
Neural Networks
Hugo Larochelle (@hugo_larochelle)
Google Brain

NEURAL NETWORKS
 2

• What we’ll cover
‣ types of learning problems

- definitions of popular learning problems
- how to define an architecture for a learning problem

‣ unintuitive properties of neural networks
- adversarial examples
- optimization landscape of neural networks

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

1

1

...... 1

......

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 13, 2012

Abstract

Math for my slides “Feedforward neural network”.

• f(x)

• l(f(x(t);✓), y(t))

• r✓l(f(x(t);✓), y(t))

• ⌦(✓)

• r✓⌦(✓)

• f(x)c = p(y = c|x)

• x(t) y(t)

• l(f(x), y) = �
P

c 1(y=c) log f(x)c = � log f(x)y =

•

@

f(x)c
� log f(x)y =

�1(y=c)

f(x)y

rf(x) � log f(x)y =
�1

f(x)y
[1(y=0), . . . , 1(y=C�1)]

>

=
�e(c)

f(x)y

1

x

Neural Networks
Types of learning problems

SUPERVISED LEARNING
 4

Topics: supervised learning

• Training time
‣ data : 
 
 

‣ setting :

• Test time
‣ data : 
 
 

‣ setting :

{x(t), y(t)} {x(t), y(t)}

• Example
‣ classification

‣ regression

x(t), y(t) ⇠ p(x, y) x(t), y(t) ⇠ p(x, y)

UNSUPERVISED LEARNING
 5

Topics: unsupervised learning

• Training time
‣ data : 
 
 

‣ setting :

• Test time
‣ data : 
 
 

‣ setting :

{x(t)}{x(t)}

x(t) ⇠ p(x) x(t) ⇠ p(x)

• Example
‣ distribution estimation

‣ dimensionality
reduction

SEMI-SUPERVISED LEARNING
 6

Topics: semi-supervised learning

• Training time
‣ data : 
 
 

‣ setting :

• Test time
‣ data : 
 
 

‣ setting :

{x(t), y(t)} {x(t), y(t)}
{x(t)}

x(t) ⇠ p(x)

x(t), y(t) ⇠ p(x, y) x(t), y(t) ⇠ p(x, y)

MULTITASK LEARNING
 7

Topics: multitask learning

• Training time
‣ data : 
 
 

‣ setting :

• Test time
‣ data : 
 
 

‣ setting :

{x(t), y(t)1 , . . . , y(t)M } {x(t), y(t)1 , . . . , y(t)M }

x(t), y(t)1 , . . . , y(t)M ⇠
p(x, y1, . . . , yM)

x(t), y(t)1 , . . . , y(t)M ⇠
p(x, y1, . . . , yM)

• Example
‣ object recognition in

images with multiple
objects

MULTITASK LEARNING
 8

Topics: multitask learning

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

......

......

...

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

y

MULTITASK LEARNING
 8

Topics: multitask learning

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

......

......

...

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

y
......
y3y1 2

TRANSFER LEARNING
 9

Topics: transfer learning

• Training time
‣ data : 
 
 

‣ setting :

• Test time
‣ data : 
 
 

‣ setting :

{x(t), y(t)1 , . . . , y(t)M }

x(t), y(t)1 , . . . , y(t)M ⇠
p(x, y1, . . . , yM)

{x(t), y(t)1 }

x(t), y(t)1 ⇠ p(x, y1)

STRUCTURED OUTPUT PREDICTION
 10

Topics: structured output prediction

• Training time
‣ data : 
 
 

‣ setting :

• Test time
‣ data : 
 
 

‣ setting :

• Example
‣ image caption

generation

‣ machine translation

x(t),y(t) ⇠ p(x,y) x(t),y(t) ⇠ p(x,y)

{x(t),y(t)} {x(t),y(t)}
of arbitrary structure

(vector, sequence, graph)

DOMAIN ADAPTATION
 11

Topics: domain adaptation, covariate shift

• Training time
‣ data : 
 
 

‣ setting :

• Test time
‣ data : 
 
 

‣ setting :

{x(t), y(t)}

x(t) ⇠ p(x)

⇡ p(x)

• Example
‣ classify sentiment in

reviews of different
products

‣ training on synthetic
data but testing on
real data (sim2real)

y(t) ⇠ p(y|x(t))

{x̄(t), y(t)}

x̄(t) ⇠ q(x)

y(t) ⇠ p(y|x̄(t))

{x̄(t0)}

x̄(t) ⇠ q(x)

DOMAIN ADAPTATION
 12

Topics: domain adaptation, covariate shift

x

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 17, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) = 1
2

P
k(bxk � xk)2 l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

• rba(x(t))l(f(x
(t))) = bx(t) � x(t)

a(x(t)) (= b+Wx(t)

h(x(t)) (= sigm(a(x(t)))

ba(x(t)) (= c+W>h(x(t))

bx(t) (= sigm(ba(x(t)))

rba(x(t))l(f(x
(t))) (= bx(t) � x(t)

rcl(f(x
(t))) (= rba(x(t))l(f(x

(t)))

rh(x(t))l(f(x
(t))) (= W

⇣
rba(x(t))l(f(x

(t)))
⌘

ra(x(t))l(f(x
(t))) (=

⇣
rh(x(t))l(f(x

(t)))
⌘
� [. . . , h(x(t))j(1� h(x(t))j), . . .]

rbl(f(x
(t))) (= ra(x(t))l(f(x

(t)))

rWl(f(x(t))) (=
⇣
ra(x(t))l(f(x

(t)))
⌘
x(t)> + h(x(t))

⇣
rba(x(t))l(f(x

(t)))
⌘>

• W⇤ = W>

1

f(x)

