Neural Networks

Hugo Larochelle (@hugo_larochelle)
Google Brain

NEURAL NETWORK ONLINE COURSE

Topics: online videos

» for a more detailed
description of
neural networks...

» ... and much morel

http://info.usherbrooke.ca/hlarochelle/neural_networks

Click with 1he meuse or Lablel o dra th pen 2

RES TRICTED BOLIZMANN MAC II\IE

Topics: RBM, visible layer hidden layer, energy function

[0.000 Q) he risgenine
/ W cornects
(Ob OOQ) %~ vl e

Frergy functon: E(x,h) = ~—h"Wx—-¢c x—b'h

SV Wikhszx— 3 ceme— 3 b
3 k

> : W \ / ' 7 % o\

Distribution: (X, h_) = exm—h (X. h,’,',"

/) .
[J ‘
e :
> pa“tition function 4 -
; : R /|
intractas e, i !‘

trtl f

NEURAL NETWORK ONLINE COURSE

Topics: online videos

» for a more detailed
description of
neural networks...

» ... and much morel

http://info.usherbrooke.ca/hlarochelle/neural_networks

Click with 1he meuse or Lablel o dra th pen 2

RES TRICTED BOLIZMANN MAC II\IE

Topics: RBM, visible layer hidden layer, energy function

[0.000 Q) he risgenine
/ W cornects
(Ob OOQ) %~ vl e

Frergy functon: E(x,h) = ~—h"Wx—-¢c x—b'h

SV Wikhszx— 3 ceme— 3 b
3 k

> : W \ / ' 7 % o\

Distribution: (X, h_) = exm—h (X. h,’,',"

/) .
[J ‘
e :
> pa“tition function 4 -
; : R /|
intractas e, i !‘

trtl f

NEURAL NETWORKS

- What we'll cover
» how neural networks take input x and make predict f(x)

- forward propagation
- types of units
» how to train neural nets (classifiers) on data
- loss function
- backpropagation
- gradient descent algorithms

- tricks of the trade

» deep learning

- unsupervised pre-training

- dropout

- batch normalization

Neural Networks

Making predictions with feedforward neural networks

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

» Neuron pre-activation (or input activation):

a(x)=b+ > wir;=b+w'x

» Neuron (output) activation

h(x) = gla(x)) = g(b + p_; wiz;)

W are the connection weights

b Is the neuron bias
g() s called the activation function

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

range determined

oy g(+) {

bias b only
changes the

position of
the niff

(from Pascal Vincent's slides)

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

77
ey
e
R S e
S e e SN,

(from Pascal Vincent's slides

CAPACITY OF NEURAL NETWORK

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

CAPACITY OF NEURAL NETWORK

Topics: universal approximation

» Universal approximation theorem (Hornik, 1991):

» “a single hidden layer neural network with a linear output unit can approximate
any continuous function arbitrarily well, given enough hidden units”

* [he result applies for sigmoid, tanh and many other hidden
layer activation functions

* This Is a good result, but it doesn't mean there is a learning
algorithm that can find the necessary parameter values!

NEURAL NETWORK

Topics: multilayer neural network
* Could have L hidden layers:

» layer pre-activation for k>0 (h9(x) = x)

a®)(x) = bk) WFEHhFE-D(x)

» hidden layer activation (k from 1 to L):
h"(x) = g(a™™ (x))

» output layer activation (k=L+1):
h(t+Y (x) = o(al* V) (x)) = f(x)

ACTIVATION FUNCTION

Topics: sigmoid activation function

* Squashes the neuron’s e
pre-activation between R T N N

0 and | NN N N R B —
» Always positive R S

» Bounded Y N N R S N

» Strictly increasing

g(a) = sigm(a) = T+exp(—a)

ACTIVATION FUNCTION

Topics: hyperbolic tangent (“tanh™) activation function

* Squashes the neuron’s

pre-activation between 25t R — —
_l a—nd | 5 L e
» Can be positive or
negative s s —
* Bounded O W A S S

» Strictly increasing

- __exp(a)—exp(—a) _ exp(2a)—1
g(a’) n tanh(a) ~ exp(a)texp(—a) exp(2a)+1

ACTIVATION FUNCTION

Topics: rectified linear activation function

- Bounded below by 0O e
(always non-negative) S S S ———

» Not upper bounded N A R N G -

» Strictly increasing

» lends to give neurons [S _— i .
with sparse activities 200 e e S

g(a) = reclin(a) = max(0, a)

