Neural Networks

Hugo Larochelle (@hugo_larochelle)
Google Brain

NEURAL NETWORKS

- What we'll cover
 - types of learning problems
 - definitions of popular learning problems
 - how to define an architecture for a learning problem
 - unintuitive properties of neural networks
 - adversarial examples
 - optimization landscape of neural networks

Neural Networks

Types of learning problems

SUPERVISED LEARNING

Topics: supervised learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

- Example
 - classification
 - regression

UNSUPERVISED LEARNING

Topics: unsupervised learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)} \sim p(\mathbf{x})$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}\}$$

$$\mathbf{x}^{(t)} \sim p(\mathbf{x})$$

- Example
 - distribution estimation
 - dimensionality reduction

SEMI-SUPERVISED LEARNING

Topics: semi-supervised learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$
$$\{\mathbf{x}^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$
 $\mathbf{x}^{(t)} \sim p(\mathbf{x})$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

MULTITASK LEARNING

Topics: multitask learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)} \sim$$

$$p(\mathbf{x}, y_1, \dots, y_M)$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)}\}$$

$$\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)} \sim$$

$$p(\mathbf{x}, y_1, \dots, y_M)$$

- Example
 - object recognition in images with multiple objects

MULTITASK LEARNING

Topics: multitask learning

MULTITASK LEARNING

Topics: multitask learning

TRANSFER LEARNING

Topics: transfer learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)} \sim$$

$$p(\mathbf{x}, y_1, \dots, y_M)$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y_1^{(t)}\}$$

$$\mathbf{x}^{(t)}, y_1^{(t)} \sim p(\mathbf{x}, y_1)$$

STRUCTURED OUTPUT PREDICTION

Topics: structured output prediction

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, \mathbf{y}^{(t)}\}$$

of arbitrary structure (vector, sequence, graph)

setting:

$$\mathbf{x}^{(t)}, \mathbf{y}^{(t)} \sim p(\mathbf{x}, \mathbf{y})$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)},\mathbf{y}^{(t)}\}$$

$$\mathbf{x}^{(t)}, \mathbf{y}^{(t)} \sim p(\mathbf{x}, \mathbf{y})$$

- Example
 - image caption generation
 - machine translation

DOMAINADAPTATION

Topics: domain adaptation, covariate shift

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}\$$
$$\{\bar{\mathbf{x}}^{(t')}\}\$$

setting:

$$\mathbf{x}^{(t)} \sim p(\mathbf{x})$$
 $y^{(t)} \sim p(y|\mathbf{x}^{(t)})$
 $\mathbf{\bar{x}}^{(t)} \sim q(\mathbf{x}) \approx p(\mathbf{x})$

- Test time
 - data:

$$\{\bar{\mathbf{x}}^{(t)}, y^{(t)}\}$$

$$\bar{\mathbf{x}}^{(t)} \sim q(\mathbf{x})$$
 $y^{(t)} \sim p(y|\bar{\mathbf{x}}^{(t)})$

- Example
 - classify sentiment in reviews of different products
 - training on synthetic data but testing on real data (sim2real)

DOMAINADAPTATION

Topics: domain adaptation, covariate shift

- Domain-adversarial networks (Ganin et al. 2015) train hidden layer representation to be
 - I. predictive of the target class
 - 2. indiscriminate of the domain
- Trained by stochastic gradient descent
 - lacktriangleright for each random pair $\mathbf{x}^{(t)}, \mathbf{ar{x}}^{(t')}$
 - I. update W,V,b,c in opposite direction of gradient
 - 2. update \mathbf{w}, d in direction of gradient

DOMAINADAPTATION

Topics: domain adaptation, covariate shift

- Domain-adversarial networks (Ganin et al. 2015) train hidden layer representation to be
 - I. predictive of the target class
 - 2. indiscriminate of the domain
- Trained by stochastic gradient descent
 - for each random pair $\mathbf{x}^{(t)}, \mathbf{\bar{x}}^{(t')}$
 - I. update W,V,b,c
 - 2. update \mathbf{w}, d in dire

May also be used to promote fair and unbiased models ...

