imitation learning

Hal Daumé III | U Maryland / Microsoft Research | me@hal3.name | @haldaume3

I.Learning from reinforcement alone is hardI.Exploration is hard2.Credit assignment is hard3.Designing rewards is hard

2.Yet people are pretty good at many tasks3.Perhaps we can use them to help

From Mario AI competition 2009

Input:

Interface

Output: Jump in {0,1} Right in {0,1} Left in {0,1} Speed in {0,1}

High level goal: Watch an expert play and learn to mimic her behavior

Video credit: Stéphane Ross, Geoff Gordon and Drew Bagnell

X

I.Collect trajectories from expert Π^{ref} 2.Store dataset $\mathbf{D} = \{ (o, \Pi^{ref}(o)) | o \sim \Pi^{ref} \}$ 3.Train classifier Π on \mathbf{D}

•Let ⊓ play the game!

Video credit: Stéphane Ross, Geoff Gordon and Drew Bagnell

- I.Collect trajectories from expert π^{ref} 2.Dataset $D_0 = \{ (o, \pi^{ref}(o, y)) | o \sim \pi^{ref} \}$ 3.Train π_1 on D_0 4.Collect new trajectories from π_1 >But let the *expert* steer!
- 5.Dataset $D_{1} = \{ (o, \pi^{ref}(o, y)) | o \sim \pi_{1} \}$ 6.Train π_{2} on $D_{0} \cup D_{1}$

In general: $\mathbf{D}_{n} = \{ (o, \mathbf{\pi}^{ref}(o, y)) \mid o \sim \mathbf{\pi}_{n} \}$ Train $\mathbf{\pi}$ on \mathbf{U}

.Train $\mathbf{\pi}_{n+1}$ on $\mathbf{U}_{i\leq n} \mathbf{D}_i$

If N = T log T, $L(\pi_n) < T \mathbb{P}_N + O(1)$ for some n

Video credit: Stéphane Ross, Geoff Gordon and Drew Bagnell

•

•

Π₁

 \mathbb{Z}

Classifier: $h : x \rightarrow [K]$

$$(x,c) \in X \times [0,\infty)^{K}$$
$$\min_{h} E_{(x,c)} [c_{h(x)}]$$

- Classifier: $h : x \rightarrow [K]$ • $(x,c) \in X \times [0,\infty)^{K}$ • $\min_{h} E_{(x,c)} [c_{h(x)}]$
- Solution learn a K-dimensional regressor on costs; pick minimal cost

Let learned policy π drive for t timesteps to obs. o 2. For each possible action a: •Take action a, and let expert π^{ref} drive the rest •Record the overall loss, C_a 3. Update π based on example: π $(O, \langle C_1, C_2, ..., C_K \rangle)$ 4.Goto (1)

0.4

100

•From demonstrations \rightarrow expert decisions

•From expert decisions \rightarrow expert costs

observation optimal(ish) action

$a_{1},a_{2},...,a_{t-1}$ (expected) minimum achievable loss $intermin (a_{t},a_{t+1},...) = E \log(a_{t-1})$

optimal action

 a_t

optimal Q values a_t

e.g., Monte Carlo Tree Search

Image credit: Michele Sebag
and DeepMind

Image credit: Klein et al., 2017

•From demonstrations \rightarrow expert decisions

•From expert decisions \rightarrow expert costs

•Whence the expert?

I.Let learned policy π^{in} drive for t timesteps to obs. o 2.For each possible action a: •Take action a, and let something π^{out} drive the rest •Record the overall loss, ca 3. Update π based on example: π $(O, \langle C_1, C_2, ..., C_K \rangle)$ 4.Goto (1)

0.4

100

$\text{roll-out} \rightarrow$	Reference	Mixture	Learned
\downarrow roll-in			
Reference	Inconsistent		
Learned	Not locally opt.	Good	RL

$\text{roll-out} \rightarrow$	Reference	Mixture	Learned
\downarrow roll-in			
Reference	Inconsistent		
Learned	Not locally opt.	Good	RL

$$Regret = O\left((KT)^{2/3} \sqrt[3]{\frac{\log(N|\Pi|)}{N}} + T\delta_{class} \right)$$

Key insight: verifying if low-level trajectory is successful is cheaper than labeling low-level trajectory

- → labeling effort = high-level horizon + low-level horizon only a fraction of the full horizon (as low as sqrt of the full horizon)
- \rightarrow subpolicies are only learnt in the relevant part of the state space

imitation learning summary successes:

open problems:

Thank you! Queries!