W

V

b

c o(h(x))

w

d

• Domain-adversarial networks (Ganin et al. 2015)  
train hidden layer representation to be
1.predictive of the target class
2. indiscriminate of the domain

• Trained by stochastic gradient descent
‣ for each random pair

1. update W,V,b,c in opposite direction of gradient

2. update w,d in direction of gradient

x(t), x̄(t0)

DOMAIN ADAPTATION
 12

Topics: domain adaptation, covariate shift

x

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 17, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) = 1
2

P
k(bxk � xk)2 l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

• rba(x(t))l(f(x
(t))) = bx(t) � x(t)

a(x(t)) (= b+Wx(t)

h(x(t)) (= sigm(a(x(t)))

ba(x(t)) (= c+W>h(x(t))

bx(t) (= sigm(ba(x(t)))

rba(x(t))l(f(x
(t))) (= bx(t) � x(t)

rcl(f(x
(t))) (= rba(x(t))l(f(x

(t)))

rh(x(t))l(f(x
(t))) (= W

⇣
rba(x(t))l(f(x

(t)))
⌘

ra(x(t))l(f(x
(t))) (=

⇣
rh(x(t))l(f(x

(t)))
⌘
� [. . . , h(x(t))j(1� h(x(t))j), . . .]

rbl(f(x
(t))) (= ra(x(t))l(f(x

(t)))

rWl(f(x(t))) (=
⇣
ra(x(t))l(f(x

(t)))
⌘
x(t)> + h(x(t))

⇣
rba(x(t))l(f(x

(t)))
⌘>

• W⇤ = W>

1

f(x)

W

V

b

c o(h(x))

w

d

• Domain-adversarial networks (Ganin et al. 2015)  
train hidden layer representation to be
1.predictive of the target class
2. indiscriminate of the domain

• Trained by stochastic gradient descent
‣ for each random pair

1. update W,V,b,c in opposite direction of gradient

2. update w,d in direction of gradient

x(t), x̄(t0)

May also be used to promote 
fair and unbiased models …

ONE-SHOT LEARNING
 13

Topics: one-shot learning

• Training time
‣ data : 
 
 

‣ setting :

• Test time
‣ data : 
 
 

‣ setting : 
 
 
 

‣ side information :
- a single labeled example from

each of the M new classes

{x(t), y(t)} {x(t), y(t)}

• Example
‣ recognizing a person

based on a single
picture of him/her

subject to y(t) 2 {1, . . . , C} y(t) 2 {C + 1, . . . , C +M}subject to

x(t), y(t) ⇠ p(x, y) x(t), y(t) ⇠ p(x, y)

ONE-SHOT LEARNING
 14

Topics: one-shot learning

W

W

W

W

W

W

W

W

500

500

500

500

2000

Learning Similarity Metric

30

2000

1

2

3

4

30

1

2

3

4

y

X Xa b

ya b
D[y ,y]a b

Figure 1: After learning a non-linear transformation from images
to 30-dimensional code vectors, the Euclidean distance between
code vectors can be used to measure the similarity between im-
ages.

Generalizing this idea to networks with multi-dimensional,
real-valued outputs is difficult because the true mutual in-
formation depends on the entropy of the output vectors and
this is hard to estimate efficiently for multi-dimensional
outputs. Approximating the entropy by the log determi-
nant of a multidimensional Gaussian works well for learn-
ing linear transformations [7], because a linear transforma-
tion cannot alter how Gaussian a distribution is. But it does
not work well for learning non-linear transformations [21]
because the optimization cheats by making the Gaussian
approximation to the entropy as bad as possible. The mu-
tual information is the difference between the individual en-
tropies and the joint entropy, so it can be made to appear
very large by learning individual output distributions that
resemble a hairball. When approximated by a Gaussian, a
large hairball has a large determinant but its true entropy is
very low because the density is concentrated into the hairs
rather than filling the space.

The structure in an iid set of image pairs can be decom-
posed into the structure in the whole iid set of individual
images, ignoring the pairings, plus the additional struc-
ture in the way they are paired. If we focus on model-
ing only the additional structure in the pairings, we can
finesse the problem of estimating the entropy of a multi-
dimensional distribution. The additional structure can be
modeled by finding a non-linear transformation of each im-
age into a low-dimensional code such that paired images
have codes that are much more similar than images that are
not paired. Adopting a probabilistic approach, we can de-
fine a probability distribution over all possible pairs of im-
ages, by using the squared distances between their
codes, :

(2)

We can then learn the non-linear transformation by maxi-
mizing the log probability of the pairs that actually occur in
the training set. The normalizing term in Eq. 2 is quadratic
in the number of training cases rather than exponential in
the number of pixels or the number of code dimensions be-
cause we are only attempting to model the structure in the
pairings, not the structure in the individual images or the
mutual information between the code vectors.

The idea of using Eq. 2 to train a multilayer neural net-
work was originally described in [9]. They showed that
a network would extract a two-dimensional code that ex-
plicitly represented the size and orientation of a face if it
was trained on pairs of face images that had the same size
and orientation but were otherwise very different. Attempts
to extract more elaborate properties were less successful
partly because of the difficulty of training multilayer neu-
ral networks with many hidden layers, and partly because
the amount of information in the pairings of images is
less than bits per pair. This means that a very large
number of pairs is required to train a large number of pa-
rameters.

Chopra et.al. [3] have recently used a non-probabilistic ver-
sion of the same approach to learn a similarity metric for
faces that assigns high similarity to very different images of
the same person and low similarity to quite similar images
of different people. They achieve the same effect as Eq.
2 by using a carefully hand-crafted penalty function that
uses both positive (similar) and negative (dissimilar) exam-
ples. They greatly reduce the number of parameters to be
learned by using a convolutional multilayer neural network
and achieve impressive results on a face verification task.

