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Some History

1950s and 1960s: “Perceptron” (single-layer, 1 output node)

1969: Perceptrons are very limited [Minsky,Papert]

1990s-2010: Perceptron+ (namely, SVMs) strikes back. 

(Riding on convex optimization theory, generalization theory, 

expressivity theory of kernels, etc.). 

Last 10 years: Age of deep learning (multilayer perceptron).

Theory?? ?



Deep Learning: Terminology

q: Parameters of deep net

(x1,y1), (x2,y2),…  iid (point, label) 

from distribution D

(training data)

Loss function (how well net output matched true

label y on point x) Can be l2, cross-entropy….

Objective

Gradient Descent 

7/

Stochastic GD: Estimate ∇ via small  sample of training data.
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• Backpropagation: Linear time algorithm to compute gradient.

• “Gradient/landscape shaping” drives innovations such as resnets, 

wavenets, batch-normalization, …

• Gradient Descent++ (Momentum, Regularization, AdaGrad,..)

Came from convex world.

Optimization concepts already shape deep learning
(together with GPUs, large datasets)  

Goal of theory: Theorems that sort through/support competing

intuitions, leading to new insights and concepts.



Talk overview
 Optimization: When/how can it find 

decent solutions?  Highly nonconvex.

 Overparametrization/Generalization:
# parameters ≫ training samples. 
Does it help? Why do nets generalize
(predict well on unseen data)?

 Role of depth? 

 Unsupervised learning/GANs

 Simpler methods to replace deep 
learning? (Examples of Linearization 
from NLP,  RL…) 

Training error

Test error
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Part 1: Optimization in deep learning
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Hurdle:  Most optimization problems in deep learning 

are nonconvex, and on worst-case instances are 

NP-hard.
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Basic concepts

Assumption about initialization:

Convergence from all starting points 𝛉? 

Random initial point?  Special initial points?

Black box vs nonblack box

Note: ∇ ≠ 0 ➔ ∃ descent direction.  

Possible goals: Find critical point (∇ =0).

Find “local optimum”, ie bottom of some valley (∇2 is psd/ ∇2 ≽ 0)

Find  global optimum 𝛉*.

In Rd, want run times poly(d, 1/𝜀) where 𝜀= accuracy.

(naive: exp(d/𝜀)). Recall: d > 106
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Curse of dimensionality

In Rd, ∃ exp(d) directions

whose pairwise angle is > 60 degrees

∃ exp(d/e) special directions s.t. all directions have 

angle at most e with one of these  (“e-net”, “e-cover”)

“Time to explore d-

dimensional parameter 

space.”

(INFEASIBLE)
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Black box analysis for deep learning

Why: Don’t know the landscape, really 

No clean math. characterization of (xi, yi) !

f𝛉
∇f|𝛉

[NB: Some attempts to understand landscape via 

statistical physics; not much success so far..]

f(𝛉)

f = training error

INFEASIBLE to find global optimum;

must settle for weaker solutions



Gradient descent in unknown landscape.

□ ∇ ≠ 0 ➔ ∃ descent direction

□ But if 2nd derivative (∇2) high, allows ∇ to 

fluctuate a lot!

□ ➔ To ensure descent, take small steps

determined by smoothness 
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Can be assumed via 

gaussian smoothening

of f.

𝛻2𝑓 𝛉 ≼ 𝛃𝐼

𝛉t+1= 𝛉t - 𝜂 ∇f(𝛉t)



Gradient descent in unknown landscape (contd.)

□ Smoothness

CLAIM:  𝜂 = 1/2𝛽 ⇒ achieve|∇f| < 𝜺
in  #steps proportional to 𝛽/𝜺2.
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But critical point (∇f =0)

is a weak solution concept.

−𝜷𝐼 ≼ 𝛻2 𝑓 𝛉 ≼ 𝛃𝐼

𝛉t+1= 𝛉t - 𝜂 ∇f(𝛉t)

𝑓 𝛳𝑡 − 𝑓 𝛳𝑡+1 ≥ −𝛻𝑓 𝛳𝑡 𝛳𝑡+1 − 𝛳𝑡 −
1

2
𝛽|𝛳𝑡 − 𝛳𝑡+1 ቚ

2

= 𝜂 𝛻𝑡
2 −

1

2
𝛽𝜂2 𝛻𝑡

2 =
1

2𝛽
𝛻𝑡

2

Pf:

➜ update reduces function value by 𝜺2/2β



Evading saddle points..

