Neural Networks

Hugo Larochelle (@hugo_larochelle)
Google Brain

NEURAL NETWORK ONLINE COURSE

Topics: online videos

- for a more detailed description of neural networks...
- ... and much more!

http://info.usherbrooke.ca/hlarochelle/neural_networks

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\mathsf{T}} \mathbf{W} \mathbf{x} - \mathbf{c}^{\mathsf{T}} \mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution:
$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z_{\mathbf{x}}$$

> partition function (intractable)

Click with the mouse or tablet to draw with pen 2

NEURAL NETWORK ONLINE COURSE

Topics: online videos

- for a more detailed description of neural networks...
- ... and much more!

http://info.usherbrooke.ca/hlarochelle/neural_networks

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\mathsf{T}} \mathbf{W} \mathbf{x} - \mathbf{c}^{\mathsf{T}} \mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution:
$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z_{\mathbf{x}}$$

> partition function (intractable)

Click with the mouse or tablet to draw with pen 2

NEURAL NETWORKS

- What we'll cover
 - ightharpoonup how neural networks take input ${f x}$ and make predict ${f f}({f x})$
 - forward propagation
 - types of units
 - ▶ how to train neural nets (classifiers) on data
 - loss function
 - backpropagation
 - gradient descent algorithms
 - tricks of the trade
 - deep learning
 - unsupervised pre-training
 - dropout
 - batch normalization

Neural Networks

Making predictions with feedforward neural networks

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

• Neuron pre-activation (or input activation):

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = b + \mathbf{w}^{\top} \mathbf{x}$$

Neuron (output) activation

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$$

W are the connection weights

b is the neuron bias

 $q(\cdot)$ is called the activation function

ARTIFICIAL NEURON

Topics: connection weights, bias, activation function

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

Topics: single hidden layer neural network

(from Pascal Vincent's slides)

Topics: universal approximation

- Universal approximation theorem (Hornik, 1991):
 - "a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units"
- The result applies for sigmoid, tanh and many other hidden layer activation functions

• This is a good result, but it doesn't mean there is a learning algorithm that can find the necessary parameter values!

NEURAL NETWORK

Topics: multilayer neural network

- Could have L hidden layers:
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

 \blacktriangleright hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Topics: sigmoid activation function

- Squashes the neuron's pre-activation between
 0 and I
- Always positive
- Bounded
- Strictly increasing

$$g(a) = \operatorname{sigm}(a) = \frac{1}{1 + \exp(-a)}$$

Topics: hyperbolic tangent ("tanh") activation function

- Squashes the neuron's pre-activation between
 I and I
- Can be positive or negative
- Bounded
- Strictly increasing

$$g(a) = \tanh(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$$

Topics: rectified linear activation function

- Bounded below by 0

 (always non-negative)
- Not upper bounded
- Strictly increasing
- Tends to give neurons with sparse activities

$$g(a) = reclin(a) = max(0, a)$$

Topics: softmax activation function

- For multi-class classification:
 - we need multiple outputs (I output per class)
 - lacktriangleright we would like to estimate the conditional probability $p(y=c|\mathbf{x})$

We use the softmax activation function at the output:

$$\mathbf{o}(\mathbf{a}) = \operatorname{softmax}(\mathbf{a}) = \left[\frac{\exp(a_1)}{\sum_c \exp(a_c)} \dots \frac{\exp(a_C)}{\sum_c \exp(a_c)}\right]^\top$$

- strictly positive
- > sums to one
- Predicted class is the one with highest estimated probability

Topics: flow graph

- Forward propagation can be represented as an acyclic flow graph
- It's a nice way of implementing forward propagation in a modular way
 - each box could be an object with an fprop method, that computes the value of the box given its parents
 - calling the fprop method of each box in the right order yield forward propagation

Neural Networks

Training feedforward neural networks

MACHINE LEARNING

Topics: empirical risk minimization, regularization

- Empirical (structural) risk minimization
 - framework to design learning algorithms

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$

- $l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$ is a loss function
- $m \Omega(m heta)$ is a regularizer (penalizes certain values of m heta)
- Learning is cast as optimization
 - ideally, we'd optimize classification error, but it's not smooth
 - ▶ loss function is a surrogate for what we truly should optimize (e.g. upper bound)

MACHINE LEARNING

Topics: stochastic gradient descent (SGD)