We have recently discovered a very effective and entirely
unsupervised way of training a multi-layer, non-linear ”en-
coder” network that transforms the input data vector into
a low-dimensional feature representation that cap-
tures a lot of the structure in the input data [14]. This un-
supervised algorithm can be used as a pretraining stage to
initialize the parameter vector that defines the mapping
from input vectors to their low-dimensional representation.
After the initial pretraining, the parameters can be fine-
tuned by performing gradient descent in the Neighbour-
hood Component Analysis (NCA) objective function intro-
duced by [9]. The learning results in a non-linear trans-
formation of the input space which has been optimized to
make KNN perform well in the low-dimensional feature
space. Using this nonlinear NCA algorithm to mapMNIST
digits into the 30-dimensional feature space, we achieve an
error rate of 1.08%. Support Vector Machines have a sig-
nificantly higher error rate of 1.4% on the same version of
the MNIST task [5].

In the next section we briefly review Neighborhood Com-
ponents Analysis and generalize it to its nonlinear counter-
part. In section 3, we show how one can efficiently per-

Siamese architecture
(figure taken from Salakhutdinov  

and Hinton, 2007)

ZERO-SHOT LEARNING
 15

Topics: zero-shot learning, zero-data learning

• Training time
‣ data : 
 
 

‣ setting : 
 
 
 

‣ side information :
- description vector zc of each of

the C classes

• Test time
‣ data : 
 
 

‣ setting : 
 
 
 

‣ side information :
- description vector zc of each of

the new M classes

{x(t), y(t)} {x(t), y(t)}

• Example
‣ recognizing an object

based on a worded
description of it

subject to y(t) 2 {1, . . . , C} y(t) 2 {C + 1, . . . , C +M}subject to

x(t), y(t) ⇠ p(x, y) x(t), y(t) ⇠ p(x, y)

ZERO-SHOT LEARNING
 16

Topics: zero-shot learning, zero-data learning

Predicting Deep Zero-Shot Convolutional Neural Networks
using Textual Descriptions

Jimmy Lei Ba Kevin Swersky Sanja Fidler Ruslan Salakhutdinov
University of Toronto

jimmy,kswersky,fidler,rsalakhu@cs.toronto.edu

Abstract

One of the main challenges in Zero-Shot Learning of vi-

sual categories is gathering semantic attributes to accom-

pany images. Recent work has shown that learning from

textual descriptions, such as Wikipedia articles, avoids the

problem of having to explicitly define these attributes. We

present a new model that can classify unseen categories

from their textual description. Specifically, we use text fea-

tures to predict the output weights of both the convolutional

and the fully connected layers in a deep convolutional neu-

ral network (CNN). We take advantage of the architecture

of CNNs and learn features at different layers, rather than

just learning an embedding space for both modalities, as

is common with existing approaches. The proposed model

also allows us to automatically generate a list of pseudo-

attributes for each visual category consisting of words from

Wikipedia articles. We train our models end-to-end us-

ing the Caltech-UCSD bird and flower datasets and eval-

uate both ROC and Precision-Recall curves. Our empirical

results show that the proposed model significantly outper-

forms previous methods.

1. Introduction
The recent success of the deep learning approaches to

object recognition is supported by the collection of large
datasets with millions of images and thousands of la-
bels [3, 32]. Although the datasets continue to grow larger
and are acquiring a broader set of categories, they are very
time consuming and expensive to collect. Furthermore, col-
lecting detailed, fine-grained annotations, such as attribute
or object part labels, is even more difficult for datasets of
such size.

On the other hand, there is a massive amount of textual
data available online. Online encyclopedias, such as En-
glish Wikipedia, currently contain 4,856,149 articles, and
represent a rich knowledge base for a diverse set of topics.
Ideally, one would exploit this rich source of information in

CNN
MLP

Class
score

Dot
product

Wikipedia article

TF-IDF

Image

gf

The Cardinals or Cardinalidae are a family of passerine
birds found in North and South America
The South American cardinals in the genus…

fa
m

ily

no
rth

ge
nu

s

bi
rd

s

so
ut

h

am
er

ica

…

Cxk 1xk

1xC

Figure 1. A deep multi-modal neural network. The first modality
corresponds to tf-idf features taken from a text corpus with a corre-
sponding class, e.g., a Wikipedia article about a particular object.
This is passed through a multi-layer perceptron (MLP) and pro-
duces a set of linear output nodes f . The second modality takes in
an image and feeds it into a convolutional neural network (CNN).
The last layer of the CNN is then passed through a linear projec-
tion to produce a set of image features g. The score of the class is
produced via f>g. In this setting, the text pipeline can be thought
of as producing a set of classifier weights for the image pipeline.

order to train visual object models with minimal additional
annotation.

The concept of “Zero-Shot Learning” has been intro-
duced in the literature [8, 9, 16, 20, 6] with the aim to im-
prove the scalability of traditional object recognition sys-
tems. The ability to classify images of an unseen class is
transferred from the semantically or visually similar classes
that have already been learned by a visual classifier. One
popular approach is to exploit shared knowledge between
classes in the form of attributes, such as stripes, four legs,

1

ar
X

iv
:1

50
6.