Min in n-1 dimensions, max in one  

[Ge,  Huang, Jin, Yuan’15 ] Add noise 

to gradient (“perturbed GD”)

Analysis of random walk

➔Within poly(d/e) time “escape” 

all saddle points and achieve 

“Approx 2nd order minimum”

(Runtime improvements: Jin et al’17] 

[NB: perturbed GD with large noise = “Langevin dynamics” in stat. physics)
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𝛻2𝑓 ≽ − 𝜖 𝐼| 𝛻𝑓 | ≤ 𝜖

(Analyses of probability flow out of “stuck region”)
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2nd order optimization for deep learning? (Newton 

method?)

[Werbos’74]

𝑥𝑡+1 = 𝑥𝑡 − 𝜂 [𝛻2𝑓(𝑥)]−1 𝛻𝑓(𝑥)

But 2nd order doesn’t seem to find  better quality nets 

so far. 

f𝛉 ∇f|𝛉

f(𝛉)

∇2f|𝛉

More relevant: For any vector v,

Backprop can compute  (∇2f)v

in linear time. [Pearlmutter’94]

= ෍

𝑖=0 𝑡𝑜 ∞

𝐼 − 𝛻2 𝑖(∇2)−1Idea: (but use finite truncation)

Can do approximate 2nd order optimization  asymptotically faster than 

1st order! (empirically, slightly slower) [Agarwal et al’17, Carmon et al’17] 
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Non-black box analyses

Various ML problems that’re subcases of depth 2 nets

(i.e., one hidden layer between input and output).

Topic modeling [A., Ge, Moitra’12] [A. et al’13]

Sparse coding [A., Ge, Ma, Moitra’14, ‘15] [Anandkumar et al’14]  

Phase retrieval [Candes et al’15]

Matrix completion [Many papers, eg Jain et al.’13]

Matrix sensing 

Learning Noisy Or nets [A., Ge, Ma’17]

• Often make assumptions about the net’s structure, data distribution,

etc. (landscape is mathematically known) s

• May use different algorithm (eg, tensor decomposition, alternating

minimization, convex optimization …) than  GD/SGD.
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Convergence to global optimum from arbitrary 

initial point ( via understanding the landscape)

𝑀 = 𝑈 ⋅ 𝑉⊤

Given O(nr) random entries

of an nxn matrix M of rank r,

predict missing entries.

U

V
Feeding1-hot inputs into unknown net; seeting

output at one random output  node. Learn the net!

[Ge, Lee, Ma’17]  All local minima are global minima. So 

perturbed GD finds global minimum from arbitrary initial point.

(proof is fairly nontrivial)

0000001000

Matrix completion

i

Subcase of learning depth 2 nets
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Some papers: [Baldi, Hornik’88], [Saxe et al ‘13] (dynamics of training)

[Kawaguchi’16] [Hardt and Ma’16] (landscape of linear resnets);

[A., Cohen, Hazan’18]

Any theorems about learning multilayer nets? 

Yes, but usually only for linear nets (i.e., hidden nodes 

compute f(x) = x).

Overall net = product of matrix transformation 

= itself a linear transformation

But optimization landscape still holds surprises…
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Some other optimization ideas I did not cover

(some are only semi-theorems) 

• Budding connections with “physics” ideas: natural gradient, 

Lagrangian method,  ..

• Adversarial examples and efforts to combat them

• Optimization for unsupervised learning (esp. probabilistic 

models),  reinforcement learning.

• Information-theoretic interpretation of training algorithms,

eg “information bottleneck”



Part 3: Overparametrization and 

Generalization theory 
e.g., Why is it a good idea to train VGG19 (20M parameters) 

on CIFAR10 (50K samples)? No overfitting?  
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Overparametrization may help optimization : 

folklore experiment e.g [Livni et al’14]

Generate labeled data by 

feeding random input vectors

Into depth 2 net with 

hidden layer of size n

Difficult to train a new net

using this labeled data

with same # of hidden nodes

Much easier to train a new net with 

bigger hidden layer!

Still no theorem

explaining this…
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But textbooks warn us: Large models can “Overfit”

Generali-

zation error

Real Life Deep learning

Longtime belief: SGD + regularization eliminates “excess capacity” 

of the net
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But, excess capacity is still there!