ACTIVATION FUNCTION

Topics: softmax activation function

* For multi-class classification:

» we need multiple outputs (| output per class)

» we would like to estimate the conditional probability p(y — C|X)

* We use the softmax activation function at the output:

exp(ai) exp(ac) b
o(a) — SOftmaX(a) — [ZC exp(ac) """ >, eXP(ac)}

» strictly positive

» sSUMS to one

* Predicted class Is the one with highest estimated probability

FLOW GRAPH

Topics: flow graph

* Forward propagation can be
represented as an acyclic
flow graph

* It's a nice way of implementing
forward propagation in a modular
way
» each box could be an object with an fprop method,

that computes the value of the box given its
parents

» calling the fprop method of each box In the
right order yield forward propagation

Neural Networks

Training feedforward neural networks

MACHINE LEARNING

Topics: empirical risk minimization, regularization

» Empirical (structural) risk minimization

» framework to design learning algorithms

1
arg min 7 > Uf(x";0),5) + A(6)
t

) l(f(x(t); 0), y(t)) s a loss function
> Q(H) is a regularizer (penalizes certain values of @)

* Learning Is cast as optimization

» 1deally, we'd optimize classification error, but it's not smooth

» loss function Is a surrogate for what we truly should optimize (e.g. upper bound)

MACHINE LEARNING

Topics: stochastic gradient descent (SGD)

» Algorithm that performs updates after each example
yinitidize @ (@ ={WWO b WEFD) pE+D
» for N epochs

- for each training example (x(®), y®) o i
raining epoc

v A= —Vl(f(x1):0),y®) — \Ve(O) -
vl —0+aA teration over all examples

» lo apply this algorithm to neural network training, we need
the loss function l(f(X(t); 9), y(t))

v

v

a procedure to compute the parameter gradients Vgl(f(x(t); H), y(t))
the regularizer }(@) (and the gradient V£2(8))

v

initialization method for @

v

LOSS FUNCTION

Topics: loss function for classification

» Neural network estimates f(x). = p(y = ¢|x)

» we could maximize the probabllities of y(t) given xt) in the training set

* To frame as minimization, we minimize the

negative log-likelihood natural log (In)

et

[(£(x),y) = — 2. Liy=c) log f(x). = —log f(x),

» we take the log to simplify for numerical stability and math simplicity

» sometimes referred to as cross-entropy

20

BACKPROPAGATION

Topics: backpropagation algorithm
» Use the chain rule to efficiently compute gradients, top to bottom

» compute output gradient (before activation)
Var+n(x) —log f(x), < —(e(y)—1f(x))
» for kfrom L+1to 1

- compute gradients of hidden layer parameter

Vww —log f(x)y <= (Vam(x) —log f(x)y) h¥F~Y(x)T
Vb(k) i log f(X)y — va(k) (x) 1Og f(X)y
- compute gradient of hidden layer below

|
vh(k—l)(x) 3 log f(X)y o - W(k) (va(k)(x) y log f(X)y)

- compute gradient of hidden layer below (before activation)

Vatk-n(x) —10g f(X)y <= (Vne-n) —logf(x)y) ©[..,¢'(a* D (x);),...]

2|

ACTIVATION FUNCTION

Topics: sigmoid activation function gradient

 Partial derivative:

g(@=g@1i-g@) = o

ACTIVATION FUNCTION

Topics: tanh activation function gradient

 Partial derivative:

g'(a) =1—g(a)’

a __exp(a)—exp(—a) _ exp(2a)—1
g(&) i tanh(a) — exp(a)+exp(—a) exp(2a)+1

ACTIVATION FUNCTION

Topics: rectified linear activation function gradient

 Partial derivative:

g/(a) — 1a>()

g(a) = reclin(a) = max(0, a)

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» 1t computes the gradient of the loss with
respect to each parent

» fprop depends on the fprop of a box’s parents,
while bprop depends the bprop of a box’s children

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters

25

REGULARIZATION

Topics: |2 regularization

0(0) =2 55, (W) = S WOl

» Gradient: Vo) 2(0) = IW (k)

