
Generative Models

David Duvenaud
Deep Learning Summer School 2018

ML as a bag of tricks

• K-means

• Kernel Density
Estimation

• SVMs

• Boosting

• Random Forests

• Mixture of Gaussians

• Latent variable models

• Gaussian processes

• Deep neural nets

• Bayesian neural nets

Fast special cases: Extensible family:

Regularization as bag of tricks

• Early stopping

• Ensembling

• L2 Regularization

• Gradient noise

• Dropout

• Expectation-Maximization

• Stochastic variational
inference

Fast special cases: Extensible family:

A language of models

• Hidden Markov Models, Mixture of Gaussians,
Logistic Regression, VAEs, Normalizing flows

• These are simply examples from a composable
language of probabilistic models.

AI as a bag of tricks

• Machine learning

• Natural language processing

• Knowledge representation

• Automated reasoning

• Computer vision

• Robotics

• Deep probabilistic
latent-variable
models + decision
theory

Russel and Norvig’s parts of AI: Extensible family:

Losses are log-likelihoods

• Squared loss is just unnormalized Normal log-pdf

• “Cross-entropy” now means Categorical log-pmf ?!

• Actual definition:

• “Teacher forcing” is just evaluating the likelihood of
a sequential model p(x) = ∏

i

pθ(xi |x<i)

What are Generative Models?

• Discriminative: Trained to answer a single query,
p(class | image)

• Generative: Trained to model data distribution too:
p(class, image) or simply p(image)

• Any distribution can be conditioned and sampled
from (with some work).

• Can do ancestral sampling if p(x, z) = p(z)p(x|z)

Why should you care?
• Modeling the joint distribution lets us answer any query

about the domain: p(class | image), p(image | class),
p(bottom of image | top of image)

• Conditional probability is an extension of logic that tells
us how to combine evidence automatically

• Generative models are composable. Useful for modeling
and semi-supervised learning.

• Samples let us check the models

• Latent variables sometimes interpretable

[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS

[8,9] [10]

Canonical correlations analysis admixture / LDA / NMF

[6][2][5]

Mixture of Experts Driven LDS IO-HMM Factorial HMM

[7]

Courtesy of Matthew Johnson

Differentiable latent-variable
models

• Model distributions implicitly by a variable pushed
through a deep net:

• Approximate intractable distribution by a tractable
distribution parameterized by a deep net:

• Optimize all parameters using stochastic gradient
descent

y = f✓(x)

p(y|x) = N (y|µ = f✓(x),⌃ = g✓(x))

4 Main Approaches
• Sequential Models

• Variational Autoencoders

• Normalized models

• Implicit models (GANs)

x = fθ(z) + ϵ

x = fθ(z)

x = fθ(z), p(x) = p(z) det (∇f)
−1

p(x) = ∏
i

pθ(xi |x<i)

Pixel Recurrent Neural Networks
Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu

p(x) = ∏
i

pθ(xi |x<i)

Variational Inference
• Need to compute

• Optimize a distribution to match

• What if there is a latent variable z per-datapoint,
and global parameters?

• Optimize each to match each , 
then update theta. Slow!

qϕ(z |x) pθ(z |x)

qϕ(zi |xi) pθ(zi |xi)

pθ(z |x) =
pθ(x |z)p(z)

∫ pθ(x |z′ �)p(z′ �)dz′�

Variational Autoencoder

• Train a recognition network to output approximately
optimal variational distributions given x_i

• Total freedom in designing recognition procedure

• Can be evaluated by how well it matches

qϕ(zi |xi)

pθ(zi |xi)

Consequences of using a
recognition network

• Don’t need to re-optimize q(z|x) each time theta
changes. Much faster!

• Recognition net won’t necessary give optimal phi_i

• Can have fast test-time inference (vision)

• Can train recognition net jointly with generator

Simple but not obvious

• It took a long time get here!

