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learning



setup

1.Learning from reinforcement alone is hard

1.Exploration is hard

2.Credit assignment is hard

3.Designing rewards is hard

2.Yet people are pretty good at many tasks

3.Perhaps we can use them to help



Jump in {0,1}
Right in {0,1}
Left in {0,1}
Speed in {0,1}

Extracted 27K+ binary features
from last 4 observations
(14 binary features for every cell)

Output:Input:

From Mario AI competition 2009

An example from playing Mario

High level goal:

Watch an expert play and

learn to mimic her behavior



Training (expert)
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Policies

●A policy maps observations to actions

=a
obs.

screen: x
timestep: t
partial traj: τ
… anything else



Warm-up: Supervised learning

πref

1.Collect trajectories from expert πref

2.Store dataset D = { ( o, πref(o) ) | o ~ πref }

3.Train classifier π on D

●Let π play the game!

sometimes called “behavioral cloning”



Test-time execution (sup. learning)
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What's the (biggest) failure mode?

πref

The expert never gets stuck next to pipes

 Classifier doesn't learn to recover!



Outline

●From demonstrations → expert decisions

●From expert decisions → expert costs

●Whence the expert?

●Combining experts and reward



What's the (biggest) failure mode?

πref

The expert never gets stuck next to pipes

 Classifier doesn't learn to recover!

●We’d like to train the policy on all states

●Can’t do that

●Let’s train it where it visits



Learning from an expert: DAgger

πref

1.Collect trajectories from expert πref

2.Dataset D0 = { ( o, πref(o,y) ) | o ~ πref }

3.Train π1 on D0

4.Collect new trajectories from π1

➢But let the expert steer!

5.Dataset D1 = { ( o, πref(o,y) ) | o ~ π1 }

6.Train π2 on  D0 ∪D1

●In general:

●Dn = { ( o, πref(o,y) ) | o ~ πn }

●Train πn+1 on ∪i≤n Di

π1

π2

If N = T log T,

L(πn) < T N + O(1)

for some n



Test-time execution (DAgger)
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how well does this strategy work?

Ross+Bagnell, AIStats’10



What's the biggest failure mode?

Classifier only sees right versus not-right

●No notion of better or worse

●No partial credit

●Must have a single target answer

π*

π1

π2



Aside: cost-sensitive classification

Classifier: h : x → [K]

Multiclass classification

●Data: (x,y)  X × [K]

●Goal: minh Pr( h(x) ≠ y )

Cost-sensitive classification

●Data: (x,c)  X × [0,∞)K

●Goal: minh E(x,c) [ ch(x) ]



Easy solution to cost-sensitive cl

Classifier: h : x → [K]

●Data: (x,c)  X × [0,∞)K

●Goal: minh E(x,c) [ ch(x) ]

Solution learn a K-dimensional regressor on costs; 
pick minimal cost



Learning to search: AggraVaTe

1.Let learned policy π drive for t timesteps to obs. o

2.For each possible action a:

●Take action a, and let expert πref drive the rest

●Record the overall loss, ca

3.Update π based on example:

(o, 〈c1, c2,..., cK〉)

4.Goto (1)

π

0

0.4

100



Outline
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what is the expert’s API?

●Behavioral cloning

Input:

Output:

●Dagger

Input:

Output:

●Aggrevate:

Input:

Output:

World

Set of trajectories

observation

optimal(ish) action

observation

long term costs for all actions



where does an expert come from?

●Option 1: An actual real life human being

●Option 2: Simulation



reference policy

Given partial traj. a1,a2,...,at-1

The (expected) minimum achievable loss is:

The optimal action (DAgger) is corresponding at

The optimal Q values (Aggrevate) are all the mins for 

each at

min
(at,at+1,...)

E loss(a)



simulated experts
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x216

Rollout to some depth

→ Intermediate loss

→ Return best start



beyond naive search: any planner

e.g., Monte Carlo      

Tree Search

Image credit: Michele Sebag
and DeepMind



also effective for structured prediction

Image credit: Klein et al., 2017



how well does this strategy work?

Ross+Bagnell, AIStats’10

Chang+D+He+Langford+Ross, NIPS’16

Captioning Parsing ASR
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●Combining experts and reward



combining experts & rewards

●General solution... joint loss:

optimize E[reward] + z E[imitation loss]

●Big question: how to set z?



LOLS: change rollout strategy

1.Let learned policy πin drive for t timesteps to obs. o

2.For each possible action a:

●Take action a, and let something πout drive the rest

●Record the overall loss, ca

3.Update π based on example:

(o, 〈c1, c2,..., cK〉)

4.Goto (1)

π

0

0.4

100



effect of roll-in & roll-out strategies



guarantees

In “Good” setting, can prove that:

●If ref is optimal, will compete with ref

●If ref is suboptimal, either:

–Improve upon ref

–Achieve approximate local optimality

Furthermore, whp:



combination via hierarchies



combination via hierarchies



combination via hierarchies
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imitation learning summary

Thank you! Queries!

successes:
- if all you have are demonstrations, life can be difficult
- if you have expert, iterate to get right state distribution
- experts come from people or planning
- several ways to combine experts and reinforcement

open problems:
- what is the right way to incorporate experts?
- can we learn from observations of experts?
- how to reduce # of expert samples needed?