- · Algorithm that performs updates after each example
 - initialize $\boldsymbol{\theta}$ ($\boldsymbol{\theta} \equiv \{\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)}\}$)
 - for N epochs
 - for each training example $(\mathbf{x}^{(t)}, y^{(t)})$ $\checkmark \Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$ = $\checkmark \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \Delta$ iteration over **all** examples
- · To apply this algorithm to neural network training, we need
 - the loss function $l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
 - lacktriangleright a procedure to compute the parameter gradients $abla_{m{ heta}} l(\mathbf{f}(\mathbf{x}^{(t)}; m{ heta}), y^{(t)})$
 - lacktriangledown the regularizer $\Omega(oldsymbol{ heta})$ (and the gradient $abla_{oldsymbol{ heta}}\Omega(oldsymbol{ heta})$)
 - ightharpoonup initialization method for heta

LOSS FUNCTION

Topics: loss function for classification

- Neural network estimates $f(\mathbf{x})_c = p(y = c|\mathbf{x})$
 - ullet we could maximize the probabilities of $y^{(t)}$ given ${f x}^{(t)}$ in the training set
- To frame as minimization, we minimize the negative log-likelihood natural log (In)

$$l(\mathbf{f}(\mathbf{x}), y) = -\sum_{c} 1_{(y=c)} \log f(\mathbf{x})_{c} = -\log f(\mathbf{x})_{y}$$

- we take the log to simplify for numerical stability and math simplicity
- sometimes referred to as cross-entropy

BACKPROPAGATION

Topics: backpropagation algorithm

- · Use the chain rule to efficiently compute gradients, top to bottom
 - compute output gradient (before activation)

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

- for k from L+1 to 1
 - compute gradients of hidden layer parameter

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff (\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y) \quad \mathbf{h}^{(k-1)}(\mathbf{x})^{\top}$$
$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

- compute gradient of hidden layer below

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

- compute gradient of hidden layer below (before activation)

$$\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot [\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots]$$

Topics: sigmoid activation function gradient

• Partial derivative:

$$g'(a) = g(a)(1 - g(a))$$

$$g(a) = \operatorname{sigm}(a) = \frac{1}{1 + \exp(-a)}$$

Topics: tanh activation function gradient

Partial derivative:

$$g'(a) = 1 - g(a)^2$$

$$g(a) = \tanh(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$$

Topics: rectified linear activation function gradient

Partial derivative:

$$g'(a) = 1_{a>0}$$

$$g(a) = reclin(a) = max(0, a)$$

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each parent
 - fprop depends on the fprop of a box's parents, while bprop depends the bprop of a box's children
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

REGULARIZATION

Topics: L2 regularization

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} \left(W_{i,j}^{(k)} \right)^{2} = \sum_{k} ||\mathbf{W}^{(k)}||_{F}^{2}$$

• Gradient: $\nabla_{\mathbf{W}^{(k)}}\Omega(\boldsymbol{\theta}) = 2\mathbf{W}^{(k)}$

- Only applied on weights, not on biases (weight decay)
- Can be interpreted as having a Gaussian prior over the weights

INITIALIZATION

size of $\mathbf{h}^{(k)}(\mathbf{x})$

Topics: initialization

- For biases
 - initialize all to 0
- For weights
 - ▶ Can't initialize weights to 0 with tanh activation
 - we can show that all gradients would then be 0 (saddle point)
 - Can't initialize all weights to the same value
 - we can show that all hidden units in a layer will always behave the same
 - need to break symmetry
 - Recipe: sample $\mathbf{W}_{i,j}^{(k)}$ from $U\left[-b,b\right]$ where $b=\frac{\sqrt{6}}{\sqrt{H_k+H_{k-1}}}$
 - the idea is to sample around 0 but break symmetry
 - other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

MODEL SELECTION

Topics: grid search, random search

- To search for the best configuration of the hyper-parameters:
 - you can perform a grid search
 - specify a set of values you want to test for each hyper-parameter
 - try all possible configurations of these values
 - you can perform a random search (Bergstra and Bengio, 2012)
 - specify a distribution over the values of each hyper-parameters (e.g. uniform in some range)
 - sample independently each hyper-parameter to get configurations
 - ▶ bayesian optimization or sequential model-based optimization ...
- Use a **validation set** (not the test set) performance to select the best configuration
- · You can go back and refine the grid/distributions if needed

KNOWING WHEN TO STOP

Topics: early stopping

• To select the number of epochs, stop training when validation set error increases (with some look ahead)