00
51

1v
1

 [c
s.L

G
]

1
Ju

n
20

15 Ba, Swersky, Fidler, Salakhutdinov
arxiv 2015

DESIGNING NEW ARCHITECTURES
 17

Topics: designing new architectures
• Tackling a new learning problem often requires designing  

an adapted neural architecture

• Approach 1: use our intuition for how a human would
reason about the problem

• Approach 2: take an existing algorithm/procedure and  
turn it into a neural network

DESIGNING NEW ARCHITECTURES
 18

Topics: designing new architectures
• Many other examples
‣ structured prediction by unrolling probabilistic inference in an MRF

‣ planning by unrolling the value iteration algorithm 
(Tamar et al., NIPS 2016)

‣ few-shot learning by unrolling gradient descent on small training set
Under review as a conference paper at ICLR 2017

Figure 1: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use rt as
a shorthand for r✓t�1Lt.

to have training conditions match those of test time. During evaluation of the meta-learning, for
each dataset D = (Dtrain, Dtest) 2 Dmeta�test, a good meta-learner model will, given a series of
learner gradients and losses on the training set Dtrain, suggest a series of updates for the learner
model that trains it towards good performance on the test set Dtest.

Thus to match test time, when considering each dataset D 2 Dmeta�train, the training objective we
use is the loss Ltest of the final learner model on D’s test set Dtest. While iterating over the examples
in D’s training set Dtrain, at each time step t the LSTM meta-learner receives (r✓t�1Lt,Lt) from
the learner and proposes the new set of parameters ✓t. The process repeats for T steps, after which
the learner and its final parameters are evaluated on the test set to produce the loss that is then used
to train the meta-learner. The training algorithm is described in Algorithm 1 and the corresponding
computational graph is shown in Figure 1.

3.3.1 GRADIENT INDEPENDENCE ASSUMPTION

Notice that our formulation would imply that the losses Lt and gradients r✓t�1Lt of the learner are
dependent on the parameters of the meta-learner. Gradients on the meta-learner’s parameters should
normally take this dependency into account. However, as discussed by Andrychowicz et al. (2016),
this complicates the computation of the meta-learner’s gradients. Thus, following Andrychowicz
et al. (2016), we make the simplifying assumption that these contributions to the gradients aren’t
important and can be ignored, which allows us to avoid taking second derivatives, a considerably
expensive operation. We were still able to train the meta-learner effectively in spite of this simplify-
ing assumption.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

4

Published as a conference paper at ICLR 2017

Figure 2: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use rt as
a shorthand for r✓t�1Lt.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

3.4 BATCH NORMALIZATION

Batch Normalization (Ioffe & Szegedy, 2015) is a recently proposed method to stabilize and thus
speed up learning of deep neural networks by reducing internal covariate shift within the learner’s
hidden layers. This reduction is achieved by normalizing each layer’s pre-activation, by subtracting
by the mean and dividing by the standard deviation. During training, the mean and standard devi-
ation are estimated using the current batch being trained on, whereas during evaluation a running
average of both statistics calculated on the training set is used. We need to be careful with batch
normalization for the learner network in the meta-learning setting, because we do not want to collect
mean and standard deviation statistics during meta-testing in a way that allows information to leak
between different datasets (episodes), being considered. One easy way to prevent this issue is to not
collect statistics at all during the meta-testing phase, but just use our running averages from meta-
training. This, however, has a bad impact on performance, because we have changed meta-training
and meta-testing conditions, causing the meta-learner to learn a method of optimization that relies
on batch statistics which it now does not have at meta-testing time. In order to keep the two phases
as similar as possible, we found that a better strategy was to collect statistics for each dataset D 2 D
during Dmeta�test, but then erase the running statistics when we consider the next dataset. Thus,
during meta-training, we use batch statistics for both the training and testing set whereas during
meta-testing, we use batch statistics for the training set (and to compute our running averages) but
then use the running averages during testing. This does not cause any information to leak between
different datasets, but also allows the meta-learner to be trained on conditions that are matched be-
tween training and testing. Lastly, because we are doing very few training steps, we computed the
running averages so that higher preference is given to the later values.

5

Published as a conference paper at ICLR 2017

Figure 2: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use rt as
a shorthand for r✓t�1Lt.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

3.4 BATCH NORMALIZATION

Batch Normalization (Ioffe & Szegedy, 2015) is a recently proposed method to stabilize and thus
speed up learning of deep neural networks by reducing internal covariate shift within the learner’s
hidden layers. This reduction is achieved by normalizing each layer’s pre-activation, by subtracting
by the mean and dividing by the standard deviation. During training, the mean and standard devi-
ation are estimated using the current batch being trained on, whereas during evaluation a running
average of both statistics calculated on the training set is used. We need to be careful with batch
normalization for the learner network in the meta-learning setting, because we do not want to collect
mean and standard deviation statistics during meta-testing in a way that allows information to leak
between different datasets (episodes), being considered. One easy way to prevent this issue is to not
collect statistics at all during the meta-testing phase, but just use our running averages from meta-
training. This, however, has a bad impact on performance, because we have changed meta-training
and meta-testing conditions, causing the meta-learner to learn a method of optimization that relies
on batch statistics which it now does not have at meta-testing time. In order to keep the two phases
as similar as possible, we found that a better strategy was to collect statistics for each dataset D 2 D
during Dmeta�test, but then erase the running statistics when we consider the next dataset. Thus,
during meta-training, we use batch statistics for both the training and testing set whereas during
meta-testing, we use batch statistics for the training set (and to compute our running averages) but
then use the running averages during testing. This does not cause any information to leak between
different datasets, but also allows the meta-learner to be trained on conditions that are matched be-
tween training and testing. Lastly, because we are doing very few training steps, we computed the
running averages so that higher preference is given to the later values.

