(x_{i} \mid x_{<i}\right)
$$

- Variational Autoencoders

$$
x=f_{\theta}(z)+\epsilon
$$

- Normalized models

$$
x=f_{\theta}(z), \quad p(x)=p(z)|\operatorname{det}(\nabla f)|^{-1}
$$

- Implicit models (GANs)

$$
x=f_{\theta}(z)
$$

$$
p(x)=\prod p_{\theta}\left(x_{i} \mid x_{<i}\right)
$$

occluded
completions
original

Pixel Recurrent Neural Networks
Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu

Variational Inference

- Need to compute $p_{\theta}(z \mid x)=\frac{p_{\theta}(x \mid z) p(z)}{\int p_{\theta}\left(x \mid z^{\prime}\right) p\left(z^{\prime}\right) d z^{\prime}}$
- Optimize a distribution $q_{\phi}(z \mid x)$ to match $p_{\theta}(z \mid x)$
- What if there is a latent variable z per-datapoint, and global parameters?
- Optimize each $q_{\phi}\left(z_{i} \mid x_{i}\right)$ to match each $p_{\theta}\left(z_{i} \mid x_{i}\right)$, then update theta. Slow!

ITOMA CRIOBSLSNUGOOL

TUTEARATING OUERANETIEIE TMPOTHESISSPMGEBGOOTratornet

Variational Autoencoder

- Train a recognition network to output approximately optimal variational distributions $q_{\phi}\left(z_{i} \mid x_{i}\right)$ given x_i
- Total freedom in designing recognition procedure
- Can be evaluated by how well it matches $p_{\theta}\left(z_{i} \mid x_{i}\right)$

Consequences of using a recognition network

- Don't need to re-optimize $\mathrm{q}(\mathrm{z} \mid \mathrm{x})$ each time theta changes. Much faster!
- Recognition net won’t necessary give optimal phi_i
- Can have fast test-time inference (vision)
- Can train recognition net jointly with generator

Simple but not obvious

- It took a long time get here!
- Independently developed as denoising autoencoders (Bengio et al.) and amortized inference (many others)
- Helmholtz machine - same idea in 1995 but used discrete latent variables

The Helmholtz Machine

Peter Dayan
Geoffrey E. Hinton
Radford M. Neal
Department of Computer Science, University of Toronto,
6 King's College Road, Toronto, Ontario M5S 1A4, Canada
Richard S. Zemel
CNL, The Salk Institute, PO Box 85800, San Diego, CA 92186-5800 USA

Discovering the structure inherent in a set of patterns is a fundamental aim of statistical inference or learning. One fruitful approach is to build a parameterized stochastic generative model, independent draws from which are likely to produce the patterns. For all but the simplest generative models, each pattern can be generated in exponentially many ways. It is thus intractable to adjust the parameters to maximize

Variations: Decoder

- Often, $p(x \mid z)=\mathscr{N}\left(x \mid f_{\theta}(z), \operatorname{diag}\left(g_{\theta}(z)\right)\right)$
- Final step has independence assumption, causes noisy samples, blurry means
- $p(x \mid z)$ can be anything: RNN, pixeIRNN, real NVP, deconv net

Variations

- Decoder often looks like inverse of encoder
- Encoders can come from supervised learning

Learning Deconvolution Network for Semantic Segmentation http://arxiv.org/abs/1505.04366.

Real-Valued Non-VolumePreserving Transformations

- aka Real NVP
- divides up variables into two parts, updates only one half with a scale and shift

Real-Valued Non-VolumePreserving Transformations

- change of variables formula is tractable due to lowerdiagonal Jacobian

$$
\frac{\partial y}{\partial x^{T}}=\left[\begin{array}{cc}
\mathbb{I}_{d} & 0 \\
\frac{\partial y_{d+1: D}}{\partial x_{1: d}^{T}} & \operatorname{diag}\left(\exp \left[s\left(x_{1: d}\right)\right]\right)
\end{array}\right]
$$