• Independently developed as denoising
autoencoders (Bengio et al.) and amortized
inference (many others)

• Helmholtz machine - same idea in 1995 but used
discrete latent variables

Variations: Decoder

• Often,

• Final step has independence assumption, causes
noisy samples, blurry means

• p(x|z) can be anything: RNN, pixelRNN, real NVP,
deconv net

p(x |z) = 𝒩(x | fθ(z), diag(gθ(z)))

Variations
• Decoder often looks like inverse of encoder

• Encoders can come from supervised learning

Learning Deconvolution Network for Semantic Segmentation
http://arxiv.org/abs/1505.04366.

Real-Valued Non-Volume-
Preserving Transformations

• aka Real NVP

• divides up variables into two
parts, updates only one half
with a scale and shift

Real-Valued Non-Volume-
Preserving Transformations

• change of variables formula is
tractable due to lower-
diagonal Jacobian

Real-Valued Non-Volume-
Preserving Transformations
• Need to interleave many layers with different partitions

Density estimation using Real NVP. Ding et al, 2016

Density estimation using Real NVP. Ding et al, 2016

Flows as Euler integrators
• Middle layers look like:

• Limit of smaller steps:

dh(t)
dt

= f(h(t), θ(t))

ht+1 = ht + f(ht , θt)

Flows as Euler integrators
• Middle layers look like:

• Limit of smaller steps:

dh(t)
dt

= f(h(t), θ(t))

ht+1 = ht + f(ht , θt)

Normalizing Flows

• Determinant of Jacobian has cost O(D^3).

• Matrix determinant lemma gives O(DH^3) cost.

• Normalizing flows use 1 hidden unit. Deep & skinny

Continuous Normalizing Flows

• What if we move to continuous transformations?

• Time-derivative only depends on trace of Jacobian

• Trace of sum is sum of traces - O(HD) cost!

Training directly from data
• Best of all worlds:

• Wide layers

• No need to partition dimensions

• Can evaluate density tractably?

(Goodfellow 2016)

Generator Network

zz

xx

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x)) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =
X

x

X

z

exp (�E(x, z))(4)

Generator equation
x = G(z;✓(G))

1

-Must be differentiable
- No invertibility requirement
- Trainable for any size of z
- Some guarantees require z to have higher

dimension than x
- Can make x conditionally Gaussian given z but

need not do so

Generative Adversarial Networks

A 1-dimensional example:

Roger Grosse CSC321 Lecture 22: Adversarial Learning 13 / 1

(Goodfellow 2016)

Discriminator Strategy

✓⇤ = max
✓

1

m

mX

i=1

log p
⇣
x(i); ✓

⌘

p(h, x) =
1

Z
p̃(h, x)

p̃(h, x) = exp (�E (h, x))

Z =
X

h,x

p̃(h, x)

d

d✓i
log p(x) =

d

d✓i

"
log

X

h

p̃(h, x)� logZ(✓)

#

d

d✓i
logZ(✓) =

d
d✓i

Z(✓)

Z(✓)

p(x, h) = p(x | h(1))p(h(1) | h(2)) . . . p(h(L�1) | h(L))p(h(L))

d

d✓i
log p(x) =

d
d✓i

p(x)

p(x)

p(x) =
X

h

p(x | h)p(h)

D(x) =
pdata(x)

pdata(x) + pmodel(x)

1

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Data
Model

distribution

Optimal D(x) for any pdata(x) and pmodel(x) is always

z

x

Discriminator

Estimating this ratio
using supervised learning is

the key approximation
mechanism used by GANs

(Goodfellow 2016)

Minimax Game

-Equilibrium is a saddle point of the discriminator loss
-Resembles Jensen-Shannon divergence
-Generator minimizes the log-probability of the discriminator
being correct

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x)) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =
X

x

X

z

exp (�E(x, z))(4)

Generator equation
x = G(z;✓(G))

Minimax

J
(D) = �1

2
Ex⇠pdata logD(x)� 1

2
Ez log (1�D (G(z)))(5)

J
(G) = �J

(D)(6)

