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ML as a bag of tricks

• K-means 

• Kernel Density 
Estimation 

• SVMs 

• Boosting 

• Random Forests

• Mixture of Gaussians 

• Latent variable models 

• Gaussian processes 

• Deep neural nets 

• Bayesian neural nets

Fast special cases: Extensible family:



Regularization as bag of tricks

• Early stopping 

• Ensembling 

• L2 Regularization 

• Gradient noise 

• Dropout 

• Expectation-Maximization

• Stochastic variational 
inference 

Fast special cases: Extensible family:



A language of models

• Hidden Markov Models, Mixture of Gaussians, 
Logistic Regression, VAEs, Normalizing flows 

• These are simply examples from a composable 
language of probabilistic models.



AI as a bag of tricks

• Machine learning 

• Natural language processing 

• Knowledge representation 

• Automated reasoning 

• Computer vision 

• Robotics

• Deep probabilistic 
latent-variable 
models + decision 
theory  

Russel and Norvig’s parts of AI: Extensible family:



Losses are log-likelihoods

• Squared loss is just unnormalized Normal log-pdf 

• “Cross-entropy” now means Categorical log-pmf ?! 

• Actual definition: 

• “Teacher forcing” is just evaluating the likelihood of 
a sequential model p(x) = ∏

i

pθ(xi |x<i)



What are Generative Models? 

• Discriminative: Trained to answer a single query, 
p(class | image) 

• Generative: Trained to model data distribution too: 
p(class, image) or simply p(image) 

• Any distribution can be conditioned and sampled 
from (with some work). 

• Can do ancestral sampling if p(x, z) = p(z)p(x|z)



Why should you care?
• Modeling the joint distribution lets us answer any query 

about the domain: p(class | image), p(image | class), 
p(bottom of image | top of image) 

• Conditional probability is an extension of logic that tells 
us how to combine evidence automatically 

• Generative models are composable.  Useful for modeling 
and semi-supervised learning. 

• Samples let us check the models 

• Latent variables sometimes interpretable
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Differentiable latent-variable 
models

• Model distributions implicitly by a variable pushed 
through a deep net: 

• Approximate intractable distribution by a tractable 
distribution parameterized by a deep net: 

• Optimize all parameters using stochastic gradient 
descent

y = f✓(x)

p(y|x) = N (y|µ = f✓(x),⌃ = g✓(x))



4 Main Approaches
• Sequential Models 

• Variational Autoencoders 

• Normalized models 

• Implicit models (GANs)

x = fθ(z) + ϵ

x = fθ(z)

x = fθ(z), p(x) = p(z) det (∇f)
−1

p(x) = ∏
i

pθ(xi |x<i)



Pixel Recurrent Neural Networks 
Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu

p(x) = ∏
i

pθ(xi |x<i)



Variational Inference
• Need to compute  

• Optimize a distribution               to match 

• What if there is a latent variable z per-datapoint, 
and global parameters? 

• Optimize each              to match each               , 
then update theta. Slow!

qϕ(z |x) pθ(z |x)

qϕ(zi |xi) pθ(zi |xi)

pθ(z |x) =
pθ(x |z)p(z)

∫ pθ(x |z′ �)p(z′ �)dz′�





Variational Autoencoder

• Train a recognition network to output approximately 
optimal variational distributions               given x_i 

• Total freedom in designing recognition procedure 

• Can be evaluated by how well it matches 

qϕ(zi |xi)

pθ(zi |xi)



Consequences of using a 
recognition network

• Don’t need to re-optimize q(z|x) each time theta 
changes.  Much faster! 

• Recognition net won’t necessary give optimal phi_i 

• Can have fast test-time inference (vision) 

• Can train recognition net jointly with generator



Simple but not obvious

• It took a long time get here! 

• Independently developed as denoising 
autoencoders (Bengio et al.) and amortized 
inference (many others) 

• Helmholtz machine - same idea in 1995 but used 
discrete latent variables





Variations: Decoder

• Often, 

• Final step has independence assumption, causes 
noisy samples, blurry means 

• p(x|z) can be anything: RNN, pixelRNN, real NVP, 
deconv net

p(x |z) = 𝒩(x | fθ(z), diag(gθ(z)))



Variations
• Decoder often looks like inverse of encoder 

• Encoders can come from supervised learning

Learning Deconvolution Network for Semantic Segmentation 
http://arxiv.org/abs/1505.04366.