Real-Valued Non-VolumePreserving Transformations

- Need to interleave many layers with different partitions

Density estimation using Real NVP. Ding et al, 2016

Density estimation using Real NVP. Ding et al, 2016

Flows as Euler integrators

- Middle layers look like:

$$
\mathbf{h}_{t+1}=\mathbf{h}_{t}+f\left(\mathbf{h}_{t}, \theta_{t}\right)
$$

- Limit of smaller steps:

$$
\frac{d \mathbf{h}(\mathbf{t})}{d t}=f(\mathbf{h}(t), \theta(t))
$$

Flows as Euler integrators

- Middle layers look like:

$$
\mathbf{h}_{t+1}=\mathbf{h}_{t}+f\left(\mathbf{h}_{t}, \theta_{t}\right)
$$

- Limit of smaller steps:

$$
\frac{d \mathbf{h}(\mathbf{t})}{d t}=f(\mathbf{h}(t), \theta(t))
$$

Normalizing Flows

$$
x_{1}=f\left(x_{0}\right) \Longrightarrow p\left(x_{1}\right)=p\left(x_{0}\right)\left|\operatorname{det} \frac{\partial f}{\partial x_{0}}\right|^{-1}
$$

- Determinant of Jacobian has cost $\mathrm{O}\left(\mathrm{D}^{\wedge} 3\right)$.
- Matrix determinant lemma gives $\mathrm{O}(\mathrm{DH} \wedge 3)$ cost.
- Normalizing flows use 1 hidden unit. Deep \& skinny

$$
\begin{aligned}
x(t+1) & =x(t)+u h\left(w^{T} x(t)+b\right) \\
\log p(x(t+1)) & =\log p(x(t))-\log \left|1+u^{T} \frac{\partial h}{\partial x}\right|
\end{aligned}
$$

Continuous Normalizing Flows

- What if we move to continuous transformations?

$$
\frac{\partial \log p(x(t))}{\partial t}=-\operatorname{tr}\left(\frac{d f}{d x}(t)\right)
$$

- Time-derivative only depends on trace of Jacobian

$$
\frac{d x}{d t}=u h\left(w^{T} x+b\right), \quad \frac{\partial \log p(x)}{\partial t}=-u^{T} \frac{\partial h}{\partial x}
$$

- Trace of sum is sum of traces - $\mathrm{O}(\mathrm{HD})$ cost!

$$
\frac{d x}{d t}=\sum_{n} f_{n}(x), \quad \frac{d \log p(x(t))}{d t}=\sum_{n} \operatorname{tr}\left(\frac{\partial f}{\partial x}\right)
$$

Training directly from data

- Best of all worlds:
- Wide layers
- No need to partition dimensions
- Can evaluate density tractably?

Target

Density

Samples

Vector Field

Generator Network $\boldsymbol{x}=G\left(\boldsymbol{z} ; \boldsymbol{\theta}^{(G)}\right)$

-Must be differentiable

- No invertibility requirement
- Trainable for any size of z
- Some guarantees require z to have higher dimension than x
- Can make x conditionally Gaussian given z but need not do so

Generative Adversarial Networks

A 1-dimensional example:

Discriminator Strategy

Optimal $D(\boldsymbol{x})$ for any $p_{\text {data }}(\boldsymbol{x})$ and $p_{\text {model }}(\boldsymbol{x})$ is always

$$
D(x)=\frac{p_{\text {data }}(x)}{p_{\text {data }}(x)+p_{\text {model }}(x)}
$$

Estimating this ratio using supervised learning is
the key approximation mechanism used by GANs

Minimax Game

$$
\begin{aligned}
J^{(D)} & =-\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text {data }}} \log D(\boldsymbol{x})-\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1-D(G(\boldsymbol{z}))) \\
J^{(G)} & =-J^{(D)}
\end{aligned}
$$

-Equilibrium is a saddle point of the discriminator loss
-Resembles Jensen-Shannon divergence
-Generator minimizes the log-probability of the discriminator being correct

Can train GANs with any divergence

GAN (Jensen-Shannon)