» Only applied on welghts, not on biases (weight decay)

» Can be Interpreted as having a Gaussian prior over the
welghts

26

INITIALIZATION

Topics: initialization
* For biases

» Initialize all to O

* For weights

» Can't initialize weights to O with tanh activation
- we can show that all gradients would then be O (saddle point)
» Can't initialize all weights to the same value

- we can show that all hidden units in a layer will always behave the same
size of h(*)(x)

- need to break symmetry

» Recipe: sample W,gl;-)ﬂ”om U |—b,b| where b = VH \-/|—6H
) k k—1

- the idea is to sample around O but break symmetry

- other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

27

MODEL SELECTION

Topics: grid search, random search

» o search for the best configuration of the hyper-parameters:

» you can perform a grid search
- specify a set of values you want to test for each hyper-parameter
- 1ry all possible configurations of these values
» you can perform a random search (Bergstra and Bengio, 2012)
- specify a distribution over the values of each hyper-parameters (e.g. uniform in some range)

- sample independently each hyper-parameter to get configurations

» bayesian optimization or sequential model-based optimization ...

- Use a validation set (not the test set) performance to
select the best configuration

* YOu can go back and refine the grid/distributions If needed

28

KNOWING WHEN TO STOP

Topics: carly stopping

» o select the number of epochs, stop training when validation
set error Increases (with some look ahead)

0.5 @

0.4

0.3

0.2

0.1

0.0

O Training ‘O Validation

underfitting overfitting

number of epochs

29

OTHER TRICKS OF THE TRADE

Topics: normalization of data, decaying learning rate

* Normalizing your (real-valued) data
» for dimension x; subtract its training set mean
» divide by dimension x; by Its training set standard deviation

» this can speed up training (in number of epochs)

» Decaying the learning rate
» as we get closer to the optimum, makes sense to take smaller update steps
(i) start with large learning rate (e.g. O.1)
(ii) maintain until validation error stops improving

(iii) divide learning rate by 2 and go back to (i)

30

OTHER TRICKS OF THE TRADE

Topics: mini-batch, momentum

» Can update based on a mini-batch of example (instead of I example):

» the gradient Is the average regularized loss for that mini-batch
» can give a more accurate estimate of the risk gradient

» can leverage matrix/matrix operations, which are more efficient

» Can use an exponential average of previous gradients:

VY = Vel(f(x®),y®) + gVy

» can get through plateaus more quickly, by “gaining momentum”

3

OTHER TRICKS OF THE TRADE

Topics: Adagrad, RMSProp, Adam

» Updates with adaptive learning rates (“one learning rate per parameter”)

» Adagrad: |earning rates are scaled by the square root of the cumulative sum of squared

gradients
=) _ Vel(f(x"),y™)

O — A= o (To1(f(x®D)) v
A= _|_< 9((X)7y)) 0 \/’Y(t)‘|‘€

» RMSProp: instead of cumulative sum, use exponential moving average

- 2T Vol (f(x)), ¢y(t)
V) Z (=D 4 (1 _ B) (Wl(f(xw),y(t))) v _ Vellfx™),y)
VA +e

» Adam: essentially combines RMSProp with momentum

32

GRADIENT CHECKING

Topics: finite difference approximation

* Jo debug your implementation of fprop/bprop, you can
compare with a finite-difference approximation of the gradient

of(z) o, flazte)—f(z—¢)
ox 2€

> f(:l?) would be the loss
» I would be a parameter
. f(x -+ e) would be the loss If you add € to the parameter

» f(x — €) would be the loss if you subtract € to the parameter

33

DEBUGGING ON SMALL DATASET

Topics: debugging on small dataset

» Next, make sure your model Is able to (over)fit on a very
small dataset (~50 examples)

* If not, Investigate the following situations:

» Are some of the units saturated, even before the first update?
- scale down the inttialization of your parameters for these units

- properly normalize the inputs

» |s the training error bouncing up and down?

- decrease the learning rate

* Note that this isn't a replacement for gradient checking

» could still overfit with some of the gradients being wrong

34

Neural Networks

Training deep feed-forward neural networks

DEEP LEARNING

Topics: inspiration from visual cortex

.