5

Published as a conference paper at ICLR 2017

Figure 2: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use rt as
a shorthand for r✓t�1Lt.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

3.4 BATCH NORMALIZATION

Batch Normalization (Ioffe & Szegedy, 2015) is a recently proposed method to stabilize and thus
speed up learning of deep neural networks by reducing internal covariate shift within the learner’s
hidden layers. This reduction is achieved by normalizing each layer’s pre-activation, by subtracting
by the mean and dividing by the standard deviation. During training, the mean and standard devi-
ation are estimated using the current batch being trained on, whereas during evaluation a running
average of both statistics calculated on the training set is used. We need to be careful with batch
normalization for the learner network in the meta-learning setting, because we do not want to collect
mean and standard deviation statistics during meta-testing in a way that allows information to leak
between different datasets (episodes), being considered. One easy way to prevent this issue is to not
collect statistics at all during the meta-testing phase, but just use our running averages from meta-
training. This, however, has a bad impact on performance, because we have changed meta-training
and meta-testing conditions, causing the meta-learner to learn a method of optimization that relies
on batch statistics which it now does not have at meta-testing time. In order to keep the two phases
as similar as possible, we found that a better strategy was to collect statistics for each dataset D 2 D
during Dmeta�test, but then erase the running statistics when we consider the next dataset. Thus,
during meta-training, we use batch statistics for both the training and testing set whereas during
meta-testing, we use batch statistics for the training set (and to compute our running averages) but
then use the running averages during testing. This does not cause any information to leak between
different datasets, but also allows the meta-learner to be trained on conditions that are matched be-
tween training and testing. Lastly, because we are doing very few training steps, we computed the
running averages so that higher preference is given to the later values.

5

Published as a conference paper at ICLR 2017

Figure 2: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use rt as
a shorthand for r✓t�1Lt.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

3.4 BATCH NORMALIZATION

Batch Normalization (Ioffe & Szegedy, 2015) is a recently proposed method to stabilize and thus
speed up learning of deep neural networks by reducing internal covariate shift within the learner’s
hidden layers. This reduction is achieved by normalizing each layer’s pre-activation, by subtracting
by the mean and dividing by the standard deviation. During training, the mean and standard devi-
ation are estimated using the current batch being trained on, whereas during evaluation a running
average of both statistics calculated on the training set is used. We need to be careful with batch
normalization for the learner network in the meta-learning setting, because we do not want to collect
mean and standard deviation statistics during meta-testing in a way that allows information to leak
between different datasets (episodes), being considered. One easy way to prevent this issue is to not
collect statistics at all during the meta-testing phase, but just use our running averages from meta-
training. This, however, has a bad impact on performance, because we have changed meta-training
and meta-testing conditions, causing the meta-learner to learn a method of optimization that relies
on batch statistics which it now does not have at meta-testing time. In order to keep the two phases
as similar as possible, we found that a better strategy was to collect statistics for each dataset D 2 D
during Dmeta�test, but then erase the running statistics when we consider the next dataset. Thus,
during meta-training, we use batch statistics for both the training and testing set whereas during
meta-testing, we use batch statistics for the training set (and to compute our running averages) but
then use the running averages during testing. This does not cause any information to leak between
different datasets, but also allows the meta-learner to be trained on conditions that are matched be-
tween training and testing. Lastly, because we are doing very few training steps, we computed the
running averages so that higher preference is given to the later values.

5

Published as a conference paper at ICLR 2017

Figure 2: Computational graph for the forward pass of the meta-learner. The dashed line divides
examples from the training set Dtrain and test set Dtest. Each (Xi,Yi) is the ith batch from the
training set whereas (X,Y) is all the elements from the test set. The dashed arrows indicate that we
do not back-propagate through that step when training the meta-learner. We refer to the learner as
M , where M(X; ✓) is the output of learner M using parameters ✓ for inputs X. We also use rt as
a shorthand for r✓t�1Lt.

3.3.2 INITIALIZATION OF META-LEARNER LSTM

When training LSTMs, it is advised to initialize the LSTM with small random weights and to set the
forget gate bias to a large value so that the forget gate is initialized to be close to 1, thus enabling
gradient flow (Zaremba, 2015). In addition to the forget gate bias setting, we found that we needed
to initialize the input gate bias to be small so that the input gate value (and thus the learning rate)
used by the meta-learner LSTM starts out being small. With this combined initialization, the meta-
learner starts close to normal gradient descent with a small learning rate, which helps initial stability
of training.

3.4 BATCH NORMALIZATION

Batch Normalization (Ioffe & Szegedy, 2015) is a recently proposed method to stabilize and thus
speed up learning of deep neural networks by reducing internal covariate shift within the learner’s
hidden layers. This reduction is achieved by normalizing each layer’s pre-activation, by subtracting
by the mean and dividing by the standard deviation. During training, the mean and standard devi-
ation are estimated using the current batch being trained on, whereas during evaluation a running
average of both statistics calculated on the training set is used. We need to be careful with batch
normalization for the learner network in the meta-learning setting, because we do not want to collect
mean and standard deviation statistics during meta-testing in a way that allows information to leak
between different datasets (episodes), being considered. One easy way to prevent this issue is to not
collect statistics at all during the meta-testing phase, but just use our running averages from meta-
training. This, however, has a bad impact on performance, because we have changed meta-training
and meta-testing conditions, causing the meta-learner to learn a method of optimization that relies
on batch statistics which it now does not have at meta-testing time. In order to keep the two phases
as similar as possible, we found that a better strategy was to collect statistics for each dataset D 2 D
during Dmeta�test, but then erase the running statistics when we consider the next dataset. Thus,
during meta-training, we use batch statistics for both the training and testing set whereas during
meta-testing, we use batch statistics for the training set (and to compute our running averages) but
then use the running averages during testing. This does not cause any information to leak between
different datasets, but also allows the meta-learner to be trained on conditions that are matched be-
tween training and testing. Lastly, because we are doing very few training steps, we computed the
running averages so that higher preference is given to the later values.

