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NEURAL NETWORKS

 What we'll cover

» types of learning problems
- definitions of popular learning problems

- how to define an architecture for a learning problem

» uninturtive properties of neural networks
- adversarial examples

- optimization landscape of neural networks




Neural Networks

Types of learning problems



SUPERVISED LEARNING

Topics: supervised learning

* lTraining time * lest time * Example

» data: » data: » classification

{X(t), y(t)} {X(t)7 y(t)} > regression

» setting : » setting :

() ()

X(t) i p(X7 y)

B p(X7 y) X(t)v Y

Y




UNSUPERVISED LEARNING

Topics: unsupervised learning

* lTraining time * lest time * Example
» data : » data: » distribution estimation
(1) (%) » dimensionalrty
{X } {X } reduction

» setting : » setting :

x() ~ p(x) x") ~ p(x)




SEMI-SUPERVISED LEARNING

Topics: semi-supervised learning

* lTraining time * lest time

» data: » data:

(x®, 0 (x®, 0
{(x®)

» setting : » setting :

()

()

Y~ p(x,y)




MULTTTASK LEARNING

Topics: multitask learning

* lTraining time * lest time * Example
» data: » data: » object recognition In
images with multiple
{(x®,51”,..., 45} {(x,51”,..., 457} objects

» setting : » setting :

x,p1"” g~ x®, 517, yad ~

p(X7y17°°°7yM) p(X7y17°°°7yM)




MULTTTASK LEARNING

Topics: multitask learning




MULTTTASK LEARNING

Topics: multitask learning



TRANSFER LEARNING

Topics: transfer learning

* lTraining time * lest time

» data: » data:

{x® 89y {x® yih

» setting : » setting :

x® 0 g x®, y1") ~ p(x, 1)

p(X7y17°°°7yM)




STRUCTURED OUTPUT PREDICTION

Topics: structured output prediction

* lTraining time * lest time * Example
» data: » data: » Image caption
(0 (0 0 () generation
{3( Y } {)( Y } » machine translation

\ of arbitrary structure
(vector, sequence, graph)

» setting : » setting :
() ()

~ p(X,y) xW y) ~ p(x,y)

Y




DOMAIN ADAPTATION

Topics: domain adaptation, covariate shift

* lTraining time * lest time * Example
» data: » data: » classify sentiment in
reviews of different

{X(t), y(t)} {)_((t), y(t)} products
{}—((t/)} » training on synthetic

data but testing on

. . real data (simZreal)
» setting : » setting :

x) ~ p(x) %" ~ q(x)

y' ~ p(yx") y' ~ p(yx")

X ~ q(x)~ p(x)




DOMAIN ADAPTATION

Topics: domain adaptation, covariate shift

« Domain-adversarial networks (Ganin et al. 2015)

train hidden layer representation to be f(X) C@OOO) o(h(X))

|. predictive of the target class
Vv W

2. indiscriminate of the domain

* [rained by stochastic gradient descent h(x) C@OOQQ}
» for each random pair X(t), z(t)
|.update W,V ,b,c in opposite direction of gradient \4%

2. update w,d In direction of gradient X COOOOOO)




DOMAIN ADAPTATION

Topics: domain adaptation, covariate shift

« Domain-adversarial networks (Ganin et al. 2015)

train hidden layer representation to be f(X) (@OOO} o(h(X))

|. predictive of the target class
Vv W

2. indiscriminate of the domain

* [rained by stochastic gradient descent h(x) (@QQOO}

» for each random pair x®) %(*) T

|.update W,V ,b,c |

2. update w,d In dire

May also be used to promote 5
fair and unbiased models ...




ONE-SHOT LEARNING

Topics: one-shot learning

* lTraining time * lest time * Example
» data: » data: » recognizing a person
based on a single
{X(t), y<t)} {X(t), y(t)} picture of him/her

» setting : » setting :

< () (t)

% p(X, y)

e p(X7 y) X(t)v Y

Y

subject to y(t) c{l,...,C} subject to y) e {C+1,...,C+ M}
» side information :

- a single labeled example from
each of the M new classes




ONE-SHOT LEARNING

Topics: one-shot learning

Siamese archrtecture
(figure taken from Salakhutdinov

and Hinton, 2007/)




/ERO-SHOT LEARNING

Topics: zero-shot learning, zero-data learning

* lTraining time * lest time * Example
» data: » data: » recognizing an object
based on a worded
{X(t), y<t)} {X(t), y(t)} description of It

» setting : » setting :

< () (t)

% p(X, y)

e p(X7 y) X(t)v Y

Y

subject to y(t) c{l,...,C} subject to y) e {C+1,...,C+ M}
» side information : » side information :

- description vector z. of each of - description vector z. of each of
the C' classes the new M classes




/ERO-SHOT LEARNING

Topics: zero-shot learning, zero-data learning

score O

EDot
‘product

_______________________________________________

______________________

‘Wikipedia article

The Cardinals or Cardinalidae are a family of passerine
i | birds found in North and South America

i | The South American cardinals in the genus...