Inception v3 net on CIFAR10

[Understanding deep learning requires rethinking generalization, Zhang et al. 17]

Hope: An explanation 

will also  identify 

intrinsic structure of a  

“well-trained” net. 



BTW: Excess capacity phenomenon exists in linear models!

g = margin

Classifier has d parameters. 

See also [Understanding deep learning requires understanding kernel learning. Belkin et al’18]

If has margin g , then possible to learn it with

< O(log d)/g2 datapoints!  (low effective capacity!)

But always possible to fit linear classifier to  d-1 

randomly labeled datapoints as well.

Quantify 

effective 

capacity of 

deep nets??



Effective Capacity
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(Rough Analogy: If a system 

exhibits 2k distinct states we say

it has k bits of memory. )

Roughly,  log (# distinct a priori models)

Generalization

Theory (Main Thm)

m = # training samples.   N = effective capacity

Usual upperbounds on N:  # of parameters, VC dimension, Rademacher

For deep nets, all of these are about the same (usually

vacuous)
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Proof Sketch

• Fix deep net 𝛉 and its parameters

Err𝛉 =  test error

• Take iid sample S of m datapoints,

Err𝛉,S =  avg error on S = training error

• By concentration bounds, for fixed net 𝛉
PrS[diff. between them ≤𝝴] > 1- exp(- 𝝴2m)

Complication:  Net depends upon training sample S

Solution: Union bound over “all possible” 𝛉.

If # (possible 𝛉) = W, suffices to let m > (log W)/𝝴2

“Effective capacity” 

= log W, = N



Old notion: Flat Minima  

[Hochreiter, Schmidhuber’95]

Flat minimum has lower description length 

➔ Fewer # of “possible models” with such small descriptions

Flat Sharp

Makes intuitive sense but hard to make quantitative…
(and false for some defns of “sharp” [Dinh et al’17])

“Flat minima” generalize 

better empirically 
[Keskar et all’16]

[Hinton-Camp’93]
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Multiple arguments ➜

“Noise in SGD favors flat minima”



Current status of generalization theory: postmortem analysis…

It has Property 𝚽
shared by very

few nets… 

TRAINED 

NET 𝛉

Qualitative check: Correlates with 

generalization?

Quantitative: Use property 𝚽 to compute upper bound on “very few”

and hence effective capacity   (much harder!)

Generalization error

𝚽



Nonvacuous estimate of  “true capacity”

has proved elusive (starting point  [Langfod-Caruana02]

Ideas include: PAC-Bayes, Margin, Rademacher, ..
[Dziugaite-Roy’17] have more nonvacuous bounds for MNIST** but not an asymptotic

“complexity measure”
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Nonvacuous bound on “true parameters”

has proved elusive..

Nonvacuous bound on “true parameters”

has proved elusive..

Estimates from PAC-Bayes/Margin analyses 
[Dziugaite-Roy’17] have more nonvacuous bounds for MNIST** but don’t get  any

“complexity measure”

[Bartlett-Mendelson’02]
[Neyshabur et al’17]

[Bartlett et al’17],
[Neyshabur et al’17]

[A., Ge, 

Neyshabur, 

Zhang’18]

VGG19

(19 layers)
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Main idea: Using 

noise stability to

bound effective 

Capacity.



Noise stability for deep nets 
(can be seen as a “margin” notion for deep nets)

[A., Ge, Neyshabur, 

Zhang ICML’18]
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Noise injection: Add gaussian 𝜂 to output x of a layer

(|𝜂| = |x| )

Measure change in higher layers.  (If  small,

then net is noise stable.)



Noise stability of VGG19

How injected gaussian noise gets 

attenuated as it passes through 

to higher layers. 

(Each layer  fairly stable to noise

introduced at lower layers!)

[A., Ge, Neyshabur, 

Zhang ICML’18]
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Related to other noise stability phenomena independently

discovered in experiments of  [Morcos et al ICLR’18]



Von Neumann, J. (1956). 

Probabilistic logics and the 

synthesis of reliable organisms 

from unreliable components.

Shannon, C. E. (1958).

Von Neumann’s contributions 

to automata theory.