OTHER TRICKS OF THE TRADE

Topics: normalization of data, decaying learning rate

- Normalizing your (real-valued) data
 - ightharpoonup for dimension x_i subtract its training set mean
 - ightharpoonup divide by dimension x_i by its training set standard deviation
 - this can speed up training (in number of epochs)
- Decaying the learning rate
 - ▶ as we get closer to the optimum, makes sense to take smaller update steps
 - (i) start with large learning rate (e.g. 0.1)
 - (ii) maintain until validation error stops improving
 - (iii) divide learning rate by 2 and go back to (ii)

OTHER TRICKS OF THE TRADE

Topics: mini-batch, momentum

- Can update based on a mini-batch of example (instead of I example):
 - the gradient is the average regularized loss for that mini-batch
 - can give a more accurate estimate of the risk gradient
 - > can leverage matrix/matrix operations, which are more efficient

· Can use an exponential average of previous gradients:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

can get through plateaus more quickly, by "gaining momentum"

OTHER TRICKS OF THE TRADE

Topics: Adagrad, RMSProp, Adam

- Updates with adaptive learning rates ("one learning rate per parameter")
 - Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients

$$\gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})\right)^{2}$$

$$\overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

▶ RMSProp: instead of cumulative sum, use exponential moving average

$$\gamma^{(t)} = \beta \gamma^{(t-1)} + (1 - \beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)^{2} \qquad \overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

Adam: essentially combines RMSProp with momentum

GRADIENT CHECKING

Topics: finite difference approximation

• To debug your implementation of fprop/bprop, you can compare with a finite-difference approximation of the gradient

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

- f(x) would be the loss
- $m{x}$ would be a parameter
- $f(x+\epsilon)$ would be the loss if you add ϵ to the parameter
- $f(x-\epsilon)$ would be the loss if you subtract ϵ to the parameter

DEBUGGING ON SMALL DATASET

Topics: debugging on small dataset

- Next, make sure your model is able to (over) fit on a very small dataset (~50 examples)
- If not, investigate the following situations:
 - Are some of the units saturated, even before the first update?
 - scale down the initialization of your parameters for these units
 - properly normalize the inputs
 - Is the training error bouncing up and down?
 - decrease the learning rate
- · Note that this isn't a replacement for gradient checking
 - could still overfit with some of the gradients being wrong

Neural Networks

Training deep feed-forward neural networks

Topics: theoretical justification

- A deep architecture can represent certain functions (exponentially) more compactly
- Example: Boolean functions
 - ▶ a Boolean circuit is a sort of feed-forward network where hidden units are logic gates (i.e. AND, OR or NOT functions of their arguments)
 - > any Boolean function can be represented by a "single hidden layer" Boolean circuit
 - however, it might require an exponential number of hidden units
 - it can be shown that there are Boolean functions which
 - require an exponential number of hidden units in the single layer case
 - require a polynomial number of hidden units if we can adapt the number of layers
 - ▶ See "Exploring Strategies for Training Deep Neural Networks" for a discussion

Topics: success story: speech recognition

Topics: success story: computer vision

Topics: why training is hard

• First hypothesis: optimization is harder (underfitting)

- vanishing gradient problem
- saturated units block gradient propagation

 This is a well known problem in recurrent neural networks

Topics: why training is hard

- Second hypothesis: overfitting
 - we are exploring a space of complex functions
 - deep nets usually have lots of parameters
- · Might be in a high variance / low bias situation

Topics: why training is hard

- Second hypothesis: overfitting
 - we are exploring a space of complex functions
 - deep nets usually have lots of parameters
- Might be in a high variance / low bias situation

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): better optimize
 - use better optimization methods
 - use GPUs

- If second hypothesis (overfitting): use better regularization
 - unsupervised pre-training
 - stochastic «dropout» training

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): better optimize
 - use better optimization methods
 - use GPUs

- If second hypothesis (overfitting): use better regularization
 - unsupervised pre-training
 - stochastic «dropout» training