5

Neural  
network

Learning  
algorithm

Ravi and Larochelle, ICLR 2017 _ _

_ _

Neural networks
Unintuitive properties of neural networks

THEY CAN MAKE DUMB ERRORS
 20

Topics: adversarial examples
• Intriguing Properties of Neural Networks  

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus, ICLR 2014

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

Correctly 
classified

Badly  
classifiedDifference

THEY CAN MAKE DUMB ERRORS
 21

Topics: adversarial examples
• Humans have adversarial examples too

• However they don’t match those of neural networks

 22

Topics: adversarial examples
• Humans have adversarial examples too

• However they don’t match those of neural networks

THEY CAN MAKE DUMB ERRORS

THEY ARE STRANGELY NON-CONVEX
 23

Topics: non-convexity, saddle points
• Identifying and attacking the saddle point problem in high-dimensional non-convex optimization  

Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS 2014
avg loss

θ

THEY ARE STRANGELY NON-CONVEX
 23

Topics: non-convexity, saddle points
• Identifying and attacking the saddle point problem in high-dimensional non-convex optimization  

Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS 2014
avg loss

θ

THEY ARE STRANGELY NON-CONVEX
 24

Topics: non-convexity, saddle points
• Identifying and attacking the saddle point problem in high-dimensional non-convex optimization  

Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS 2014

(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x

2 + y
2 = 1 is a minimum. The shape of the

function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

THEY ARE STRANGELY NON-CONVEX
 25

Topics: non-convexity, saddle points
• Qualitatively Characterizing Neural Network Optimization Problems 

Goodfellow, Vinyals, Saxe, ICLR 2015

Published as a conference paper at ICLR 2015

Figure 1: Experiments with maxout on MNIST. Top row) The state of the art model, with adversarial
training. Bottom row) The previous best maxout network, without adversarial training. Left column)
The linear interpolation experiment. This experiment shows that the objective function is fairly
smooth within the 1-D subspace spanning the initial and final parameters of the model. Apart from
the flattening near ↵ = 0, it appears nearly convex in this subspace. If we chose the initial direction
correctly, we could solve the problem with a coarse line search. Right column) The progress of
the actual SGD algorithm over time. The vast majority of learning happens in the first few epochs.
Thereafter, the algorithm struggles to make progress.

Figure 2: The linear interpolation curves for fully connected networks with different activation
functions. Left) Sigmoid activation function. Right) ReLU activation function.

3

THEY ARE STRANGELY NON-CONVEX
 26

Topics: non-convexity, saddle points
• If dataset is created by labeling points using a N-hidden units neural network
‣ training another N-hidden units network is likely to fail

‣ but training a larger neural network is more likely to work!  
(saddle points seem to be a blessing)

THEY WORK BEST WHEN BADLY TRAINED
 27

Topics: sharp vs. flat miniman
• Flat Minima 

Hochreiter, Schmidhuber, Neural Computation 1997

Published as a conference paper at ICLR 2017

forth the following as possible causes for this phenomenon: (i) LB methods over-fit the model; (ii)
LB methods are attracted to saddle points; (iii) LB methods lack the explorative properties of SB
methods and tend to zoom-in on the minimizer closest to the initial point; (iv) SB and LB methods
converge to qualitatively different minimizers with differing generalization properties. The data
presented in this paper supports the last two conjectures.

The main observation of this paper is as follows:

The lack of generalization ability is due to the fact that large-batch methods tend to converge
to sharp minimizers of the training function. These minimizers are characterized by a signif-
icant number of large positive eigenvalues in r2f(x), and tend to generalize less well. In
contrast, small-batch methods converge to flat minimizers characterized by having numerous
small eigenvalues of r2f(x). We have observed that the loss function landscape of deep neural
networks is such that large-batch methods are attracted to regions with sharp minimizers and
that, unlike small-batch methods, are unable to escape basins of attraction of these minimizers.

The concept of sharp and flat minimizers have been discussed in the statistics and machine learning
literature. (Hochreiter & Schmidhuber, 1997) (informally) define a flat minimizer x̄ as one for which
the function varies slowly in a relatively large neighborhood of x̄. In contrast, a sharp minimizer x̂
is such that the function increases rapidly in a small neighborhood of x̂. A flat minimum can be de-
scribed with low precision, whereas a sharp minimum requires high precision. The large sensitivity
of the training function at a sharp minimizer negatively impacts the ability of the trained model to
generalize on new data; see Figure 1 for a hypothetical illustration. This can be explained through
the lens of the minimum description length (MDL) theory, which states that statistical models that
require fewer bits to describe (i.e., are of low complexity) generalize better (Rissanen, 1983). Since
flat minimizers can be specified with lower precision than to sharp minimizers, they tend to have bet-
ter generalization performance. Alternative explanations are proffered through the Bayesian view
of learning (MacKay, 1992), and through the lens of free Gibbs energy; see e.g. Chaudhari et al.
(2016).

Flat Minimum Sharp Minimum

Training Function

Testing Function

f(x)

Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss
function and the X-axis the variables (parameters)

2.2 NUMERICAL EXPERIMENTS

In this section, we present numerical results to support the observations made above. To this end,
we make use of the visualization technique employed by (Goodfellow et al., 2014b) and a proposed
heuristic metric of sharpness (Equation (4)). We consider 6 multi-class classification network con-
figurations for our experiments; they are described in Table 1. The details about the data sets and
network configurations are presented in Appendices A and B respectively. As is common for such
problems, we use the mean cross entropy loss as the objective function f .