“Reliable machines and unreliable 

components…

We have, in human and animal brains, examples 

of very large and relatively reliable systems 

constructed from individual components, the 

neurons, which would appear to be anything but 

reliable.

…

In communication theory this can be done by 

properly introduced redundancy.”
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Understanding noise stability for one layer 
(no nonlinearity)

x Mx |Mx|/|x| ≫ |M h|/|h|

h : Gaussian noise
=

Distribution of singular values in

a filter of layer 10 of VGG19.

Such matrices are compressible…

Layer Cushion = ratio

(roughly speaking..)

x + h M(x + h)
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Overview of compression-based method for

generalization bounds [A.,Ge, Neyshabur, Zhang’18]; user-friendly

version of PAC-Bayes

# parameters ≫ # datapoints

# parameters ≪ # datapoints

Important: compression method allowed to use any number 

of new random bits, provided they don’t depend on data. 
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Proof sketch : Noise stability ➔ deep net compressible with minimal

change to training error 

Idea 1: Compress a layer (randomized;

errors introduced are “Gaussian like”)

Idea 2: Errors attenuate as they go through 

network, as noted earlier.

Compression: 

(1) Generate 𝑘 random sign matrices 

𝑀1, … ,𝑀𝑘 (impt: picked before seeing 

data)

(2) መ𝐴 =
1

𝑘
σ𝑡=1
𝑘 𝐴,𝑀𝑡 𝑀𝑡
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(Nontrivial extension to 

convolutional nets)



The Quantitative Bound

capacity ≈
depth × 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

layer cushion × interlayer cushion

2

#param

Nonvacuous bound on “true parameters”

has proved elusive..

Estimates from PAC-Bayes/Margin analyses 
[Dziugaite-Roy’17] have more nonvacuous bounds for MNIST** but don’t get  any

“complexity measure”

[Bartlett-Mendelson’02]
[Neyshabur et al’17]

[Bartlett et al’17],
[Neyshabur et al’17]

[A., Ge, 

Neyshabur, 

Zhang’18]

VGG19

(19 layers)
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Correlation with Generalization (qualitative 
check)
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Layer cushion much higher

when trained on normal data

than on corrupted data

Evolution during training

on normal data..



Concluding thoughts on generalization

Some progress, but final story still to be written. 

I don’t ultimately know why trained nets are noise stable. 

Quantitative bounds too weak to explain why net with 
20M parameters generalizes with 50k training datapoints. 

NB: Argument needs to involve more properties of training 
algorithm and/or data distribution. 

([Gunasekar et al’18] Quantify “Implicit bias” of gradient descent
towards  “low capacity” models in simple settings.)
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Part 3: Role of depth
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Ultimate hope: theory informs what architectures are “best” for a 

given task.



Ideal result:  exhibit natural learning problem which cannot be done 

using depth d but can be done with depth d+1 

An old question: Role of depth?

Currently, not within reach of theory, lacking mathematical

formalization of “natural” learning problem…

[Eldan-Shamir’16], [Telgarsky’17]: Such results for less natural problems
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Sketch: (i) Characterize max. # of “oscillations” 

in function computed by depth d net of some size

(ii) Show depth d+1 can compute function with 

more oscillations .



So does more depth help or hurt in deep  learning? 

Pros:  Better expressiveness (as we just saw)

Cons: More difficult optimization (“vanishing/exploding gradients”

unless use special architectures like resnets..)

[A., Cohen, Hazan ICML’18] Increasing depth can sometimes 

“accelerate” the optimization (including for 

classic convex problems…)



Acceleration by increasing depth: Simple example 
[A., Cohen, Hazan ICML’18]

lp regression.

Replace with

depth-2 

linear circuit
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GD now amounts to

Adaptive learning rate +  “memory” of past gradients! 

Replace vector w by vector w1 multiplied by scalar 

w2 (overparametrize!)



Overparametrization acceleration effect

lp regression, p=4

(UCI regression task…)

• Similar effects observed in nonlinear deep net; eg replace fully 

connected layer by two layers.  

• Some theoretical analysis for multilayer linear nets.

