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Some History

1950s and 1960s: “Perceptron” (single-layer, 1 output node)
1969: Perceptrons are very limited [Minsky,Papert]

1990s-2010: Perceptron+ (namely, SVMs) strikes back.
(Riding on convex optimization theory, generalization theory,
expressivity theory of kernels, etc.).

Last 10 years: Age of deep learning (multilayer perceptron).
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Deep Learning: Terminology

0: Parameters of deep net

(x1,Y1)s (X5,Y5),... iid (point, label)
from distribution D

(training data)

@ nputLayer () Hidden Layer @ Output Layer

6(9’ T, y) Loss function (how well net output matched true
label y on point x) Can be |, cross-entropy....

Obijective argmine Ez [6((9, Ly, yz)]
Gradient Descent 9(t+1) < Q(t) — 77V9 (EZ [f(e(t), L, yz)])

Stochastic GD: Estimate V via small sample of training data.
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Optimization concepts already shape deep learning
(together with GPUs, large datasets)

* Backpropagation: Linear time algorithm to compute gradient.

* “Gradient/landscape shaping” drives innovations such as resnets,
wavenets, batch-normalization, ...

* Gradient Descent++ (Momentum, Regularization, AdaGrad,..)
Came from convex world.

Goal of theory: Theorems that sort through /support competing
intuitions, leading to new insights and concepts.
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Talk overview

i

Training error

Test error
E(x,y)ED[€(6)7 €L, y)]
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B Optimization: When /how can it find
decent solutions¢ Highly nonconvex.

B Overparametrization/Generalization:
# parameters >> training samples.
Does it help? Why do nets generalize
(predict well on unseen data)?

B Role of depth?
B Unsupervised learning/GANs

B Simpler methods to replace deep

learning? (Examples of Linearization
from NLP, RL...)
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N “convex” AN “hon-convex”
J(6) J(0)

Part 1: Optimization in deep learning

Hurdle: Most optimization problems in deep learning

are nonconvex, and on worst-case instances are
NP-hard.
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Basic concepts

Note: V # O = 3 descent direction.

Possible goals: Find critical point (V =0).
Find “local optimum”, ie bottom of some valley (V2 is psd/ V2 = 0)

Find global optimum 0.

Assumption about initialization: Black box vs nonblack box

Convergence from all starting points 02

Random initial point¢ Special initial points?

In RY, want run times poly(d, 1/&) where €= accuracy.
(naive: exp(d/g)). Recall: d > 10°
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Curse of dimensionality

In RY, 3 exp(d) directions
whose pairwise angle is > 60 degrees

3 exp(d/g) special directions s.t. all directions have

g-net”, “e—cover”)

“Time to explore d-
dimensional parameter

space.”
(INFEASIBLE)
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Black box analysis for deep learning

Why: Don’t know the landscape, really ‘@
o

argming E; [0(0, z;, y;)|

i

No clean math. characterization of (x,, y,) |

f(e) INFEASIBLE to find global optimum;
0 — m—> must settle for weaker solutions
VF| 4 W

f = training error

[NB: Some attempts to understand landscape via
statistical physics; not much success so far..]
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Gradient descent in unknown landscape.

0,.,=0,-nV{O)

a, 0 V # 0 =>» 3 descent direction

Ji6) : Sy O But if 2" derivative (V?) high, allows V to
| fluctuate a lot!

0 =@ To ensure descent, take small steps
determined by smoothness V*f(0) < BI

Can be assumed via
gaussian smoothening

of f.

Theoretically understan ding deep learning
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Gradient descent in unknown landscape (contd.)

91+1= 9t -1 Vf(ﬂt)
0 Smoothness —BI < V% f(0) < BI

1) | CLAIM: 1 =1/2F = achieve |Vf| <&
: > in #steps proportional to §/&2.

1 2
Pf: £(6) = f(Bt+1) 2 ~VF(0)(Bts1 — 6)) =5 BlO; — Opa |
1
= 1|V|? —55772|\7t|2 = —|V|?
=» update reduces function value by £2/2f3

% is a weak solution concept.
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Evading saddle points..