1

Can train GANs with any
divergence

GAN	(Jensen-Shannon)	 Hellinger	 Kullback-Leibler	

Slide from Sebastian Nowozin

Relation to VAEs
• Same graphical model: z -> x

• VAEs have an explicit likelihood: p(x|z)

• GANs have no explicit likelihood

• aka implicit models, likelihood-free models

• Can use same trick for implicit q(z|x). [Lars et al.,
2017, Mohamed & Lakshminarayanan, 2016,
Huszar, 2017, Tran, Ranganath, & Blei, 2017]

• Sequential Models:

• Pros: Exact likelihoods, easy to train

• Cons: O(N) layers to evaluate or sample, need to choose order

• Variational Autoencoders:

• Pros: Cheap to evaluate and sample, low-D latents

• Cons: Factorized likelihood gives noisy samples

• Explicitly normalized models:

• Pros: Exact likelihoods, easy to train

• Cons: Must cripple layers to maintain tractability, need huge models

• Implicit models:

• Pros: Cheap to sample, no factorization

• Cons: Hard to train, likelihood not available

x = fθ(z) + ϵ

x = fθ(z)

x = fθ(z), p(x) = p(z) det (∇f)
−1

p(x) = ∏
i

pθ(xi |x<i)

(Goodfellow 2016)

Boltzmann Machines

• Partition function is intractable

• May be estimated with Markov chain methods

• Generating samples requires Markov chains too

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x)) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =
X

x

X

z

exp (�E(x, z))(4)

1

[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS

[8,9] [10]

Canonical correlations analysis admixture / LDA / NMF

[6][2][5]

Mixture of Experts Driven LDS IO-HMM Factorial HMM

[7]

Courtesy of Matthew Johnson

Modeling idea: graphical models on latent variables,
neural network models for observations

Composing graphical models with neural networks for structured representations
and fast inference. Johnson, Duvenaud, Wiltschko, Datta, Adams, NIPS 2016

data space latent space

[1] Palmer, Wipf, Kreutz-Delgado, and Rao. Variational EM algorithms for non-Gaussian latent variable models. NIPS 2005.
[2] Ghahramani and Beal. Propagation algorithms for variational Bayesian learning. NIPS 2001.
[3] Beal. Variational algorithms for approximate Bayesian inference, Ch. 3. U of London Ph.D. Thesis 2003.
[4] Ghahramani and Hinton. Variational learning for switching state-space models. Neural Computation 2000.
[5] Jordan and Jacobs. Hierarchical Mixtures of Experts and the EM algorithm. Neural Computation 1994.
[6] Bengio and Frasconi. An Input Output HMM Architecture. NIPS 1995.
[7] Ghahramani and Jordan. Factorial Hidden Markov Models. Machine Learning 1997.
[8] Bach and Jordan. A probabilistic interpretation of Canonical Correlation Analysis. Tech. Report 2005.
[9] Archambeau and Bach. Sparse probabilistic projections. NIPS 2008.
[10] Hoffman, Bach, Blei. Online learning for Latent Dirichlet Allocation. NIPS 2010.

[1] [2] [3] [4]

Gaussian mixture model Linear dynamical system Hidden Markov model Switching LDS

[8,9] [10]

Canonical correlations analysis admixture / LDA / NMF

[6][2][5]

Mixture of Experts Driven LDS IO-HMM Factorial HMM

[7]

Courtesy of Matthew Johnson

Probabilistic graphical models

 + structured representations

 + priors and uncertainty

 + data and computational efficiency

 – rigid assumptions may not fit

 – feature engineering

 – top-down inference

Deep learning

 – neural net “goo”

 – difficult parameterization

 – can require lots of data

 + flexible

 + feature learning

 + recognition networks

Modeling idea: graphical models on latent variables,
neural network models for observations

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

Application: learn syllable representation of behavior from video

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

A(1) A(3)A(2)