Hellinger

Kullback-Leibler

Slide from Sebastian Nowozin

Relation to VAEs

- Same graphical model: z -> x
- VAEs have an explicit likelihood: $p(x \mid z)$
- GANs have no explicit likelihood
- aka implicit models, likelihood-free models
- Can use same trick for implicit q(z|x). [Lars et al., 2017, Mohamed \& Lakshminarayanan, 2016, Huszar, 2017, Tran, Ranganath, \& Blei, 2017]
- Sequential Models:

$$
p(x)=\prod p_{\theta}\left(x_{i} \mid x_{<i}\right)
$$

- Pros: Exact likelihoods, easy to train
- Cons: $\mathrm{O}(\mathrm{N})$ layers to evaluate or sample, need to choose order
- Variational Autoencoders:

$$
x=f_{\theta}(z)+\epsilon
$$

- Pros: Cheap to evaluate and sample, low-D latents
- Cons: Factorized likelihood gives noisy samples
- Explicitly normalized models: $\quad x=f_{\theta}(z), \quad p(x)=p(z)|\operatorname{det}(\nabla f)|^{-1}$
- Pros: Exact likelihoods, easy to train
- Cons: Must cripple layers to maintain tractability, need huge models
- Implicit models:

$$
x=f_{\theta}(z)
$$

- Pros: Cheap to sample, no factorization
- Cons: Hard to train, likelihood not available

$$
\begin{aligned}
p(\boldsymbol{x}) & =\frac{1}{Z} \exp (-E(\boldsymbol{x}, \boldsymbol{z})) \\
Z & =\sum_{\boldsymbol{x}} \sum_{\boldsymbol{z}} \exp (-E(\boldsymbol{x}, \boldsymbol{z}))
\end{aligned}
$$

- Partition function is intractable
- May be estimated with Markov chain methods
- Generating samples requires Markov chains too

[1]

[2]
[4]

Gaussian mixture model
Linear dynamical system

[3]

Hidden Markov model

Switching LDS

Mixture of Experts

Driven LDS

Canonical correlations analysis

IO-HMM

Factorial HMM

admixture / LDA / NMF
[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.
Courtesy of Matthew Johnson

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - - - }
\end{aligned}
$$

Modeling idea: graphical models on latent variables, neural network models for observations

Composing graphical models with neural networks for structured representations and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams, NIPS 2016

[1]

[2]
[4]

Gaussian mixture model
Linear dynamical system

[3]

Hidden Markov model

Switching LDS

Mixture of Experts

Driven LDS

Canonical correlations analysis

IO-HMM

Factorial HMM

admixture / LDA / NMF
[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.
Courtesy of Matthew Johnson

Probabilistic graphical models

+ structured representations
+ priors and uncertainty
+ data and computational efficiency
- rigid assumptions may not fit
- feature engineering
- top-down inference

Deep learning

- neural net "goo"
- difficult parameterization
- can require lots of data
+ flexible
+ feature learning
+ recognition networks

Modeling idea: graphical models on latent variables, neural network models for observations

Application: learn syllable representation of behavior from video

$$
\pi=\square\left[\begin{array}{cc}
\square & \pi^{(1)} \\
\square & \square \\
- & \pi^{(2)}-\square \\
\pi^{(3)} & \square
\end{array}\right]
$$

$A^{(1)} \quad A^{(2)} \quad A^{(3)}$

Frame 0

Alexander Wiltschko, Matthew Johnson, et al., Neuron 2015.

\approx	-	c		F	-	$=$	$=$	c	$=$	-	-	-	-	\cdots	
-	-	s		\cdots	-	-	-	-	-	-	-	-	-	-	$=$
-	-	-		-	-	-	-	*	-	-	C	-	-	-	*
*	-	c		\checkmark	-	-	-	-	-	\bullet	-	-	-	-	
-	c	0		-	-	-	-	-	-	*	-	-	-	-	
-	-	=		-	*	-	-	\bullet	-	-	-	\Rightarrow	-	\cdots	
c	-	c		-	-	-	\bigcirc	-	-	-	-	$*$	-	-	
	-	,		*	-	-	*	-	-	*	-	-	=	-	
-	-	-		-	\bigcirc	-	-	-	$=$	-	-	-	-	-	
*	\triangle	c		-	-	-	\sim	-	-	-	-	-	-	-	-
-	$=$	c		-	-	*	*	-	-	-	*	*	-	-	

-	E	-	0	0	-	5	0	8	0	0	0	0	0	0	3	0	0	0	\cdots	5	3	\square	3	Cor
\cdots	Eter	\square	S	Br	\square	ther	\bigcirc	0	0	8	0	0	2	4	3	ter	\cdots	+	\square	\square	\square	\bigcirc	5	5

M

start rear

fall from rear

grooming

Application: Generative Design of Molecules

Text autoencoders

- Generating Sentences from a Continuous Space. Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Jozefowicz, Samy Bengio

Text VAE - Interpolation

it made me want to cry .
no one had seen him since . it made me feel uneasy. no one had seen him. the thought made me smile . the pain was unbearable . the crowd was silent .
the man called out .
he was silent for a long moment . he was silent for a moment .
it was quiet for a moment.
it was dark and cold .
there was a pause .
it was my turn.
the man asked.