• Proof that acceleration effect due to increase of depth

not obtainable via any regularizer on original architecture.
Theoretically understanding deep learning



Part 4: Theory for Generative Models

and Generative Adversarial Nets (GANs)

7/10/2018 Theoretically understanding deep learning



Unsupervised learning motivation: “Manifold assumption”

Z: Its ”code” 

on manifold

X : Image 
Goal: Using large unlabeled dataset learn

the Image ➔ Code mapping

Typically modeled as learning the joint prob. density p(X, Z)

(Code of X = sample from Z|X)



Unsupervised learning Motivation: “Manifold 
assumption” (contd)

Z: Its ”code” 

on manifold

X : Image 

Typically modeled as learning the joint prob. density p(X, Z)

(Code of X = sample from Z|X) 

Hope: Code Z (= “High level Representation”)

is good substitute for Image X in downstream 

classification tasks.  

(ie solving those tasks requires fewer

labeled samples if use Z instead of X)



Deep generative models 
(e.g.,  Variational AutoEncoders)
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Code Z Image X

Usual training: 

Max Ex[log p(x)]

(“log likelihood”)

N(O, I)

Implicit assumption: Dreal generatable by deep net of reasonable size.    

Dreal
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Generative Adversarial Nets (GANs) [Goodfellow et al. 2014]

Motivations :  (1) Avoid loglikelihood objective;

it favors outputting fuzzy images.

(2) Instead of loglikelihood, use power of

discriminative deep learning to improve the generative model.



Generative Adversarial Nets (GANs) [Goodfellow et al. 2014]

Real (1) or 

Fake (0)

h

Dv

Gu

u= trainable parameters of Generator net

v = trainable parameters of Discriminator net

Dreal
Dsynth

[Excellent resource: [Goodfellow’s survey]

• Discriminator trained  to output 1 on 

real inputs, and 0 on synthetic inputs.

• Generator trained to produce

synthetic outputs that make 

discriminator output high values. 

“Difference in expected 

output on real vs synthetic 

images” Wasserstein GAN
[Arjovsky et al’17] **



Generative Adversarial Nets (GANs) [Goodfellow et al. 2014]

Real (1) or 

Fake (0)

h

Dv

Gu

u= trainable parameters of Generator 

v = trainable parameters of Discriminator 

Dreal
Dsynth

• Discriminator trained  to output 1 on 

real inputs, and 0 on synthetic inputs.

• Generator trained to produce

synthetic outputs that make 

discriminator output high values. 

Generator “wins” if objective ≈ 0

and further training of  discriminator 

doesn’t  help.   (“Equilibrium.”)



What spoils a GANs trainer’s day: Mode Collapse

 Since discriminator only learns from a few samples, it may be 
unable to teach generator to produce distribution Dsynth with 
sufficiently large diversity

 (many ad hoc qualitative checks for mode collapse..)
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New Insight from theory: problem  not with # of training samples, but 

size (capacity) of the discriminator! 



Thm [A., Ge, Liang, Ma, Zhang ICML’17]  : If discriminator 

size = N, then ∃ generator that generates a distribution 

supported on O(Nlog N)  images, and still wins against all 

possible discriminators. 

(tweaking objectives or increasing training set doesn’t help..)

→ Small discriminators inherently incapable of detecting “mode collapse.”

(NB: Dreal presumably has infinite support..)

Pf sketch: Consider generator that learns to produce 

O(N logN) random real images. Consider “all possible 

discriminators of size N” (suffices to consider “𝛆-net” ). 

Use concentration bounds to argue that none of them

can distinguish Dreal from this low-support distribution.



Theory suggests GANs training objective not guaranteed to 

avoid mode-collapse.

Does this happen during real life training???

How to check support size of  

generator’s distribution??



If you put 23 random people in a room, chance is 

> 1/2 that two of them share a birthday.

Suppose a distribution is supported on N images. 

Then Pr[sample of size  √N  has a duplicate image]  > ½.

Birthday paradox test* [A, Risteski, Zhang]  : If  a sample of size s has near-duplicate

images  with prob. > 1/2, then distribution has only s2 distinct images.

Empirically detecting mode collapse (Birthday Paradox Test) 
(A,  Risteski, Zhang ICLR’18)

Implementation: Draw sample of size s; use heuristic method to flag possible

near-duplicates. Rely on human in the loop verify duplicates.