Categorical judgments, 140480 e Kot

decision making Simple visual forms

_edges, corners

roine

To spinal cord
—160-220 ms

[picture from Simon Thorpe]

36

DEEP LEARNING

Topics: inspiration from visual cortex

r~

Categorical judgments,
decision making

-l Ll ol "
. on o e
= 10L : - - .
e 1 ¥ \ T
A e . _
g
2

Simple visual forms
edges, corners]

- am s m

To spinal cord
—160-220 ms

[picture from Simon Thorpe]

36

36

DEEP LEARNING

Topics: inspiration from visual cortex

Motor command

Categorical judgments, 140-190 mse s . : REEEER R .
decision making . 1 Simple visual forms
edges, corners]

- . - am s m

To spinal cord
— = To finger muscle ———160-220 ms

180-260 ms

[picture from Simon Thorpe]

36

DEEP LEARNING

Topics: inspiration from visual cortex

Motor command
Categorical judgments, 140-190 ms | -y RN .
decision making , ' ‘

‘edges, cormners ’

100130 ms e \
C 50 ms

ey - -,
;':_.'-1 = l‘wI 4 Viwall
or NS - i

1 High level obje Cl‘|

1 descriptions, |

* faces, objects,_,

To spinal cord

180-260 ms

[picture from Simon Thorpe]

DEEP LEARNING

Topics: inspiration from visual cortex

Motor command

Categorical judgments, 140-190 ms g - g m - .
decision making ” 1 Simple visual forms

‘edges, cormners ’

—

To spinal cord
— = To finger muscle ——160-220 ms

180-260 ms

[picture from Simon Thorpe]

/ ®
-~
-~ @

36

DEEP LEARNING

Topics: inspiration from visual cortex

Motor command
_—

—

1 Simple visual forms
edges, corners

- am m/mm o m m m

Categorical judgments, 140-190
decision making

faces, objects_ ,

~——> To spinal cord
— = To finger muscle ——160-220 ms
180-260 ms

[picture from Simon Thorpe]

lllllllllllllll

36

DEEP LEARNING

Topics: inspiration from visual cortex

Motor. command
-

—

g Simple visual forms Ly P
edges, corners ' '

Categorical judgments, 140-190
decision making .

L nose
) ms mouth ~~
--- g ® O cyes
diate visuale |
|
: !
- . em massssssssssa,
e o
i L
——>Tospinalcod | s
— = To finger muscle ——160-220 ms

180-260 ms

[picture from Simon Thorpe]

= E E/E E = mm P E ~ :

» ._) - / .
e JBA- . .
< B o :

36

Top
« A C

DEEP LEARNING

ics: theoretical justification

eep architecture can represent certain functions

(ex

bonentially) more compactly

* Example: Boolean functions

» a Boolean circurtt Is a sort of feed-forward network where hidden units are logic
gates (1.e. AND, OR or NOT functions of their arguments)

» any Boolean function can be represented by a “single hidden layer” Boolean circurt

- however, it might require an exponential number of hidden units

» It

can be shown that there are Boolean functions which

- require an exponential number of hidden units in the single layer case

- require a polynomial number of hidden units if we can adapt the number of layers

» See “Exploring Strategies for Training Deep Neural Networks" for a discussion

37

DEEP LEARNING

Topics: success story: speech recognition

Microsoft

Research | fo

Home Our Research Connections Careers Hub
About Us News Media Resources Events Community

@ > News > Speech Recognition Leaps Forward

Speech Recognition Leaps Forward

By Janie Chang
August 29, 2011 12:01 AM PT

During Interspeech 2011, the 12th annual Conference of the International Speech
Communication Association being held in Florence, Italy, from Aug. 28 to 31,
researchers from Microsoft Research will present work that dramatically improves
the potential of real-time, speaker-independent, automatic speech recognition.

Dong Yu, researcher at Microsoft Research Redmond, and Frank Seide, senior
researcher and research manager with Microsoft Research Asia, have been
spearheading this work, and their teams have collaborated on what has developed
into a research breakthrough in the use of artificial neural networks for large-
vocabulary speech recognition.