What is a molecule?

Graph SMILES string

Repurposing text autoencoders

Can be trained on unlabeled data

Map of 220,000 Drugs

Map of 100,000 OLEDs

Random Organic LEDs

Variational autoencoder

Standard autoencoder

Molecules near ans or

Molecules near

whirr whe dre her pe po peo or our

$x^{\circ} x>+x>+x+x+\cdots+x+x+x$解 …

No chemistryspecific design!

品解R

Grammar VAE
Matt Kusner, Brooks Paige, José Miguel Hernández-Lobato

Gradient-based optimization

Gradient-based optimization

- Can't necessarily start from given molecule, need to encode/decode
- Can't go too far from start, wander into 'holes' or empty regions

Be careful what you wish for

- Optimizing for solubility gave molecules with giant rings
- Needed to add hacky terms to objective
- Maybe not necessary, if there's downstream validation

$$
J^{\log \mathrm{P}}(m)=\log \mathrm{P}(m)-\mathrm{SA}(m)-\operatorname{ring}-\text { penalty }(m)
$$

Bayesian Optimization

Sort of worked!

Molecule 2

Objective Values in Training Data

Science Translational Medicine Home News Journals Careers

Derek Lowe's commentary on drug discovery and the pharma industry. An editorially independent blog from the publishers of Science Translational Medicine.

By Derek Lowe
v \triangle

Calculating A Few Too Many New Compounds

By Derek Lowe | November 8, 2016
"No organic chemist could have looked at these without raising the alarm - this stuff is not, by many standards, publishable at all. When the authors do show this work to someone in the field, it will not go well. In fact, this blog post is an example of just such an encounter, and no, it isn't going well."

Frontiers

What recently became easy in machine learning?

- Training continuous latentvariable models (VAEs, GANs) to produce large images
- Training large supervised models with fixed architectures
- Building RNNs that can output grid-structured objects (images, waveforms)

What is still hard?

- Training GANs to generate text
- Training VAEs with discrete latent variables
- Training agents to communicate with each other using words
- Training agent or programs to decide which discrete action to take.
- Training generative models of structured objects of arbitrary size, like programs, graphs, or large texts.

Level	Model	PTB	CMU-SE
Word	LSTM	what everything they take everything away from. may tea bill is the best chocolate from emergency. can you show show if any fish left inside. room service, have my dinner please.	<s> will you have two moment? </s> $<\mathrm{s}>\mathrm{i}$ need to understand deposit length . </s> <s>how is the another headache ? </s> $<$ s>how there, is the restaurant popular this cheese? </s>
	CNN	meanwhile henderson said that it has to bounce for. I'm at the missouri burning the indexing manufacturing and through .	$<$ s $>$ i 'd like to fax a newspaper . </s> $>$ $<$ s >cruise pay the next in my replacement. $</ \mathrm{s}\rangle$ $<\mathrm{s}>$ what 's in the friday food? ? </s>

Table 4: Word level generations on the Penn Treebank and CMU-SE datasets
Adversarial Generation of Natural Language.
Sai Rajeswar, Sandeep Subramanian, Francis Dutil, Christopher Pal, Aaron Courville, 2017

"We successfully trained the RL-NTM to solve a number of algorithmic tasks that are simpler than the ones solvable by the fully differentiable NTM."
Reinforcement Learning Neural Turing Machines Wojciech Zaremba, Ilya Sutskever, 2015

Why are the easy things easy?

Gradient Descent

- Gradients give more information the more parameters you have
- Backprop (reverse-mode AD) only takes about as long as the original function
- Local optima less of a problem than you think

Why are the hard things hard?