Estimated support size from well-known GANs
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Figure 1: Duplicate pairs found in a batch of 640 generated faces samples from a DCGAN

To check thediversity of GANson natural images (CIFAR-10) is t ricky sinceEuclidean distance

in pixel space is not informat ive. Then we adopt a pretrained classifying CNN and use its top layer

features as embeddings for similarity test . Also, result of the test is a↵ected by the quality of
samples. It is natural to imagine that the most similar samples are blurry blobs if most generated

samples are of low-quality. This is indeed the case if we test a DCGAN (even the best variant with

7.16 Incept ion Score), wherepairs returned aremost ly blobs. To get meaningful test result , we turn

to a Stacked GAN which is the best generat ive model on CIFAR-10 in terms of Incept ion Score.

Sincemodel is condit ioned on class label, wemeasure its diversity within each class separately. The

batch sizes needed for duplicates are shown in Table 1. Duplicate samples as well as the nearest

neighbor to the samples in t raining set are shown in Figure 2. Note that the nearest neighbor

is visually di↵erent from the duplicate detected, which suggests the issue with GANs is lack of

diversity instead of memorizing t raining set .

Aeroplane Auto-Mobile Bird Cat Deer Dog Frog Horse Ship Truck

500 50 500 100 500 300 50 200 500 100

Table 1: Class specific batch size needed to encounter duplicate samples with > 50% probability,

from a Stacked GAN trained on CIFAR-10

3

DC-GAN [Radford et al’15]: Duplicates in

500 samples. Support size (500)2 = 250K

BiGAN [Donohue et al’17]

and ALI (Dumoulin et al’17]: 

Support size = (1000)2 = 1M

(Similar results on CIFAR10)

CelebA (faces):

200k training images

Followup: [Santurkar et al’17] Different test of diversity; confirms lack of diversity.



Part 4.1 (brief): Need to rethink 

unsupervised learning. 
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AKA “Representation Learning.”



Unsupervised learning Motivation: “Manifold 
assumption” (contd)

Z: Its ”code” 

on manifold

X : Image 

Typically modeled as learning the joint prob. density p(X, Z)

(Code of X = sample from Z|X) 

Hope: Code Z is good substitute

for Image X in downstream classification

tasks. 

(ie solving those tasks requires fewer

labeled samples if have the code)

“Semisupervised

learning??” 



Caveat : Posssible hole in this whole story 
that I’m unable to resolve
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For Z to be good substitute for image X

in downstream classification,  density 

p(X,Z) needs to be learnt to very high 

numerical accuracy.    

[See calculation in blog post 

by A. + Risteski’17, www.offconvex.org]

Doesn’t mean unsupervised learning can’t happen, just that

usual story doesn’t justify it.

Z: Its ”code” 

on manifold

X : Image 

Joint Density p(X,Z)
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Maximizing log likelihood (presumably approximately)

may lead to little usable insight into the data. 

How to define utility of GANs (if not as distribution learners)?

Need to define unsupervised learning using a 

“utility” approach  (What downstream tasks are we interested in 

and what info do they need about X?)

Food for thought…

(Similar musings on INFERENCE blog, April’18.

e.g., What would a “representation learning competition” look like?) 



Part 5: Deep Learning-free text 

embeddings   (illustration of above principles) 

7/10/2018 Theoretically understanding deep learning

Black box that’s 

end-to-end 

differentiable…

“Hand-crafted with 

love and care….”
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Two sentences that humans find quite similar

A lion rules the jungle.

The tiger hunts in this forest. 

NB: No words in common! 

How to capture similarity and other properties of pieces of text?   



Obvious inspiration: Word embeddings (word2vec, GloVe etc.)

Usual method: Recurrent neural net,  LSTM (Long Short Term Memory), etc.

[Le,Mikolov’14] Paragraph vectors [Kiros et al’15]: SkipThought.

Much followup work including fastrer training/inference, or incorporating

supervision (eg InferSent [Conneau et al’17]).



Learnt using LSTMs…

Ben Recht Linearization Principle: “Before committing to deep 

model figure out what the linear methods can do….”



Cottage industry of text embeddings that’re linear
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Simplest: Sum of word embeddings of constituent words 

(Inspired by word2vecCBOW  )

(Wieting et al ‘16) Weighted sum; weights learnt via fit to paraphrase 

dataset. (“semi-supervised”)

[A,Liang,Ma ‘17] “SIF” Smooth inverse weighted sum, followed by

denoising using top singular vector…. 