¥R iR
one slice

racocinur [Ge, Huang, Jin, Yuan’'15] Add noise
another slice
to gradient (“perturbed GD”)

(Runtime improvements: Jin et al’17]

=~ ¥
%:j@,q} Analysis of random walk

- . . . =>» Within poly(d/g) time “escape”
Min in n-1 dimensions, max in one all saddle points and achieve

“Approx 2" order minimum”

IVfll<e Vf > —Vel

(Analyses of probability flow out of “stuck region”)

7J;IO\/I2I§]:8per’rurbed GD with large noise = “Langevin dynamics” in stat. physics)

[
oretically understanding deep



2"d order optimization for deep learning? (Newton
Xer1 = Xe — 1 [P2F (0] VF (%) method?)

£(0) More relevant: For any vector v,
9 — Backprop can compute (V?f)v
VF| 0 in linear time. [PearImutter’94]

v2f | 0 [Werbos'74]

Can do approximate 2" order optimization asymptotically faster than
1" order! (empirically, slightly slower) [Agarwal et al’17, Carmon et al’17]

ldea: (v3)7! = z (I —7%)"  (but use finite truncation)

[=0to oo

But 2"¢ order doesn’t seem to find better quality nets @

so far.

7/10/2018 Theoretically understanding deep learning



Non-black box analyses

Various ML problems that’re subcases of depth 2 nets
(i.e., one hidden layer between input and output).

* Often make assumptions about the net’s structure, data distribution,
etc. (landscape is mathematically known) s

* May use different algorithm (eg, tensor decomposition, alternating
minimization, convex optimization ...) than GD/SGD.

7/10/2018

Topic modeling [A., Ge, Moitra’12] [A. et al’1 3]

Sparse coding [A., Ge, Ma, Moitra’14, ‘15] [Anandkumar et al’14]
Phase retrieval [Candes et al’'15]

Matrix completion [Many papers, eg Jain et al.’1 3]

Matrix sensing

Learning Noisy Or nets [A., Ge, Ma’17]
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Convergence to global optimum from arbitrary

initial point ( via understanding the landscape)

Matrix completion

Given O(nr) random entries
of an nxn matrix M of rank r,

predict missing entries.

Subcase of learning depth 2 nets

\ N / Feeding 1-hot inputs into unknown net; seeting
output at one random output node. Learn the net!
Vi U \
: [Ge, Lee, Ma’17] All local minima are global minima. So

|
0000001000 perturbed GD finds global minimum from arbitrary initial point.
(proof is fairly nontrivial)
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Any theorems about learning multilayer nets? ?

Yes, but usually only for linear nets (i.e., hidden nodes
compute f(x) = x).

Overall net = product of matrix transformation
= itself a linear transformation

But optimization landscape still holds surprises...

Some papers: [Baldi, Hornik’88], [Saxe et al ‘13] (dynamics of training)

[Kawaguchi’1 6] [Hardt and Ma’16] (landscape of linear resnets);
[A., Cohen, Hazan'1 8]
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Some other optimization ideas | did not cover

(some are only semi-theorems)

7/10/2018

Budding connections with “physics” ideas: natural gradient,
Lagrangian method, ..

Adversarial examples and efforts to combat them

Optimization for unsupervised learning (esp. probabilistic
models), reinforcement learning.

Information-theoretic interpretation of training algorithms,
eg “information bottleneck”
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Part 3: Overparametrization and

Generalization theory

e.g., Why is it a good idea to train VGG 19 (20M parameters)
on CIFAR10 (50K samples)? No overfitting?
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Overparametrization may help optimization :

folklore experiment e.g [Livni et al'14]

N0
4 “‘ﬁg 75

@ nput Layer @ Input Layer

Generate labeled data by
feeding random input vectors
Into depth 2 net with

hidden layer of size n

Difficult to train a new net
using this labeled data
with same # of hidden nodes

Still no theorem Much easier to train a new net with
explaining this... bigger hidden layer!
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But textbooks warn us: Large models can “Overfit”

Generali-

zation error

& Test d
: /
=
o
% Real Life Delep learning
: PN T

Training data

Model complexity

Longtime belief: SGD + regularization eliminates “excess capacity”
of the net
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But, excess capacity is still therel

2.5 T T T 4.0 T . . T
m—a true labels =—a |nception
2.0 e—e random labels | 3571 e—o AlexNet
v #—+ shuffled pixels || & 5 ,|[*—* MLP 1x512
215 —— random pixels [{ ¢
() . (@)
o 4—& gaussian o 2.5¢
© +—
% g OF
0.5 151
0.0 1.0 ' . .
5 10 15 20 25 0.0 0.2 0.4 0.6 0.8 1.C

thousand steps label corruption

Inception v3 net on CIFART0 Hope: An explanation

will also identify
intrinsic structure of a

[Understanding deep learning requires rethinking genera “well-trained” net.