- Discrete structure means we can't use backprop to get gradients
- No cheap gradients means that we don't know which direction to move to improve
- Not using our knowledge of the structure of the function being optimized
- Becomes as hard as optimizing a black-box
 function

```
String s;
BufferedReader br;
FileReader Ir;
try 1
    Er = new FileReader($String);
    br = new BufferedReader(fr);
    while ((s = br.readLine()) != null) {}
    br.close();
} catch (FileNotFoundException _e) {
    _e.printStackTrace();
} catch (IOException _e) ,
catch (IOException _e)
}
```

```
String s;
```

String s;
BufferedReader br;
BufferedReader br;
FileReader Ir;
FileReader Ir;
try :
try :
fr = new FileReader($File);
 fr = new FileReader($File);
Ir = new Fi-eReader(SFi-e); ;
Ir = new Fi-eReader(SFi-e); ;
while ((s = br.readLine()) != null) {}
while ((s = br.readLine()) != null) {}
br.close();
br.close();
} catch (FileNotFoundException _e){
} catch (FileNotFoundException _e){
} catch (IOException _e):
} catch (IOException _e):
}

```
}
```

(a)
(b)

Figure 7: Programs generated in a typical run of BAYou, given the API method name readLine and the type FileReader.

argmax decoding
1234567 CTCTAACAGCACCTGCCCTTGAGCTTAAACTAATTAATCAATAATAGG GTCGTAAACAGGAGCTTGGCTTGAGGTTAAACTATTTAATCAATAATAGG GTCGTAAACAGGAGGATGGCTTGAGGTTAGACTATT TAATCATTAATAGG GTCGTAAACAGGAGGATGGCTTCAGGTTAGACTATTTAATCATTAATAGG ATCGTAAACAGGAGGATGGCCTCAGCTTTGACTATTTAATCATTAATAAG ATCGTAAACAGGAGGATGGCCACAGCTCTGACTATTTAATCATTAATAAA ATGGTAAACATGAAGATGGCCACAGCTCTGATTATTTAATTATAAATAAA ATGGTAAACATGGTGGTTGCCACAGCTCTGATTATTGAATTATAAATAAA AAAGTAGGCATGGTGGTTGCCACACCTCTGATTATTGAATGATGAAAAAA AAAGTAGGAATGGTTGTTGCAACACCTCTGATTATTGAATGATGAAAAAA

Generating and designing DNA with deep generative models. Killoran, Lee, Delong, Duvenaud, Frey, 2017

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

S.M. Eslami,N. Heess, T. Weber, Y. Tassa, D. Szepesvari, K.Kavukcuoglu, G. E. Hinton

History of Generative Models

- 1940s - 1960s Motivating probability and Bayesian inference
- 1980s - 2000s Bayesian machine learning with MCMC
- 1990s - 2000s Graphical models with exact inference
- 1990s - 2015 Bayesian Nonparametrics with MCMC (Indian Buffet process, Chinese restaurant process)
- 1990s-2000s Bayesian ML with mean-field variational inference
- 1995-1996 Helmholtz machine, wake-sleep (almost invented variational autoencoders)
- 2000s - 2013 Deep undirected graphical models (RBMs, pretraining)
- 2000s - 2013 Autoencoders, denoising autoencoders

Modern Generative Models

- 2000s - Probabilistic Programming
- 2000s - Invertible density estimation
- 2010 - Stan - Bayesian Data Analysis with HMC
- 2013 - Variational autoencoders, reparamaterization trick becomes widely known
- 2014 - Generative adversarial nets
- 2015 - Deep reinforcement learning
- 2016 - New gradient estimators (muprop, Q-prop, concrete + Gumbel-softmax, REBAR, RELAX)

Other Frontiers

- Generating long action-conditional video
- Modeling uncertainty in the generative process
- Coherent multi-scale models
- Ultimate application: data-efficient model-based RL
- Expected utility framework separates modeling from decision-making

Takeaways

- Different approaches to generative modeling have different tradeoffs.
- GANs pay high cost at training time, flexible and cheap sampling at test time
- Simple components form a composable language of models.
- Watch out for reinventing Bayes' rule. Approximating the optimal provides a lot of guidance.

Thanks!