The networks were chosen to exemplify popular configurations used in practice like AlexNet
(Krizhevsky et al., 2012) and VGGNet (Simonyan & Zisserman, 2014). Results on other networks

3

avg loss

θ

THEY WORK BEST WHEN BADLY TRAINED
 28

Topics: sharp vs. flat miniman
• On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima  

Keskar, Mudigere, Nocedal, Smelyanskiy, Tang, ICLR 2017
‣ found that using large batch sizes tends to find sharper minima and generalize worse

• This means that we can’t talk about generalization without taking the training
algorithm into account

THEY CAN EASILY MEMORIZE
 29

Topics: model capacity vs. training algorithm
• Understanding Deep Learning Requires Rethinking Generalization  

Zhang, Bengio, Hardt, Recth, Vinyals, ICLR 2017

(a) learning curves (b) convergence slowdown (c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error is 0) under different label corruptions.

To gain further insight into this phenomenon, we experiment with different levels of randomization
exploring the continuum between no label noise and completely corrupted labels. We also try out
different randomizations of the inputs (rather than labels), arriving at the same general conclusion.

The experiments are run on two image classification datasets, the CIFAR10 dataset (Krizhevsky
& Hinton, 2009) and the ImageNet (Russakovsky et al., 2015) ILSVRC 2012 dataset. We test the
Inception V3 (Szegedy et al., 2016) architecture on ImageNet and a smaller version of Inception,
Alexnet (Krizhevsky et al., 2012), and MLPs on CIFAR10. Please see Section A in the appendix for
more details of the experimental setup.

2.1 FITTING RANDOM LABELS AND PIXELS

We run our experiments with the following modifications of the labels and input images:

• True labels: the original dataset without modification.

• Partially corrupted labels: independently with probability p, the label of each image is
corrupted as a uniform random class.

• Random labels: all the labels are replaced with random ones.

• Shuffled pixels: a random permutation of the pixels is chosen and then the same permuta-
tion is applied to all the images in both training and test set.

• Random pixels: a different random permutation is applied to each image independently.

• Gaussian: A Gaussian distribution (with matching mean and variance to the original image
dataset) is used to generate random pixels for each image.

Surprisingly, stochastic gradient descent with unchanged hyperparameter settings can optimize the
weights to fit to random labels perfectly, even though the random labels completely destroy the
relationship between images and labels. We further break the structure of the images by shuffling
the image pixels, and even completely re-sampling random pixels from a Gaussian distribution. But
the networks we tested are still able to fit.

Figure 1a shows the learning curves of the Inception model on the CIFAR10 dataset under vari-
ous settings. We expect the objective function to take longer to start decreasing on random labels
because initially the label assignments for every training sample is uncorrelated. Therefore, large
predictions errors are back-propagated to make large gradients for parameter updates. However,
since the random labels are fixed and consistent across epochs, the network starts fitting after going
through the training set multiple times. We find the following observations for fitting random labels
very interesting: a) we do not need to change the learning rate schedule; b) once the fitting starts,
it converges quickly; c) it converges to (over)fit the training set perfectly. Also note that “random
pixels” and “Gaussian” start converging faster than “random labels”. This might be because with

THEY CAN BE COMPRESSED
 30

Topics: knowledge distillation
• Distilling the Knowledge in a Neural Network 

Hinton, Vinyals, Dean, arXiv 2015

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

......

......

...

THEY CAN BE COMPRESSED
 31

Topics: knowledge distillation
• Distilling the Knowledge in a Neural Network 

Hinton, Vinyals, Dean, arXiv 2015

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

......

......

...

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

...

...

THEY CAN BE COMPRESSED
 32

Topics: knowledge distillation
• Distilling the Knowledge in a Neural Network 

Hinton, Vinyals, Dean, arXiv 2015

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

......

......

...

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd

• w

• {

• g(·) b

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

Feedforward neural network

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

...

...

... y

THEY CAN BE COMPRESSED
 33

Topics: knowledge distillation
• Can successfully distill
‣ a large neural network

‣ an ensemble of neural network

• Works better than training it from scratch!
‣ Do Deep Nets Really Need to be Deep?  

Jimmy Ba, Rich Caruana, NIPS 2014

THEY ARE INFLUENCED BY INITIALIZATION
 34

Topics: impact of initialization
• Why Does Unsupervised Pre-Training Help Deep Learning  

Erhan, Bengio, Courville, Manzagol, Vincent, JMLR 2010

ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

focus respectively on local9 and global structure.10 Each point is colored according to the training
iteration, to help follow the trajectory movement.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

2 layers without pre−training

2 layers with pre−training

Figure 5: 2D visualizations with tSNE of the functions represented by 50 networks with and 50 net-
works without pre-training, as supervised training proceeds over MNIST. See Section 6.3
for an explanation. Color from dark blue to cyan and red indicates a progression in train-
ing iterations (training is longer without pre-training). The plot shows models with 2
hidden layers but results are similar with other depths.

What seems to come out of these visualizations is the following:

1. The pre-trained and not pre-trained models start and stay in different regions of function
space.

2. From the visualization focusing on local structure (Figure 5) we see that all trajectories of
a given type (with pre-training or without) initially move together. However, at some point
(after about 7 epochs) the different trajectories (corresponding to different random seeds)
diverge (slowing down into elongated jets) and never get back close to each other (this is
more true for trajectories of networks without pre-training). This suggests that each trajectory
moves into a different apparent local minimum.11

9. t-Distributed Stochastic Neighbor Embedding, or tSNE, by van der Maaten and Hinton (2008), with the default pa-
rameters available in the public implementation: http://ict.ewi.tudelft.nl/˜lvandermaaten/t-SNE.html.

10. Isomap by Tenenbaum et al. (2000), with one connected component.
11. One may wonder if the divergence points correspond to a turning point in terms of overfitting. As shall be seen in

Figure 8, the test error does not improve much after the 7th epoch, which reinforces this hypothesis.