7/10/2018 Theoretically understanding deep learning



BTW: Excess capacity phenomenon exists in linear models!
Y = margin

Classifier has d parameters.

Age

Quantify
effective

capacity of
deep netse?

Balance

If has margin vy, then possible to learn it with
< Oflog d)/y? datapoints! (low effective capacity!)

But always possible to fit linear classifier to d-1
randomly labeled datapoints as well.

See also [Understanding deep learning requires understanding kernel learning. Belkin et al’18]



Effective Ca pCIC“')’ Roughly, log (# distinct a priori models)

(Rough Analogy: If a system
exhibits 2" distinct states we say
it has k bits of memory. )

N

Generalization Test loss — training loss < {/ —
Theory (Main Thm) m

m = # training samples. N = effective capacity

Usual upperbounds on N: # of parameters, YVC dimension, Rademacher

For deep nets, all of these are about the same (usually o
vacuous)
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N
Test loss — training loss < 4/ — Proof Sketch
m

* Fix deep net O and its parameters

Errg = test error

* Take iid sample S of m datapoints,

Errg s = avg error on S = training error
@ nputLayer (O HiddenLayer @ Output Layer

* By concentration bounds, for fixed net 0
Pr[diff. between them <g€] > 1- exp(- €°m)

“Effective capacity”

=log W =N

Complication: depends upon training sample S

Solution: Union bound over “all possible” 0.
If # (possible ) = W, suffices to let m > (log W) /€2
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Old notion: Flat Minima

[Hinton-Camp’93][Hochreiter, Schmidhuber’?5]

Multiple arguments =
“Noise in SGD favors flat minima’

“Flat minima” generalize

better empirically
[Keskar et all’16]

Flat

Flat minimum has lower description length
=>» Fewer # of “possible models” with such small descriptions

Makes intuitive sense but hard to make quantitative...
(and false for some defns of “sharp” [Dinh et al’17])
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Current status of generalization theory: postmortem analysis...

It has Property ® A
shared by very

\g few nets... D

ry

TRAINED
NET 6

N Generalization error

Qualitative check: Correlates with —R

generalization?

>

Quantitative: Use property @ to compute upper bound on “very few”
and hence effective capacity (much harderl)



Nonvacuous estimate of “true capacity”
hCIS proved eIUSive (starting point [Langfod-Caruana02]

1 D-M

39

VGG19 .
(19 layers) .,

10

29

10

24

10

1D19
10™
10

num param

[Bartlett-Mendelson’ 02]/ \ ,
[Neyshabur et al ICLR18] Zhang'1 8]

[Neyshabur et al '17]

1<)

[Bartlett et al NIPS17],

|deas include: PAC-Bayes, Margin, Rademacher, ..

[Dziugaite-Roy’17] have more nonvacuous bounds for MNIST** but not an asymptotic
“ 7/10/201 Theoretically understanding deep learning

compfexny measure”



Nonvacuous bound on “true parameters”

has proved elusive..
» Main idea: Using

10

VGGI19 o noise stability to
(19 layers) .. bound effective
107 Capacity.
10
10"
10"
10°
[A., Ge,

num param ours

V\ “= Neyshabur,
[Bartlett-Mendelson’ 02]’ ,
[Neyshabur et al’'17] Zhang'18]

[Neyshabur et al’17]

[Bartlett et al’17],
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Noise stability for deep nets ., ce Neyshabur,
. . Zhang ICML’1 8]
(can be seen as a “margin” notion for deep nets)

Noise injection: Add gaussian 1) to output x of a layer

(Inl = 1x])

Measure change in higher layers. (If small,
then net is noise stable.)

hidden layer 1 hidden layer 2 hidden layer 3

input layer

7/10/2018 Theoretically understanding deep learning



Noise stability of VGG19 1A, Ge Neyshabur

1.0

error ratio
o
o

S
e

0.21

0.0

0123456 78 91011121314151617
layer

Zhang ICML'18]

How injected gaussian noise gets
attenuated as it passes through
to higher layers.