Real-Valued Non-Volume-
Preserving Transformations

• aka Real NVP 

• divides up variables into two 
parts, updates only one half 
with a scale and shift



Real-Valued Non-Volume-
Preserving Transformations

• change of variables formula is 
tractable due to lower-
diagonal Jacobian



Real-Valued Non-Volume-
Preserving Transformations
• Need to interleave many layers with different partitions



Density estimation using Real NVP. Ding et al, 2016 



Density estimation using Real NVP. Ding et al, 2016 



Flows as Euler integrators 
• Middle layers look like:

• Limit of smaller steps:

dh(t)
dt

= f(h(t), θ(t))

ht+1 = ht + f(ht , θt)



Flows as Euler integrators 
• Middle layers look like:

• Limit of smaller steps:

dh(t)
dt

= f(h(t), θ(t))

ht+1 = ht + f(ht , θt)



Normalizing Flows

• Determinant of Jacobian has cost O(D^3). 

• Matrix determinant lemma gives O(DH^3) cost. 

• Normalizing flows use 1 hidden unit. Deep & skinny



Continuous Normalizing Flows 

• What if we move to continuous transformations? 

• Time-derivative only depends on trace of Jacobian 

• Trace of sum is sum of traces - O(HD) cost!



Training directly from data 
• Best of all worlds: 

• Wide layers 

• No need to partition dimensions 

• Can evaluate density tractably?





(Goodfellow 2016)

Generator Network
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✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)
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nY

i=2

pmodel(xi | x1, . . . , xi�1)
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✓
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1

Z
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Z =
X

x

X

z

exp (�E(x, z))(4)

Generator equation
x = G(z;✓(G))

1

-Must be differentiable 
- No invertibility requirement 
- Trainable for any size of z 
- Some guarantees require z to have higher 

dimension than x 
- Can make x conditionally Gaussian given z but 

need not do so



Generative Adversarial Networks

A 1-dimensional example:

Roger Grosse CSC321 Lecture 22: Adversarial Learning 13 / 1



(Goodfellow 2016)

Discriminator Strategy
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1
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mX

i=1

log p
⇣
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Data 
Model 

distribution

Optimal D(x) for any pdata(x) and pmodel(x) is always

z

x

Discriminator

Estimating this ratio 
using supervised learning is 

the key approximation 
mechanism used by GANs



(Goodfellow 2016)

Minimax Game

-Equilibrium is a saddle point of the discriminator loss 
-Resembles Jensen-Shannon divergence 
-Generator minimizes the log-probability of the discriminator 
being correct
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1



Can train GANs with any 
divergence

GAN	(Jensen-Shannon)	 Hellinger	 Kullback-Leibler	

Slide from Sebastian Nowozin



Relation to VAEs
• Same graphical model: z -> x 

• VAEs have an explicit likelihood: p(x|z) 

• GANs have no explicit likelihood 

• aka implicit models, likelihood-free models 

• Can use same trick for implicit q(z|x).  [Lars et al., 
2017, Mohamed & Lakshminarayanan, 2016, 
Huszar, 2017, Tran, Ranganath, & Blei, 2017]



• Sequential Models: 

• Pros: Exact likelihoods, easy to train 

• Cons: O(N) layers to evaluate or sample, need to choose order 

• Variational Autoencoders: 

• Pros: Cheap to evaluate and sample, low-D latents 

• Cons: Factorized likelihood gives noisy samples 

• Explicitly normalized models:  

• Pros: Exact likelihoods, easy to train 

• Cons: Must cripple layers to maintain tractability, need huge models 

• Implicit models: 

• Pros: Cheap to sample, no factorization 

• Cons: Hard to train, likelihood not available

x = fθ(z) + ϵ

x = fθ(z)

x = fθ(z), p(x) = p(z) det (∇f)
−1

p(x) = ∏
i

pθ(xi |x<i)



(Goodfellow 2016)

Boltzmann Machines

• Partition function is intractable 

• May be estimated with Markov chain methods 

• Generating samples requires Markov chains too
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Modeling idea: graphical models on latent variables,
neural network models for observations

Composing graphical models with neural networks for structured representations 
and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams, NIPS 2016



data space latent space
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Probabilistic graphical models 

 + structured representations 

 + priors and uncertainty 

 + data and computational efficiency 

 – rigid assumptions may not fit 

 – feature engineering 

 – top-down inference

Deep learning 

 – neural net “goo” 

 – difficult parameterization 

 – can require lots of data 

 + flexible 

 + feature learning 

 + recognition networks



Modeling idea: graphical models on latent variables,
neural network models for observations
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Application: learn syllable representation of behavior from video
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Alexander Wiltschko, Matthew Johnson, et al., Neuron 2015.











start rear



fall from rear



grooming



Application: Generative 
Design of Molecules



Text autoencoders

• Generating Sentences from a Continuous Space. 
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, 
Andrew M. Dai, Rafal Jozefowicz, Samy Bengio



Text	VAE	-	Interpola*on	



What is a molecule?
Graph          SMILES string



Repurposing text 
autoencoders

c1ccccc1 c1ccccc1

ENCODER
Neural Network

DECODER
Neural Network

CONTINUOUS MOLECULAR
REPRESENTATION

Latent Space

Discrete Structure 
SMILES 

Discrete Structure 
SMILES

Can be trained on unlabeled data



Map of 220,000 Drugs



Map of 100,000 OLEDs



Random Organic LEDs
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Molecules near
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No chemistry-
specific design!