640

THEY ARE INFLUENCED BY FIRST EXAMPLES
 35

Topics: impact of early examples
• Why Does Unsupervised Pre-Training Help Deep Learning  

Erhan, Bengio, Courville, Manzagol, Vincent, JMLR 2010

WHY DOES UNSUPERVISED PRE-TRAINING HELP DEEP LEARNING?

the first million examples (across 10 different random draws, sampling a different set of 1 million
examples each time) and keep the other ones fixed. After training the (10) models, we measure the
variance (across the 10 draws) of the output of the networks on a fixed test set (i.e., we measure the
variance in function space). We then vary the next million examples in the same fashion, and so on,
to see how much each of the ten parts of the training set influenced the final function.

Figure 13: Variance of the output of a trained network with 1 layer. The variance is computed as
a function of the point at which we vary the training samples. Note that the 0.25 mark
corresponds to the start of pre-training.

Figure 13 shows the outcome of such an analysis. The samples at the beginning15 do seem to
influence the output of the networks more than the ones at the end. However, this variance is lower
for the networks that have been pre-trained. In addition to that, one should note that the variance of
pre-trained network at 0.25 (i.e., the variance of the output as a function of the first samples used for
supervised training) is lower than the variance of the supervised network at 0.0. Such results imply
that unsupervised pre-training can be seen as a sort of variance reduction technique, consistent with
a regularization hypothesis. Finally, both networks are more influenced by the last examples used
for optimization, which is simply due to the fact that we use stochastic gradient with a constant
learning rate, where the most recent examples’ gradient has a greater influence.

These results are consistent with what our hypothesis predicts: both the fact that early examples
have greater influence (i.e., the variance is higher) and that pre-trained models seem to reduce this
variance are in agreement with what we would have expected.

15. Which are unsupervised examples, for the red curve, until the 0.25 mark in Figure 13.

651

YET THEY FORGET WHAT THEY LEARNED
 36

Topics: lifelong learning, continual learning
• Overcoming Catastrophic Forgetting in Neural Networks 

Kirkpatrick et al. PNAS 2017

Figure 2: Results on the permuted MNIST task. A: Training curves for three random permutations A, B and C
using EWC(red), L2 regularization (green) and plain SGD(blue). Note that only EWC is capable of mantaining
a high performance on old tasks, while retaining the ability to learn new tasks. B: Average performance across
all tasks using EWC (red) or SGD with dropout regularization (blue). The dashed line shows the performance
on a single task only. C: Similarity between the Fisher information matrices as a function of network depth for
two different amounts of permutation. Either a small square of 8x8 pixels in the middle of the image is permuted
(grey) or a large square of 26x26 pixels is permuted (black). Note how the more different the tasks are, the
smaller the overlap in Fisher information matrices in early layers.

of subsequent tasks. This problem cannot be countered by regularizing the network with a fixed
quadratic constraint for each weight (green curves, L2 regularization): here, the performance in task
A degrades much less severely, but task B cannot be learned properly as the constraint protects all
weights equally, leaving little spare capacity for learning on B. However, when we use EWC, and thus
take into account how important each weight is to task A, the network can learn task B well without
forgetting task A (red curves). This is exactly the expected behaviour described diagrammatically in
Figure 1.

Previous attempts to solve the continual learning problem for deep neural networks have relied upon
careful choice of network hyperparameters, together with other standard regularization methods, in
order to mitigate catastrophic forgetting. However, on this task, they have only achieved reasonable
results on up to two random permutations [Srivastava et al., 2013, Goodfellow et al., 2014]. Using a
similar cross-validated hyperparameter search as [Goodfellow et al., 2014], we compared traditional
dropout regularization to EWC. We find that stochastic gradient descent with dropout regularization
alone is limited, and that it does not scale to more tasks (Figure 2B). In contrast, EWC allows a large
number of tasks to be learned in sequence, with only modest growth in the error rates.

Given that EWC allows the network to effectively squeeze in more functionality into a network with
fixed capacity, we might ask whether it allocates completely separate parts of the network for each
task, or whether capacity is used in a more efficient fashion by sharing representation. To assess this,
we determined whether each task depends on the same sets of weights, by measuring the overlap
between pairs of tasks’ respective Fisher information matrices (see Appendix 4.3). A small overlap
means that the two tasks depend on different sets of weights (i.e. EWC subdivides the network’s
weights for different tasks); a large overlap indicates that weights are being used for both the two tasks
(i.e. EWC enables sharing of representations). Figure 2C shows the overlap as a function of depth.
As a simple control, when a network is trained on two tasks which are very similar to each other
(two versions of MNIST where only a few pixels are permutated), the tasks depend on similar sets of
weights throughout the whole network (grey curve). When then the two tasks are more dissimilar
from each other, the network begins to allocate separate capacity (i.e. weights) for the two tasks
(black line). Nevertheless, even for the large permutations, the layers of the network closer to the
output are indeed being reused for both tasks. This reflects the fact that the permutations make the
input domain very different, but the output domain (i.e. the class labels) is shared.

2.2 EWC allows continual learning in a reinforcement learning context

We next tested whether elastic weight consolidation could support continual learning in the far
more demanding reinforcement learning (RL) domain. In RL, agents dynamically interact with
the environment in order to develop a policy that maximizes cumulative future reward. We asked
whether Deep Q Networks (DQNs)—an architecture that has achieved impressive successes in such
challenging RL settings [Mnih et al., 2015]—could be harnessed with EWC to successfully support
continual learning in the classic Atari 2600 task set [Bellemare et al., 2013]. Specifically, each

4

SO THERE IS A LOT  
MORE TO UNDERSTAND!!

 37

MERCI!

 38