B(1) B(2) B(3)

⇡ =

2

4
⇡(1)

⇡(2)

⇡(3)

3

5 zt+1 ⇠ ⇡(zt)

z1 z2 z3 z4 z5 z6 z7

xt+1 = A(zt)xt +B(zt)ut ut
iid⇠ N (0, I)

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

⇡ =

2

4
⇡(1)

⇡(2)

⇡(3)

3

5

A(1) A(3)A(2)

B(1) B(2) B(3)

z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

✓

0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm
0

10 20 30 40 50 60 70
10

20
30

40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70

mm

0
mm10 20 30 40 50 60 70 9080 100 110 120 130 140 150

10
20

30
40

mm

10

20

30

40

m
m

50

60

10 20 30 40 50 60 70 9080 100 110 120 130 140 150

z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

✓

yt |xt, � ⇠ N (µ(xt; �), ⌃(xt; �))

diag(⌃(xt; �))

xt

µ(xt; �)

z1 z2 z3 z4 z5 z6 z7

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

✓

�

Alexander Wiltschko, Matthew Johnson, et al., Neuron 2015.

start rear

fall from rear

grooming

Application: Generative
Design of Molecules

Text autoencoders

• Generating Sentences from a Continuous Space.
Samuel R. Bowman, Luke Vilnis, Oriol Vinyals,
Andrew M. Dai, Rafal Jozefowicz, Samy Bengio