(Each layer fairly stable to noise
introduced at lower layers!)

Related to other noise stability phenomena independently

discovered in experiments of [Morcos et al ICLR’18]
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“Reliable machines and unreliable
components...

We have, in human and animal brains, examples
of very large and relatively reliable systems
constructed from individual components, the

neurons, which would appear to be anything but
reliable.

In communication theory this can be done by
properly introduced redundancy.”

7/10/2018

Theoretically understanding deep learning

Von Neumann’s contributions
to automata theory.



Understanding noise stability for one layer

(no nonlinearity)

j§3=§SL 52.357

‘
Q\ Y
7 O

2.5
2.0
5
=15
>

9
2
©1.0

0.5 \\
0.0

0
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1000 2000
i

nde

3000 4000 5000
X

N : Gaussian noise

IMx| /x| > IMn]|/In]

Layer Cushion = ratio J
(roughly speaking..)

Distribution of singular values in
a filter of layer 10 of VGG19.
Such matrices are compressible...

Theoretically understan ding deep learning



Overview of compression-based method for

generalizq’rion bounds [A.Ge, Neyshabur, Zhang’18]; user-friendly
version of PAC-Bayes

hidden layer 1 hidden layer 2 hidden layer 3
‘v

hidden layer 1 hidden layer 2 hidden layer 3

input layer

# parameters << # datapoints
# parameters >> # datapoints

Important: compression method allowed to use any number
of new random bits, provided they don’t depend on data.

7/10/2018 Theoretically understanding deep learning




Proof sketch : Noise stability = deep net compressible with minimal
change to training error

ldea 1: Compress a layer (randomized;
errors introduced are “Gaussian like”)

ldea 2: Errors attenuate as they go through
network, as noted earlier.

1 hidden layer 2 hidden layer 3

Compression:

(1) Generate k random sign matrices
My, ..., M}, (impt: picked before seeing
data) i

(2) A =+ B 1(A, MM,

(Nontrivial extension to

convolutional nets)
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The Quantitative Bound

depth X activation contraction

capacity = , : ,
pacity layer cushion X interlayer cushion

VGG19
(19 layers) .

1019
10"
T [A., Ge,
\

num param ours Neyshcbur,
[Neyshqbur et al’'17] Zhang'18]
[Bor'rlef'r et al’17],

©

[Bartlett-Mendelson’ 02]/
[Neyshabur et al’ 17]
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Correlation with Generalization (qualitative
check)

0.095; -
-8-generalization error
0.09| Yeour bound (diff. scale)|]

3
2 0.085
cofrupted (ab)
0.08¢
0.075¢ : '
12 200 280
(a).)olgyer cOLjslt(\)ion u?.ls epOCh
Layer cushion much higher Evolution during training
when trained on normal data on normal data..

than on corrupted data
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Concluding thoughts on generalization

Some progress, but final story still to be written.

| don’t ultimately know why trained nets are noise stable.

Quantitative bounds too weak to explain why net with
20M parameters generalizes with 50k training datapoints.

NB: Argument needs to involve more properties of training
algorithm and /or data distribution.

([Gunasekar et al’18] Quantify “Implicit bias” of gradient descent
towards “low capacity” models in simple settings.)
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Part 3: Role of depth

Ultimate hope: theory informs what architectures are “best” for a
given task.
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An old question: Role of depth?

Ideal result: exhibit natural learning problem which cannot be done

using depth d but can be done with depth d+1

Currently, not within reach of theory, lacking mathematical
formalization of “natural” learning problem...

[Eldan-Shamir’16], [Telgarsky’17]: Such results for less natural problems

Sketch: (i) Characterize max. # of “oscillations”
in function computed by depth d net of some size
(ii) Show depth d+1 can compute function with
more oscillations .

7/10/2018 Theoretically understanding deep learning
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So does more depth help or hurt in deep learning? R4

y
Pros: Better expressiveness (as we just saw) w

Cons: More difficult optimization (“vanishing /exploding gradients”
unless use special architectures like resnets..)

[A., Cohen, Hazan ICML'1 8] Increasing depth can sometimes
“accelerate” the optimization (including for
classic convex problems...)