The Holy Grail of Speech Recognition

Commercially available speech-recognition technology is behind applications such

38

DEEP LEARNING

Topics: success story: computer vision

-

-l- .--.

container ship motor scooter ard
mite container ship motor scooter legpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
- &/) =
- :
- o
o b
24
grille mushroom cherry Madagascar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri

fire engine

dead-man’'s-fingers

currant

howler monkey

39

DEEP LEARNING
Topics: why training Is hard
* First hypothesis: optimization Is harder

(underfitting)
» vanishing gradient problem ‘ '

» saturated units block gradient
propagation

* This is a well known problem In
recurrent neural networks

40

41

DEEP LEARNING

Topics: why training Is hard

» Second hypothesis: overfitting

» we are exploring a space of complex functions

» deep nets usually have lots of parameters

* Might be In a high variance / low bias srtuation

possible f
B » &
possble f possible f

low variance/ : E high variance/
high bias : gnocitadeorotf : low bias

41

DEEP LEARNING

Topics: why training Is hard

» Second hypothesis: overfitting

» we are exploring a space of complex functions

» deep nets usually have lots of parameters

* Might be In a high variance / low bias situation

e »
possible

possible f

low variance/

high bias good trade-off

DEEP LEARNING

Topics: why training Is hard

* Depending on the problem, one or the other situation will
tend to dominate

* If first hypothesis (underfitting): better optimize

» use better optimization methods

» use GPUs

» |f second hypothesis (overfitting): use better regularization

» unsupervised pre-training

» stochastic «dropout» training

42

DEEP LEARNING

Topics: why training Is hard

* Depending on the problem, one or the other situation will
tend to dominate

* If first hypothesis (underfitting): better optimize

» use better optimization methods

» use GPUs

* |f second hypothesis (overfitting): use better regularization
» unsupervised pre-training

» stochastic «dropout» training

43

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training
» Solution: Intialize hidden layers using unsupervised learning

» force network to represent latent structure of input distribution

character image random Image

» encourage hidden layers to encode that structure

44

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training
» Solution: Intialize hidden layers using unsupervised learning

» force network to represent latent structure of input distribution

Why Is one
a character
and the other
IS not !

character image random Image

» encourage hidden layers to encode that structure

44

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

» Solution: Initialize hidden layers using unsupervised learning

» this i1s a harder task than supervised learning (classification)

Why Is one
a character
and the other
IS not !

character image random Image

» hence we expect less overfitting

45

AU TOENCODER

Topics: autoencoder; encoder, decoder, tied welights

» Feed-forward neural network trained to reproduce its input at
the output layer

Q@000 | L e
Tv(if:dwe;z: Z ggfr—n/(c i W*h(X))

for binary inputs

h(x) (OBOOO)
T Encoder
W

h(x) = gla(x))
x (OOOOO00)

sigm(b + Wx)

46

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

* We will use a greedy, layer-wise procedure

» train one layer at a time, from first to last, with unsupervised criterion

» fix the parameters of previous hidden layers

» previous layers viewed as feature extraction

47

FINE-TUNING

Topics: fine-tuning
» Once all layers are pre-trained

» add output layer

» train the whole network using supervised learning

» Supervised learning Is performed as In
a regular feed-forward network

» forward propagation, backpropagation and update

* We call this last phase fine-tuning

» all parameters are “tuned’ for the supervised task
at hand

» representation Is adjusted to be more discriminative

43

DEEP LEARNING

Topics: mpact of initialization

Test error

-=1-layer RBM

v2 1-layer denoising AE

—&—1 layers wio pre-training

Number of hidden units

R R R
10' 10° 10°

Test error

- = 2-layer DBN
|—2-layer SDAE
—&—2 layers wio pre-training

L 0 A R R
10’ 10° 10°

Number of hidden units

Test error

- = 3-layer DBN
| —3-layer SDAE
—&—3 layers w/o pre-training

S S M R R R
10' 10° 10°

Number of hidden units

Why Does Unsupervised Pre-training Help Deep Learning?
Erhan, Bengio, Courville, Manzagol,Vincent and Bengio, 201 |

49

DEEP LEARNING

Topics: mpact of initialization

-=1-layer RBM —+="2-layer DBN — —3layer DBN
| = 1-layer denoising AE ——2-layer SDAE ——3-layer SDAE
7 ini /Ml ——21 /o pre-traini 7T y
—&—1 layers w/o pre-training ayers wro pre-training —e—3 layers w/o pre-training

ook

é Acts as a regularizer:
| - overfits less with large capacity
' - underfits with small capacity