Text	VAE	-	Interpola*on	

What is a molecule?
Graph SMILES string

Repurposing text
autoencoders

c1ccccc1 c1ccccc1

ENCODER
Neural Network

DECODER
Neural Network

CONTINUOUS MOLECULAR
REPRESENTATION

Latent Space

Discrete Structure
SMILES

Discrete Structure
SMILES

Can be trained on unlabeled data

Map of 220,000 Drugs

Map of 100,000 OLEDs

Random Organic LEDs

F S S F O O
O S

N N N

HS S S S SH

HO SH
H2N NH2

O

F
H
NH2N

NH3

F F

HO F

N NH2

OHSHS
O

F S F
H2S

OH
HO OH

FHS

NH2

OH

O

N SH

O

NH2
H2N FHF

SHS

S

F

H2O

SHSHS F

CH4

H2N OH
N

F F

HO S S S S S S S S S S S SH

N

S
N

N
O

O

N

N

N N

N

O O

OO

S O

N

N N

N
N N

N

N
N

N

NN N

N
N

N
S

N

N N

N

N

N N

N

N

N

O

O

N
N

S N

N
NN

N

N NN

N

O

N
N N

N

N

N
N

O

NN

NO

N
N

N

NN
N

N

Standard autoencoderVariational autoencoder

Molecules near

O

NHN+

O

-O

Cl

Cl

NH

N
H

N+

O

O-
Cl

Cl

Br

N

N+

O

-O
Cl BrCl

O

N
H

N+

O

O-
Cl

Cl

SH
Cl

O
N+

O

-O

N
H

Cl

Cl

O

N
H

N

N+

O

-O
Cl

F

O

O
N+

O

-O
Cl

Cl

H
N

O

N
H

N+

O

O-
Br

Cl O

O
N+

O

O-
Cl

Br O

NH

N
H

N+

O

O-
Cl

Cl

O

O

H
N

N+

O

-O

H
N Cl

Br

O

N
H

N+

O

O-
HO

Cl

Cl

O
N+

O

O-
Cl

Cl Br

O
N+

O

O-
Br

Cl

Cl

H
N

N+

O

O-

Cl

Cl

O

O

N
H

N

N+

O

O-
Cl

Cl

Br

O

N
H

N+

O

O-
F

N
H

Cl

O

O

H
N

N+

O

O-
HO

F

F

NH
N+

O

-O
F

N
H

Cl

Br
O

N
H

N+

O

O-
Br

Cl

Cl

O

O

N+

O

O-
Cl

Cl Br

O

N
H

N+

O

O-
Cl

Br

O

O
N+

O

O-
Cl

Cl O

O

N
H

N+

O

O-
Cl

Cl

O

O
N+

O

O-
Cl

F

Cl

O

N
H

N+

O

O-

Cl

Cl

Cl

O

N
H

N+

O

O-
Cl

Cl O

O
N+

O

O-
Cl

Cl

O

O

N
H

N+

O

O-
Cl

Cl

Br

O

N
H

N

N+

O

O-
Cl

Cl

Cl

O

N
N+

O

O-

Br

Cl

Cl

O

N
H

N+

O

O-
Cl

O Cl

O
N+

O

O-
Cl

Cl

Cl

O

N
H

N+

O

O-
Cl

Cl Cl

O NH

N+
O O-

Cl

N

O NH

N+
O O-

Br

O

N
H

N+

O

O-
Br

Cl Cl

O

N
H

N+

O

O-

N
H

Cl

Br

O

N+

O

-O

N N
H

Cl

O

O

N
H

N+

O

O-
Cl

NCl

Cl

O

O

N+

O

O-

N
H

Cl Cl

O

N
H

N+

O

O-
Cl

Cl Br

H
N

N+

O

O-

Cl

Cl

Br

O

N
H

N+

O

O-
Br

Cl

Br

O

N
H

N+

O

O-

Cl

Cl

O

N
H

N+

O

O-
Cl

O
Cl

O
N+

O

O-
Cl

Cl

Br

O

N
H

N

N+

O

O-
Cl

Cl

Cl

O

N
N+

O

O-

Cl

Cl Cl

O

N
H

N+

O

O-
Cl

Cl

OH

NH2 O

N O
NH

O

O

H
N

HN O

O

O

O

N

O

O

O

HN

O

O

O

NH N
O

O

O

O
NH2

NH
O

HN

HN

O

O

H
N N

NHO

O

O

O

N
H

O

O

O

O

N
O

O

N

H
N O

O

O O

NH

HN
N

O

O

O

N

N

OO

O

NH2

N

HN
O

O

O
O

N

O

NH
O

S

O

N

O

O

O
O

OH

N
H

O

O
O

O

H2N
S

HNO

O

O

OH
S

N
H

O

O

O

HO

S
H
N

HN O

O

O

O

NH2

NH

N

O

OH

O
O

N

HN

O

O

O

F

N

N

O

O

O N

H
N

NHO
O

O

N

O
O

H
N

N

O

N

HN
N

H
NO

O

N

N
O

OH

O
O

N
H

OHN

O

O
O

H2N N
N

HNH2N
O

O

O

NH2

N

NHO

HN

Cl

O

O

N N
H

O
O

N
HS

OH

F

N N

O

O

H
N

H
N

NHO

O

O

O

N
N

N
O

BrO

O
N
H

N
N

O
O

NH

O

O
O

HO

HN N
OO

O

N

NH
O

O

N

Cl

Cl

O

O

ON
H

H
N

O

O
O

O

HN

NH
O

O

O

O

O

N

HO

H
N

N O

O

H
N

H
N

N
H

O

O

NH2

O

N
H

N

HN

O

O

O

O

N

O
HN

O

O

F

O

N

O

O
O

NN

NH2

O
O

NH2

N
H

N

Cl

O

O

F

N

O

O

O

O

Molecules near

No chemistry-
specific design!

Grammar VAE
Matt Kusner, Brooks Paige, José Miguel Hernández-Lobato

Gradient-based optimization

Gradient-based optimization

• Can’t necessarily start from given molecule, need to encode/decode

• Can’t go too far from start, wander into ‘holes’ or empty regions

Be careful what you wish for

• Optimizing for solubility gave molecules with giant rings

• Needed to add hacky terms to objective

• Maybe not necessary, if there’s downstream validation

Objective Values in Training Data

Objective Values

Fr
eq

ue
nc

y

�15 �10 �5 0 5 10

0
50

00
15

00
0

25
00

0
Molecule 1

Molecule 2

Molecule 1
Molecule 2

Bayesian Optimization
Sort of worked!