Acceleration by increasing depth: Simple example
[A., Cohen, Hazan ICML'1 8]

|, regression. L(wW) = E(x,y)~D Ll,( Tw - y)pJ

x € R? here are instances, y € R are continuous labels,

Replace with
depth-2

linear circuit

Replace vector w by vector w, multiplied by scalar
w, (overparametrizel)

L(wi,w;y) = E(x,y)~D [%(XTwl’wz — y)p}

t—1

GD now amounts to w(t“) ~ wit) - P(t)vw(t) — Z M(t’T)VW(T)

=1

Adaptive learning rate + “memory” of past gradients!
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Overparametrization acceleration effect

GD on Liw)
GD on L{w, w)

it AdaGrad on Liw) |

(UCI regression task...) |

AdaDelta on Liw)

|, regression, p=4

107

{, loss

10}

10 - - .
a 200000 400000 600000 BOCO00 1000000

iteration

Similar effects observed in nonlinear deep net; eg replace fully
connected layer by two layers.

Some theoretical analysis for multilayer linear nets.

* Proof that acceleration effect due to increase of depth

not obtainable via any regularizer on original architecture.

Theoretically understanding deep learning



Part 4: Theory for Generative Models
and Generative Adversarial Nets (GANs)
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Unsupervised learning motivation: “Manifold assumption”

Goal: Using large unlabeled dataset learn
the Image = Code mapping

R e
ki - Yol N
el < LS s |
EFEER G
S A T B o
R Ve = Lk 3T
AT 6
T O ™ e P

Z: Its "code”

on manifold

Typically modeled as learning the joint prob. density p(X, Z)
(Code of X = sample from Z| X)



Unsupervised learning Motivation: “Manifold
assumption” (contd)

Hope: Code Z (= “High level Representation”)
is good substitute for Image X in downstream
classification tasks.

R /4~ [(ie solving those tasks requires fewer

u,
-

labeled samples if use Z instead of X)
Z: Its "code”

on manifold

Typically modeled as learning the joint prob. density p(X, Z)
(Code of X = sample from Z | X)



Deep generative models
(e.g., Variational AutoEncoders) / \

Usual training:
Max E [log p(x)]

(“log likelihood”™)

- /

COd € Z @nput Layer () Hidden Layer @ Output Layer I m (Ig e X

N(O, 1) D real

Implicit assumption: D,,,,; generatable by deep net of reasonable size.
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Generative Adversarial Nets (GANS)  (coodfeliow o al. 2014

Motivations : (1) Avoid loglikelihood objective;
it favors outputting fuzzy images.

(2) Instead of loglikelihood, use power of
discriminative deep learning to improve the generative model.
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“Difference in expected
output on real vs synthetic

images” Wasserstein GAN 14]
jqvsky et al’17] **

Real (1) or min max Ex,vpreal [Dv (CE‘)] — Eh[Dv(Gu(h))]
Fake (0) uel veV

Generative Adversarial Nets

* Discriminator trained to output 1 on
real inputs, and O on synthetic inputs.

D ) Dsynth * Generator trained to produce
rea : '

B — synthetic outputs that make

ESHEDCHeEES

Smill NG YN discriminator output high values.

CEEREDOANE
AWEL SR AT

R CREESr [Excellent resource: [Goodfellow’s survey]

u= trainable parameters of Generator net
= trainable parameters of Discriminator net



Generative Adversarial Nets (GANS)  (coodfeliow o al. 2014

Real (1) or
Fake (O)

D real *

=lET -SEEI =
ESHEDCHeEES
fml NE yEN
EECHNEEE P

L Lot Pl |
Bl mdlcEEHE -
dEGRPE=ESTE0

= trainable parameters of Generator

minmax Eoop,,,,[Dy(@)] — Ex[Do(Gu(h))].

ueU vey

* Discriminator trained to output 1 on
real inputs, and O on synthetic inputs.

* Generator trained to produce

synthetic outputs that make

= trainable parameters of Discriminator

doesn’t help.

discriminator output high values.

Generator “wins” if objective = 0 ¢
and further training of discriminator

(“Equilibrium.”)