Test error

TN [—
2_ ,_ 2_

IR R R L 0 A R R S S M R R R
10' 10° 10° 10' 10° 10° 10' 10° 10°
Number of hidden units Number of hidden units Number of hidden units

Why Does Unsupervised Pre-training Help Deep Learning?
Erhan, Bengio, Courville, Manzagol,Vincent and Bengio, 201 |

49

DEEP LEARNING

Topics: why training Is hard

* Depending on the problem, one or the other situation will
tend to dominate

* If first hypothesis (underfitting): better optimize

» use better optimization methods

» use GPUs

» |f second hypothesis (overfitting): use better regularization

» unsupervised pre-training

» stochastic «dropout» training

50

DROPOUT

Topics: dropout

* |[dea: «cripple» neural network by
removing hidden units stochastically

» each hidden unit is set to O with
probability 0.5

» hidden units cannot co-adapt to other
unrts

» hidden units must be more generally
useful h() (x)

» Could use a different dropout
probability, but 0.5 usually
works well

o)

DROPOUT

Topics: dropout
* |[dea: «cripple» neural network by
removing hidden units stochastically

» each hidden unit is set to O with
probability 0.5

» hidden units cannot co-adapt to other

unrts
w2 '
» hidden units must be more generally

useful h() (x)

W '
» Could use a different dropout

probability, but 0.5 usually
works well

o)

DROPOUT

Topics: dropout

* |dea: «cripple» neural network by @

» each hidden unit is set to O with
probability 0.5

removing hidden units stochastically '\
we ‘

» hidden units cannot co-adapt to other
unrts

» hidden units must be more generally
useful

» Could use a different dropout
probability, but 0.5 usually
works well

o)

Topics: dropout
* Use random binary masks m(#)

» layer pre-activation for k>0 (h(®(x) =

» hidden layer activation (k£ from 1 to L):

h(®) (x) = g(a® (x))

» output layer activation (k=L+1):

DROPOUT

e

X) W(S
a®)(x) = bk) WFEHhFE-D(x)

52

Topics: dropout
* Use random binary masks m(#)

» layer pre-activation for k>0 (h(®(x) =

» hidden layer activation (k£ from 1 to L):

h(%) (x) = g(a(k) (x)) ©m(#)

» output layer activation (k=L+1):

DROPOUT

e

X) AV VAC
a®)(x) = bk) WFEHhFE-D(x)

52

DROPOUT

Topics: dropout backpropagation

» This assumes a forward propagation has been made before

» compute output gradient (before activation)
Var+n(x) —log f(x), < —(e(y)—1f(x))
» for kfrom L+1to 1

- compute gradients of hidden layer parameter

Vwk — log f(x), <= (va(k)(x) — log f(X)y) h(”c_l)(x)T
Vb(k) i log f(X)y — va(k) (x) 1Og f(X)y
- compute gradient of hidden layer below

|
vlrl(k—l)(x) s log f(X)y o= = W(k) (va(k)(x) W log f(X)y)

- compute gradient of hidden layer below (before activation)

Vat-1x) —log f(x)y <= (Vhe-vp —log f(x)y) OF... g (a*V(x),),..

]

53

DROPOUT

Topics: dropout backpropagation

» This assumes a forward propagation has been made before

» compute output gradient (before activation)

Var+n(x) —log f(x), < —(e(y)—1f(x)) includes the
» for kfrom L+1to 1 mask m(k-1)
- compute gradients of hidden layer parameter ¢

Vwa —log f(x)y, <= (Vaw x) —log f(x)y) h(*=1(x) "
Vb(k) i log f(X)y — va(k) (x) log f(X)y
- compute gradient of hidden layer below

|
vlrl(k—l)(x) s log f(X)y o= = W(k) (va(k)(x) W log f(X)y)

- compute gradient of hidden layer below (before activation)

Vat-1x) —log f(x)y <= (Vhe-vp —log f(x)y) OF... g (a*V(x),),..