_______________________________________________________________________

Ba, Swersky, Fidler; Salakhutdinov
arxiv 2015



DESIGNING NEW ARCHITECTURES

Topics: designing new archrtectures

» Tackling a new learning problem often requires designing
an adapted neural architecture

» Approach |:use our inturtion for how a human would
reason about the problem

» Approach 2:take an existing algorithm/procedure and
turn 1t into a neural network



DESIGNING NEW ARCHITECTURES

Topics: designing new archrtectures

» Many other examples

» structured prediction by unrolling probabillistic inference in an MRF

» planning by unrolling the value iteration algorithm
(Tamar et al., NIPS 2016)

» few-shot learning by unrolling gradient descent on small training set

' Ravi and Larochelle, ICLR 2017 '

XY XY XY (XY (X
v \ \/

A 64 62 Or—1




Neural networks

Uninturtive properties of neural networks



THEY CAN MAKE DUMB ERRORS

Topics: adversarial examples

* Intriguing Properties of Neural Networks
Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus, [CLR 2014
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THEY CAN MAKE DUMB ERRORS

Topics: adversarial examples

* Humans have adversarial examples too

« ™
f -
s

» However they don't match those of neural networks

2|



THEY CAN MAKE DUMB ERRORS

Topics: adversarial examples

* Humans have adversarial examples too

o> —— -

» However they don't match those of neural networks

22



THEY ARE STRANGELY NON-CONVEX

Topics: non-convexity, saddle points

* |dentifying and attacking the saddle point problem in high-dimensional non-convex optimization

Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS 20 |4

avg loss

23



THEY ARE STRANGELY NON-CONVEX

Topics: non-convexity, saddle points

* |dentifying and attacking the saddle point problem in high-dimensional non-convex optimization

Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS 2014
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THEY ARE STRANGELY NON-CONVEX

Topics: non-convexity, saddle points

* |dentifying and attacking the saddle point problem in high-dimensional non-convex optimization

Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS 2014
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THEY ARE STRANGELY NON-CONVEX

Topics: non-convexity, saddle points

* uadlitatively Characterizing Neural Network Optimization Problems
Goodfellow, Vinyals, Saxe, ICLR 2015

Linear interpolation of ReLUs on MNIST

= J(0) train
»—xJ(0) validation

25



THEY ARE STRANGELY NON-CONVEX

Topics: non-convexity, saddle points

» |f dataset Is created by labeling points using a N-hidden unrits neural network

» training another N-hidden units network is likely to fall

» but training a larger neural network is more likely to work!
(saddle points seem to be a blessing)

26
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THEY WORK BEST WHEN BADLY TRAINED 2

Topics: sharp vs. flat miniman

* Flat Minima
Hochrerter; Schmidhuber, Neural Computation 1997

avqg loss

Training Function

' Testing Function

Flat Minimum Sharp Minimum
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THEY WORK BeEST WHEN BADLY TRAINED 2

Topics: sharp vs. flat miniman

* On Large-Batch Iraining for Deep Learning: Generalization Gap and Sharp Minima
Keskar, Mudigere, Nocedal, Smelyanskiy, Tang, ICLR 2017/

» found that using large batch sizes tends to find sharper minima and generalize worse

* [his means that we can't talk about generalization without taking the training
algorithm into account



THEY CAN EASILY MEMORIZE

Topics: model capacity vs. training algorithm

» Understanding Deep Learning Requires Rethinking Generalization
/hang, Bengio, Hardt, Recth, Vinyals, [CLR 201/
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THEY CAN BE COMPRESSED

Topics: knowledge distillation

» Distilling the Knowledge in a Neural Network
Hinton, Vinyals, Dean, arXiv 2015

30



THEY CAN BE COMPRESSED

Topics: knowledge distillation

» Distilling the Knowledge in a Neural Network
Hinton, Vinyals, Dean, arXiv 2015
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THEY CAN BE COMPRESSED

Topics: knowledge distillation

» Distilling the Knowledge in a Neural Network
Hinton, Vinyals, Dean, arXiv 2015
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THEY CAN BE COMPRESSED

Topics: knowledge distillation

» (Can successiully distill

» a large neural network

» an ensemble of neural network

» Works better than training it from scratch!

» Do Deep Nets Really Need to be Deep’
Jimmy Ba, Rich Caruana, NIPS 2014

33



THEY ARE INFLUENCED BY INITIALIZATION

Topics: mpact of inrtialization

» Why Does Unsupervised Pre-Iraining Help Deep Learning
Erhan, Bengio, Courville, Manzagol,Vincent, IMLR 2010
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THEY ARE INFLUENCED BY FIRST EXAMPLES 35

Topics: impact of early examples

» Why Does Unsupervised Pre-Iraining Help Deep Learning
Erhan, Bengio, Courville, Manzagol,Vincent, IMLR 2010
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YET THEY FORGET WHAT THEY LEARNED

Topics: lifelong learning, continual learning

» Overcoming Catastrophic Forgetting in Neural Networks
Kirkpatrick et al. PNAS 2017/
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SO THERE IS A LOT
MORE TO UNDERS TAND!

37



MERCI!
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