ONE-SHOT LEARNING

Topics: one-shot learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

subject to $y^{(t)} \in \{1, \dots, C\}$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

subject to $y^{(t)} \in \{C+1,\ldots,C+M\}$

- ▶ side information :
 - a single labeled example from each of the M new classes

Example

recognizing a person based on a single picture of him/her

ONE-SHOT LEARNING

Topics: one-shot learning

Siamese architecture (figure taken from Salakhutdinov and Hinton, 2007)

ZERO-SHOT LEARNING

Topics: zero-shot learning, zero-data learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

subject to $y^{(t)} \in \{1, \dots, C\}$

- ▶ side information :
 - description vector \mathbf{z}_c of each of the C classes

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

subject to $y^{(t)} \in \{C+1,\ldots,C+M\}$

- ▶ side information :
 - description vector \mathbf{z}_c of each of the new M classes

- Example
 - recognizing an object based on a worded description of it

ZERO-SHOT LEARNING

Topics: zero-shot learning, zero-data learning

Ba, Swersky, Fidler, Salakhutdinov arxiv 2015

DESIGNING NEW ARCHITECTURES

Topics: designing new architectures

 Tackling a new learning problem often requires designing an adapted neural architecture

 Approach I: use our intuition for how a human would reason about the problem

 Approach 2: take an existing algorithm/procedure and turn it into a neural network

DESIGNING NEW ARCHITECTURES

Topics: designing new architectures

- Many other examples
 - structured prediction by unrolling probabilistic inference in an MRF
 - planning by unrolling the value iteration algorithm (Tamar et al., NIPS 2016)
 - few-shot learning by unrolling gradient descent on small training set

Neural networks

Unintuitive properties of neural networks

THEY CAN MAKE DUMB ERRORS

Topics: adversarial examples

Intriguing Properties of Neural Networks
 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus, ICLR 2014

Correctly classified

Difference

Badly classified

THEY CAN MAKE DUMB ERRORS

Topics: adversarial examples

Humans have adversarial examples too

However they don't match those of neural networks

THEY CAN MAKE DUMB ERRORS

Topics: adversarial examples

Humans have adversarial examples too

However they don't match those of neural networks

Topics: non-convexity, saddle points

Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
 Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS 2014

Topics: non-convexity, saddle points

• Identifying and attacking the saddle point problem in high-dimensional non-convex optimization Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS 2014

Topics: non-convexity, saddle points

• Identifying and attacking the saddle point problem in high-dimensional non-convex optimization Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS 2014

Topics: non-convexity, saddle points

 Qualitatively Characterizing Neural Network Optimization Problems Goodfellow, Vinyals, Saxe, ICLR 2015

Topics: non-convexity, saddle points

- If dataset is created by labeling points using a N-hidden units neural network
 - training another N-hidden units network is likely to fail
 - but training a larger neural network is more likely to work!
 (saddle points seem to be a blessing)

THEY WORK BEST WHEN BADLY TRAINED

Topics: sharp vs. flat miniman

Flat Minima
 Hochreiter, Schmidhuber, Neural Computation 1997

THEY WORK BEST WHEN BADLY TRAINED

Topics: sharp vs. flat miniman

- On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima Keskar, Mudigere, Nocedal, Smelyanskiy, Tang, ICLR 2017
 - ▶ found that using large batch sizes tends to find sharper minima and generalize worse
- This means that we can't talk about generalization without taking the training algorithm into account

THEY CAN EASILY MEMORIZE

Topics: model capacity vs. training algorithm

 Understanding Deep Learning Requires Rethinking Generalization Zhang, Bengio, Hardt, Recth, Vinyals, ICLR 2017

Topics: knowledge distillation

 Distilling the Knowledge in a Neural Network Hinton, Vinyals, Dean, arXiv 2015

Topics: knowledge distillation

 Distilling the Knowledge in a Neural Network Hinton, Vinyals, Dean, arXiv 2015

Topics: knowledge distillation

 Distilling the Knowledge in a Neural Network Hinton, Vinyals, Dean, arXiv 2015

Topics: knowledge distillation

- Can successfully distill
 - ▶ a large neural network
 - ▶ an ensemble of neural network

- Works better than training it from scratch!
 - ▶ Do Deep Nets Really Need to be Deep? Jimmy Ba, Rich Caruana, NIPS 2014

THEY ARE INFLUENCED BY INITIALIZATION

Topics: impact of initialization

• Why Does Unsupervised Pre-Training Help Deep Learning Erhan, Bengio, Courville, Manzagol, Vincent, JMLR 2010

THEY ARE INFLUENCED BY FIRST EXAMPLES

Topics: impact of early examples

• Why Does Unsupervised Pre-Training Help Deep Learning Erhan, Bengio, Courville, Manzagol, Vincent, JMLR 2010

YETTHEY FORGET WHAT THEY LEARNED

Topics: lifelong learning, continual learning

 Overcoming Catastrophic Forgetting in Neural Networks Kirkpatrick et al. PNAS 2017

SOTHERE IS A LOT MORETO UNDERSTAND!!

MERCI!