] © m—1)

53

DROPOUT

Topics: test time classification

» At test time, we replace the masks by their expectation

» this is simply the constant vector 0.5 it dropout probability is 0.5

» for single hidden layer, can show this Is equivalent to taking the geometric average of all
neural networks, with all possible binary masks

» Beats regular backpropagation on many datasets, but Is slower (~2x)

» Improving neural networks by preventing co-adaptation of feature detectors.
Hinton, Srivastava, Krizhevsky, Sutskever and Salakhutdinov, 201 2.

54

DEEP LEARNING

Topics: why training Is hard

* Depending on the problem, one or the other situation will
tend to dominate

* If first hypothesis (underfitting): better optimize

» use better optimization methods

» use GPUs

» |f second hypothesis (overfitting): use better regularization

» unsupervised pre-training

» stochastic «dropout» training

55

55

DEEP LEARNING

Topics: why training Is hard

* Depending on the problem, one or the other situation will
tend to dominate

* If first hypothesis (underfitting): better optimize

» use better optimization methods \

» use GPUs Batch normalizatiol

/

» |f second hypothesis (overfitting): use better regularization

» unsupervised pre-training

» stochastic «dropout» training

BATCH NORMALIZATION

Topics: batch normalization

* Normalizing the inputs will speed up training
(Lecun et al. 1998)

» could normalization also be useful at the level of the hidden layers?

- Batch normalization is an attempt to do that
(loffe and Szegedy, 2014)

» each unit's pre=activation is normalized (mean subtraction, stddev division)
» during training, mean and stddev Is computed for each minibatch
» backpropagation takes into account the normalization

» at test time, the global mean / stddev is used

56

BATCH NORMALIZATION

Topics: batch normalization

- Batch normalization

Input: Valuesof x over amini-batch: B = {z1. ., };
Parametersto be learned: ~,

Output: {y; = BN, g(z;)}

1 — .

g — — Zazz // mini-batch mean
m 1=1
1 «— . .

0% - > (@i — ps) // mini-batch variance

1=1

7. L P8 // normalize

\/0123 + €

Y; < YT; + = BN, g(x;) /] scale and shift

5/

BATCH NORMALIZATION

Topics: batch normalization

- Batch normalization

Input: Valuesof x over amini-batch: B = {z1. ., };
Parametersto be learned: ~,

Output: {y; = BN, g(z;)}

1 — .
s 4= — Zazz /I mini-batchmean
i=1 g
1 mn Re
0% - > (@i — ps) /I mini-Batch variance
i=1 g
R €T, — .
T; — — - ad // normalize
Vg te :

yi < 7@+ 8= BN, 5(w;) I/ scale and shift

| earned linear transformation

- to adapt to non-linear activation

function
(y and p are trained)

5/

NEURAL NETWORK ONLINE COURSE

Topics: online videos

» for a more detailed
description of
neural networks...

» ... and much morel

http://info.usherbrooke.ca/hlarochelle/neural_networks

Click with 1he meuse or Lablel o dra th pen 2

RES TRICTED BOLIZMANN MAC II\IE

Topics: RBM, visible layer hidden layer, energy function

[0.000 Q) he risgenine
/ W cornects
(Ob OOQ) %~ vl e

Frergy functon: E(x,h) = ~—h"Wx—-¢c x—b'h

SV Wikhszx— 3 ceme— 3 b
3 k

> : W \ / ' 7 % o\

Distribution: (X, h_) = exm—h (X. h,’,',"

/) .
[J ‘
e :
> pa“tition function 4 -
; : R /|
intractas e, i !‘

trtl f

58

NEURAL NETWORK ONLINE COURSE

Topics: online videos

» for a more detailed
description of
neural networks...

» ... and much morel

http://info.usherbrooke.ca/hlarochelle/neural_networks

Click with 1he meuse or Lablel o dra th pen 2

RES TRICTED BOLIZMANN MAC II\IE

Topics: RBM, visible layer hidden layer, energy function

[0.000 Q) he risgenine
/ W cornects
(Ob OOQ) %~ vl e

Frergy functon: E(x,h) = ~—h"Wx—-¢c x—b'h

SV Wikhszx— 3 ceme— 3 b
3 k

> : W \ / ' 7 % o\

Distribution: (X, h_) = exm—h (X. h,’,',"

/) .
[J ‘
e :
> pa“tition function 4 -
; : R /|
intractas e, i !‘

trtl f

58

MERCI!

59