T

[

%
o5/



What spoils a GANs trainer’s day: Mode Collapse

* Since discriminator only learns from a few samples, it may be
unable to teach generator to produce distribution Dsynth with
sufficiently large diversity

* (many ad hoc qualitative checks for mode collapse..)

New Insight from theory: problem not with # of training samples, but
size (capacity) of the discriminator!

7/10/2018 Theoretically understanding deep learning



Thm [A,, Ge, Liang, Ma, Zhang ICML’17] : If discriminator

\J . size = N, then 3 generator that generates a distribution
[ 3 supported on O(Nlog N) images, and still wins against all
) A possible discriminators.
¢ T// (tweaking objectives or increasing training set doesn'’t help..)

(NB: D, presumably has infinite support..) Ol

-

—> Small discriminators inherently incapable of detecting “mode collapse.”

Pf sketch: Consider generator that learns to produce
O(N logN) random real images. Consider “all possible
discriminators of size N” (suffices to consider “€-net” ).
Use concentration bounds to argue that none of them

can distinguish D,.,,; from this low-support distribution.



How to check support size of

generator’s distribution??

Theory suggests GANs training objective not guaranteed to
avoid mode-collapse.

Does this happen during real life training?¢?



Empirically detecting mode collapse (Birthday Paradox Test)
(A, Risteski, Zhang ICLR’18)

The Birthday

If you put 23 random people in a room, chance is
> 1/2 that two of them share a birthday.

Suppose a distribution is supported on N images.
Then Pr[sample of size VN has a duplicate image] > Va.

Birthday paradox test* [A, Risteski, Zhang] : If a sumple of size s has near-duplicate
images with prob. > 1/2, then distribution has only s? distinct images.

Implementation: Draw sample of size s; use heuristic method to flag possible
near-duplicates. Rely on human in the loop verify duplicates.



Estimated support size from well-known GANs

sls

DC-GAN [Radford et al’'15]: Duplicates in
500 samples. Support size (500)? = 250K

BiGAN [Donohue et al’17]
and ALl (Dumoulin et al’17]:
Support size = (1000)2 = 1M

CelebA (faces):

200k training images
(Similar results on CIFARTO0)

Followup: [Santurkar et al’17] Different test of diversity; confirms lack of diversity.
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Part 4.1 (brief): Need to rethink
unsupervised learning.

AKA “Representation Learning.”

7/10/2018



Unsupervised learning Motivation: “Manifold
assumption” (contd)

Hope: Code Z is good substitute
for Image X in downstream classification
tasks.

2] et (ie solving those tasks requires fewer
N labeled samples if have the code)

Z: Its "code”

on manifold

“Semisupervised

learning22”

Typically modeled as learning the joint prob. density p(X, Z)
(Code of X = sample from Z| X)



Caveat : Posssible hole in this whole story o?
that I’'m unable to resolve

For Z to be good substitute for image X
in downstream classification, density
pP(X,Z) needs to be learnt to very high
numerical accuracy.

Z Its "code [See calculation in blog post
on manifold by A. + Risteski’17, www.offconvex.org]

Joint Density p(X,Z)

Doesn’t mean unsupervised learning can’t happen, just that
usual story doesn’t justify it.
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Food for thought...

Maximizing log likelihood (presumably approximately)
may lead to little usable insight into the data.

How to define utility of GANs (if not as distribution learners)?

Need to define unsupervised learning using a
“utility” approach (What downstream tasks are we interested in
and what info do they need about X?)

(Similar musings on INFERENCE blog, April’18.

e.g., What would a “representation learning competition” look like?)

7/10/2018
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Part 5: Deep Learning-free text
embeddings (illustration of above principles)

box that’s
-to-end
entiable...

“Hand-crafted with
love and care....”
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Two sentences that humans find quite similar

A lion rules the jungle.

The tiger hunts in this forest.

NB: No words in common!
How to capture similarity and other properties of pieces of text?
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Typical pipeline for unsupervised text embedding

“The tiger hunts Embedding / DDWﬂ?tre_Elm
nthis forest I B ) B | ciassification
Vector task

representation
Learnt from

text corpus
(unsupervised
Learning)

Obvious inspiration: Word embeddings (word2vec, GloVe etc.)
Usual method: Recurrent neural net, LSTM (Long Short Term Memory), etc.

[Le,Mikolov’14] Paragraph vectors [Kiros et al’15]: SkipThought.