“Word embeddings + linear algebra”



Performance (similarity/entailment tasks)

(For theory behind SIF embedding see original paper…)

SIF



Downstream task not known ahead 

of time!  Perhaps embedding must 

capture all/most of the 

information in text? (e.g., Bag-of-

Words info)

Important:

Classifier should be 

simple (eg linear!)



Word extraction out of linear embeddings ⇔

sparse recovery 

 Recall sum-of-words embedding: 

0

0

0

1

0

0

0

1

1

A

x

Bag-of-word 

vector

w

vw

Recovering Sparse x given Ax

≍ “Compressed Sensing”

(aka “Sparse recovery”)
[Donoho06, Candes-Romberg-Tao06]

Do-able if A satisfies 

“RIP”/”Random”/”Incoherence”.

(unfortunately none are satisfied 

by matrix  of GloVe embeddings..)Columns of A = Word embeddings



Recovery algorithm: Basis Pursuit

[Rademacher = random +1/-1

Ability to recover original words 

doesn’t imply the embedding is good 

for classification via linear classifier….

(Bag-of-Words only)

Recovered

BoW

Embedding 



Recovery algorithm: Basis Pursuit

But Calderbank et al ‘09 showed linear classification 

on compressed vector Ax is essentially as good as x.

➔ Not surprising linear embeddings work well in 

downstream tasks! (Even provably so, under some

compressed sensing type conditions.)



More powerful linear embeddings
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Distributed Co-occurrence (DisC) Embeddings    
[A, Khodak, Saunshi, Vodrahalli ICLR’18]

Use “Compressed sensing” of n-gram information 

(bi-gram = word pairs, tri-gram = word triples..)

Vector for bigram (w,w’) = vw⊙ vw’ (entrywise product)

A La Carte Sentence Embeddings 
[Khodak, Saunshi, Liang, Ma, Stewart, A. ACL’18]

Modify DisC by using “induced n-gram embeddings”, created

using  linear regression.  (Induced embeddings useful in other

NLP tasks too!)

[Some inspiration from

[Plate 95] [Kanerva’09]



Comparison with state-of-the art text embeddings on 

suite of downstream classification tasks

Logeswaran and Lee 2018

➜

Open: Hand-crafted analogs of “Attention” and  “Character-level LSTMs”?  

Bag of n-gram



Aside: Another illustration of Linearization 
principle in RL  [Mania,Guy,Recht’18] 

 Linear Quadratic Regulator (old model from control theory)
plus simple Random Search beats state of the art deepRL on 
some standard RL tasks 
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See Recht’s talk
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Wrapping up…
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1. Use Physics/PDE insights, such as calculus of 

variations (Lagrangians, Hamiltonians, etc.)

2. Look at unsupervised learning (Yes, everything

is NP-hard and new but that’s how theory grows.)

3. Theory for Deep Reinforcement learning.

(Currently very little.) 

4. Going beyond 3), design interesting models for 

interactive learning (of language, skills, etc.). Both 

theory and applied work here seems to be 

missing some basic idea. (Theory focuses on 

simple settings like linear classifiers/clustering.)

“The revolution 

will not be 

supervised.”

What to work on  (suggestions for theorists)
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• Deep learning is a new frontier for theory; many new avenues.

• Best theory will emerge from engaging with real data and real 

deep net training. (Nonconvexity and attendant complexity 

seems to make armchair theory less fruitful.) 

• I am optimistic that deep learning methods can be understood and

simplified.

Concluding thoughts

In der Mathematik gibt

es kein ignorabimus
D. Hilbert

THANK YOU!!



Advertisements

Resources: www.offconvex.org

Grad seminar (hope to put all notes online soon)

http://www.cs.princeton.edu/courses/archive/fall17/cos597A/

Come join special year at Institute for Advanced Study 

2019-20 http://www.math.ias.edu/sp/
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http://unsupervised.cs.princeton.edu/deeplearningtutorial.html

http://www.offconvex.org/
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Extra slides..



Trying to reach global optimum  z*

update:  zs+1 = zs – η gs

Definition: gs is (α, β, εs)-correlated with z* if for all s:

(“almost-convex”; generalizes several previous progress measures.

Simple proof shows it implies quick convergence.)

Need NOT be gradient!

Also, starting point special

Convergence to global optimum:

Measure of progress

Show: direction -gs is substantially correlated with best direction one

could take, namely, zs – z*