Grammar VAE
Matt Kusner, Brooks Paige, José Miguel Hernández-Lobato



Gradient-based optimization



Gradient-based optimization

• Can’t necessarily start from given molecule, need to encode/decode 

• Can’t go too far from start, wander into ‘holes’ or empty regions



Be careful what you wish for

• Optimizing for solubility gave molecules with giant rings 

• Needed to add hacky terms to objective 

• Maybe not necessary, if there’s downstream validation



Objective Values in Training Data
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Bayesian Optimization
Sort of worked!





“No organic chemist could have 
looked at these without raising 
the alarm – this stuff is not, by 

many standards, publishable at 
all. When the authors do show 

this work to someone in the field, 
it will not go well. In fact, this 

blog post is an example of just 
such an encounter, and no, it 

isn’t going well.”



Frontiers



What recently became easy 
in machine learning?

• Training continuous latent-
variable models (VAEs, GANs) 
to produce large images 

• Training large supervised 
models with fixed 
architectures 

• Building RNNs that can output 
grid-structured objects 
(images, waveforms)



What is still hard?
• Training GANs to generate text 

• Training VAEs with discrete latent variables 

• Training agents to communicate with each other using 
words 

• Training agent or programs to decide which discrete 
action to take. 

• Training generative models of structured objects of 
arbitrary size, like programs, graphs, or large texts.



Adversarial Generation of Natural Language. 
Sai Rajeswar, Sandeep Subramanian, Francis Dutil, 

Christopher Pal, Aaron Courville, 2017



“We successfully trained the RL-NTM to solve a number of 
algorithmic tasks that are simpler than the ones solvable by 

the fully differentiable NTM.” 
Reinforcement Learning Neural Turing Machines 

Wojciech Zaremba, Ilya Sutskever, 2015



Why are the easy things easy?

• Gradients give more 
information the more 
parameters you have 

• Backprop (reverse-mode AD) 
only takes about as long as 
the original function 

• Local optima less of a 
problem than you think



Why are the hard things hard?
• Discrete structure means we 

can’t use backprop to get 
gradients 

• No cheap gradients means 
that we don’t know which 
direction to move to improve 

• Not using our knowledge of 
the structure of the function 
being optimized 

• Becomes as hard as 
optimizing a black-box 
function



Neural Sketch 
Learning for 

Conditional Program 
Generation, ICLR 
2018 submission



Generating and designing DNA with deep generative 
models. Killoran, Lee, Delong, Duvenaud, Frey, 2017



Differential AIR
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Attend, Infer, Repeat: Fast Scene 
Understanding with Generative 

Models
S.M. Eslami,N. Heess, T. Weber, Y. Tassa, D. Szepesvari, 

K.Kavukcuoglu, G. E. Hinton

Nicolas Brandt nbrandt@cs.toronto.edu



History of Generative Models
• 1940s - 1960s Motivating probability and Bayesian inference 

• 1980s - 2000s Bayesian machine learning with MCMC 

• 1990s - 2000s Graphical models with exact inference 

• 1990s - 2015 Bayesian Nonparametrics with MCMC (Indian Buffet 
process, Chinese restaurant process) 

• 1990s - 2000s Bayesian ML with mean-field variational inference 

• 1995 -1996 Helmholtz machine, wake-sleep (almost invented 
variational autoencoders) 

• 2000s - 2013 Deep undirected graphical models (RBMs, 
pretraining) 

• 2000s - 2013 Autoencoders, denoising autoencoders



Modern Generative Models
• 2000s - Probabilistic Programming 

• 2000s - Invertible density estimation 

• 2010 - Stan - Bayesian Data Analysis with HMC 

• 2013 - Variational autoencoders, reparamaterization trick 
becomes widely known 

• 2014 - Generative adversarial nets 

• 2015 - Deep reinforcement learning 

• 2016 - New gradient estimators (muprop, Q-prop, concrete + 
Gumbel-softmax, REBAR, RELAX)



Other Frontiers
• Generating long action-conditional video 

• Modeling uncertainty in the generative process 

• Coherent multi-scale models 

• Ultimate application: data-efficient model-based RL 

• Expected utility framework separates modeling from 
decision-making



Takeaways
• Different approaches to generative modeling have 

different tradeoffs. 

• GANs pay high cost at training time, flexible and 
cheap sampling at test time 

• Simple components form a composable language of 
models. 

• Watch out for reinventing Bayes’ rule.  Approximating 
the optimal provides a lot of guidance.



Thanks!