Much followup work including fastrer training /inference, or incorporating
supervision (eg InferSent [Conneau et al’17]).



Typical pipeline for unsupervised text embedding

“The tiger hunts Emb'edd'ihg- - / Fhiiaiin
: - classification

in this forest.”

Vector task
representation

Learnt from

text corpus

(unsupervised
Learning)

Learnt using LSTMs...
€ ' BermRecitt Linearization Principle: “Before committing to deep

model figure out what the linear methods can do....”



Cottage industry of text embeddings that're linear
“Word embeddings + linear algebra”

Simplest: Sum of word embeddings of constituent words
(Inspired by word2veczow )

(Wieting et al ‘16) Weighted sum; weights learnt via fit to paraphrase
dataset. (“semi-supervised”)

[A,Liang,Ma ‘17] “SIF” Smooth inverse weighted sum, followed by
denoising using top singular vector....
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Performance (similarity /entailment tasks)

Skip-Thought; Semi-supervised
BiLSTM based it etafisy Surtest — Suroest
(Kiros et al’15) unsupervised semlsgperwsed
'l' \ 1 (combine w/
Wieting et al
Tasks ST ave- thidf- avg- GloVe PSL . ]
GloVe GloVe | PSL +WR +WR
STS 12 30.8 5.3 58.7 52.8 56.2 59.5
STS'13 24.8 42.3 52.1 46.4 56.6 61.8
STS’ 14 31.4 54.2 63.8 59.5 68.5 73.5
STS'15 31.0 52.7 60.6 60.0 T1ad 76.3
SICK’ 14 49.8 65.9 69.4 66.4 72.2 72.9
Twitter’ 15 24.7 30.3 33.8 36.3 48.0 49.0

Performance on standard SemEval tasks [Agirre et al.] and
Twitter task[Xu et al’15]

(For theory behind SIF embedding see original paper...)



Typical pipeline for unsupervised text embedding

“The tiger hunts Embedding ‘ / -
classification

Downstream
in this forest.”
Vector task
representation
Learnt from Important:
lext.carpus Classifier should be

(unsupervised . .
. simple (eg linear!)

Downstream task not known ahead

of time!l Perhaps embedding must
capture all /most of the
—— information in text? (e.g., Bag-of-

Words info)




Word extraction out of linear embeddings

sSpdarse recovery

* Recall sum-of-words embedding:

X

0

0

A Yw 0

1

0

t 0

w 0

1

Columns of A = Word embeddings 1
Bag-of-word

vector

Recovering Sparse x given Ax
= “Compressed Sensing”

(aka “Sparse recovery”)
[Donoho06, Candes-Romberg-Tao06]

Do-able if A satisfies

“RIP” /"Random” /”Incoherence”.
(unfortunately none are satisfied
by matrix of GloVe embeddings..)



Recovery of SST Documents (Bag-of-Words only)

1.0 T
o
O
‘L’.’J 08 Recovery algorithm: Basis Pursuit
~ 0.6 ;
p min |z|; s.t. Az =0b
0.4
S | Recovered Embedding
O B Pretrained Vectors
> 02 BoW
< Rademacher Vectors

0.0

"~ 50 100 200 400
Vector Dimension

' /.-'—u.
@r’ :%l & \
O DY

‘ Et j 4

Ability to recover original words
doesn’t imply the embedding is good

T N

for classification via linear classifier....

[Rademacher = random +1 /-1



Recovery of SST Documents

=
o

o
o)

Recovery algorithm: Basis Pursuit

o
o)

o
N

min |z|; st. Az =D

B Pretrained Vectors
+ Rademacher Vectors

Average F1-Score
o
N

0.0 50 100 200 400

Vector Dimension

But Calderbank et al ‘09 showed linear classification
on compressed vector Ax is essentially as good as x.

=» Not surprising linear embeddings work well in
downstream tasks! (Even provably so, under some
compressed sensing type conditions.)