“No organic chemist could have
looked at these without raising
the alarm – this stuff is not, by

many standards, publishable at
all. When the authors do show

this work to someone in the field,
it will not go well. In fact, this

blog post is an example of just
such an encounter, and no, it

isn’t going well.”

Frontiers

What recently became easy
in machine learning?

• Training continuous latent-
variable models (VAEs, GANs)
to produce large images

• Training large supervised
models with fixed
architectures

• Building RNNs that can output
grid-structured objects
(images, waveforms)

What is still hard?
• Training GANs to generate text

• Training VAEs with discrete latent variables

• Training agents to communicate with each other using
words

• Training agent or programs to decide which discrete
action to take.

• Training generative models of structured objects of
arbitrary size, like programs, graphs, or large texts.

Adversarial Generation of Natural Language.
Sai Rajeswar, Sandeep Subramanian, Francis Dutil,

Christopher Pal, Aaron Courville, 2017

“We successfully trained the RL-NTM to solve a number of
algorithmic tasks that are simpler than the ones solvable by

the fully differentiable NTM.”
Reinforcement Learning Neural Turing Machines

Wojciech Zaremba, Ilya Sutskever, 2015

Why are the easy things easy?

• Gradients give more
information the more
parameters you have

• Backprop (reverse-mode AD)
only takes about as long as
the original function

• Local optima less of a
problem than you think

Why are the hard things hard?
• Discrete structure means we

can’t use backprop to get
gradients

• No cheap gradients means
that we don’t know which
direction to move to improve

• Not using our knowledge of
the structure of the function
being optimized

• Becomes as hard as
optimizing a black-box
function

Neural Sketch
Learning for

Conditional Program
Generation, ICLR
2018 submission

Generating and designing DNA with deep generative
models. Killoran, Lee, Delong, Duvenaud, Frey, 2017

Differential AIR

17

Attend, Infer, Repeat: Fast Scene
Understanding with Generative

Models
S.M. Eslami,N. Heess, T. Weber, Y. Tassa, D. Szepesvari,

K.Kavukcuoglu, G. E. Hinton

Nicolas Brandt nbrandt@cs.toronto.edu

History of Generative Models
• 1940s - 1960s Motivating probability and Bayesian inference

• 1980s - 2000s Bayesian machine learning with MCMC

• 1990s - 2000s Graphical models with exact inference

• 1990s - 2015 Bayesian Nonparametrics with MCMC (Indian Buffet
process, Chinese restaurant process)

• 1990s - 2000s Bayesian ML with mean-field variational inference

• 1995 -1996 Helmholtz machine, wake-sleep (almost invented
variational autoencoders)

• 2000s - 2013 Deep undirected graphical models (RBMs,
pretraining)

• 2000s - 2013 Autoencoders, denoising autoencoders

Modern Generative Models
• 2000s - Probabilistic Programming

• 2000s - Invertible density estimation

• 2010 - Stan - Bayesian Data Analysis with HMC

• 2013 - Variational autoencoders, reparamaterization trick
becomes widely known

• 2014 - Generative adversarial nets

• 2015 - Deep reinforcement learning

• 2016 - New gradient estimators (muprop, Q-prop, concrete +
Gumbel-softmax, REBAR, RELAX)

Other Frontiers
• Generating long action-conditional video

• Modeling uncertainty in the generative process

• Coherent multi-scale models

• Ultimate application: data-efficient model-based RL

• Expected utility framework separates modeling from
decision-making

Takeaways
• Different approaches to generative modeling have

different tradeoffs.

• GANs pay high cost at training time, flexible and
cheap sampling at test time

• Simple components form a composable language of
models.

• Watch out for reinventing Bayes’ rule. Approximating
the optimal provides a lot of guidance.

Thanks!