[Some inspiration from

H 5 Plate 95] [K '09
More powerful linear embeddings = o e

Distributed Co-occurrence (DisC) Embeddings
[A, Khodak, Saunshi, Vodrahalli ICLR’18]

Use “Compressed sensing” of n-gram information
(bi-gram = word pairs, tri-gram = word ftriples..)
Vector for bigram (w,w’) =v_(© v,. (entrywise product)

A La Carte Sentence Embeddings
[Khodak, Saunshi, Liang, Ma, Stewart, A. ACL' 18]

Modify DisC by using “induced n-gram embeddings”, created
using linear regression. (Induced embeddings useful in other
NLP tasks tool)
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Comparison with state-of-the art text embeddings on

suite of downstream classification tasks

Representation n d* MR CR SUBJ MPQA TREC SST(+1) SST IMDB
1 Vi 77.1 770 91.0 85.1 86.8 80.7 36.8  88.3
Bag of n-gram 2 Vi + Vs 77.8 781 918 85.8 90.0 80.9 39.0  90.0
3 Vi+Ve4+V13 778 783 914 85.6 89.8 80.1 423  89.8
1 1600 79.8 813 926 87.4 85.6 84.1 46.7  89.0
—) alacarte 2 3200 81.3 837 935 87.6 89.0 85.8 47.8  90.3
3 4800 81.8 843 938 87.6 89.0 86.7 48.1  90.9
Sent2Vec? 1-2 700 763 79.1 912 87.2 85.8 80.2 31.0 855
DisC? 2-3 3200-4800 80.1 815 926 87.9 90.0 85.5 46.7  89.6
skip-thoughts® 4800 80.3 838 94.2 88.9 93.0 85.1 45.8
SDAE* 2400 746 780 90.8 86.9 78.4
CNN-LSTM?® 4800 77.8 820 93.6 89.4 92.6
MC-QT?® 4800 824 860 94.8 90.2 92.4 87.6

Logeswaran and Lee 2018

Open: Hand-crafted analogs of “Attention” and “Character-level LSTMs”2



Aside: Another illustration of Linearization

principle in RL [Mania,Guy,Recht’18]

* Linear Quadratic Regulator (old model from control theory)
plus simple Random Search beats state of the art deepRL on

some standard RL tasks

Maximum average reward

Task RS NG-lin NG-rbf TRPO-nn
Swimmer-v1 365 366 365 131
Hopper-v1 3909 3651 3810 3668
HalfCheetah-vl 6722 4149 6620 4800
Walker 11389 5234 5867 5594
Ant 5146 4607 4816 5007
Humanoid 11600 6440 6849 6482

See Recht’s talk
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Wrapping up...
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What to work on (suggestions for theorists)

1. Use Physics/PDE insights, such as calculus of

variations (Lagrangians, Hamiltonians, etc.) “The revolution
will not be

2. Look at unsupervised learning (Yes, everything \supervised.”
is NP-hard and new but that’s how theory grows.

3. Theory for Deep Reinforcement learning.
(Currently very little.)

4. Going beyond 3), design interesting models for
interactive learning (of language, skills, etc.). Both
theory and applied work here seems to be
missing some basic idea. (Theory focuses on
simple settings like linear classifiers/clustering.)
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Concluding thoughts

* Deep learning is a new frontier for theory; many new avenues.

* Best theory will emerge from engaging with real data and real
deep net training. (Nonconvexity and attendant complexity
seems to make armchair theory less fruitful.)

* | am optimistic that deep learning methods can be understood and
simplified.

THANK YOU!I o= In der Mathematik gibt

es kein ignorabimus
D. Hilbert

gutezitate.com
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Advertisements

http: / /unsupervised.cs.princeton.edu/deeplearningtutorial.html

Come join special year at Institute for Advanced Study
2019-20 http://www.math.ias.edu/sp/

Resources: www.offconvex.org

CoMvex F-al:h

Grad seminar (hope to put all notes online soon) | :
http: / /www.cs.princeton.edu /courses/archive /fall17 /cos597A/
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http://www.offconvex.org/

Extra slides..
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Convergence to global optimum:
Measure of progress

Trying to reach global optimum z°

Need NOT be grddient!

update: z*!' = z° - n ¢°
Also, starting point special

Show: direction -g® is substantially correlated with best direction one
g Y

could take, namely, z° — z*

Definition: g* is (, B, €,)-correlated with z” if for all s:

< g% 25— 2> > alz® — 27+ Blgs]® — e

(“almost-convex”; generalizes several previous progress measures.
Simple proof shows it implies quick convergence.)