Topics: unsupervised pre-training

- · Solution: initialize hidden layers using unsupervised learning
 - force network to represent latent structure of input distribution

character image

random image

encourage hidden layers to encode that structure

Topics: unsupervised pre-training

- · Solution: initialize hidden layers using unsupervised learning
 - force network to represent latent structure of input distribution

encourage hidden layers to encode that structure

Topics: unsupervised pre-training

- · Solution: initialize hidden layers using unsupervised learning
 - this is a harder task than supervised learning (classification)

hence we expect less overfitting

AUTOENCODER

Topics: autoencoder, encoder, decoder, tied weights

 Feed-forward neural network trained to reproduce its input at the output layer

Topics: unsupervised pre-training

- · We will use a greedy, layer-wise procedure
 - train one layer at a time, from first to last, with unsupervised criterion
 - fix the parameters of previous hidden layers

FINE-TUNING

Topics: fine-tuning

- Once all layers are pre-trained
 - add output layer
 - train the whole network using supervised learning
- Supervised learning is performed as in a regular feed-forward network
 - forward propagation, backpropagation and update
- We call this last phase fine-tuning
 - ▶ all parameters are "tuned" for the supervised task at hand
 - representation is adjusted to be more discriminative

Topics: impact of initialization

Why Does Unsupervised Pre-training Help Deep Learning? Erhan, Bengio, Courville, Manzagol, Vincent and Bengio, 2011

Topics: impact of initialization

Why Does Unsupervised Pre-training Help Deep Learning? Erhan, Bengio, Courville, Manzagol, Vincent and Bengio, 2011

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): better optimize
 - use better optimization methods
 - use GPUs

- If second hypothesis (overfitting): use better regularization
 - unsupervised pre-training
 - stochastic «dropout» training

DROPOUT

Topics: dropout

- Idea: «cripple» neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

DROPOUT

Topics: dropout

- Idea: «cripple» neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

DROPOUT

Topics: dropout

- Idea: «cripple» neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

Topics: dropout

- Use random binary masks $\mathbf{m}^{(k)}$
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

 \blacktriangleright hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Topics: dropout

- Use random binary masks $\mathbf{m}^{(k)}$
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

 \blacktriangleright hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x})) \odot \mathbf{m}^{(k)}$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Topics: dropout backpropagation

- This assumes a forward propagation has been made before
 - compute output gradient (before activation)

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

- for k from L+1 to 1
 - compute gradients of hidden layer parameter

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff (\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y) \quad \mathbf{h}^{(k-1)}(\mathbf{x})^{\top}$$
$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

- compute gradient of hidden layer below

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

- compute gradient of hidden layer below (before activation)

$$\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot [\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots]$$

Topics: dropout backpropagation

- This assumes a forward propagation has been made before
 - compute output gradient (before activation)

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

• for k from L+1 to 1

- compute gradients of hidden layer parameter

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \quad \mathbf{h}^{(k-1)}(\mathbf{x})^{\top}$$

$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

- compute gradient of hidden layer below

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

- compute gradient of hidden layer below (before activation)

$$\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot \left[\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots\right] \odot \mathbf{m}^{(k-1)}$$

Topics: test time classification

- At test time, we replace the masks by their expectation
 - ▶ this is simply the constant vector 0.5 if dropout probability is 0.5
 - ▶ for single hidden layer, can show this is equivalent to taking the geometric average of all neural networks, with all possible binary masks

- Beats regular backpropagation on many datasets, but is slower (~2x)
 - Improving neural networks by preventing co-adaptation of feature detectors. Hinton, Srivastava, Krizhevsky, Sutskever and Salakhutdinov, 2012.

DEEP LEARNING

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): better optimize
 - use better optimization methods
 - use GPUs

- If second hypothesis (overfitting): use better regularization
 - unsupervised pre-training
 - stochastic «dropout» training

DEEP LEARNING

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): better optimize
 - use better optimization methods
 - use GPUs
- If second hypothesis (overfitting): use better regularization
 - unsupervised pre-training
 - stochastic «dropout» training

Batch normalization

BATCH NORMALIZATION

Topics: batch normalization

- Normalizing the inputs will speed up training (Lecun et al. 1998)
 - could normalization also be useful at the level of the hidden layers?
- Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
 - each unit's **pre-**activation is normalized (mean subtraction, stddev division)
 - during training, mean and stddev is computed for each minibatch
 - backpropagation takes into account the normalization
 - > at test time, the global mean / stddev is used

BATCH NORMALIZATION

Topics: batch normalization

Batch normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
  \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                          // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                          // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                       // normalize
      y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathbf{BN}_{\gamma,\beta}(x_i)
                                                                              // scale and shift
```

BATCH NORMALIZATION

// scale and shift

Topics: batch normalization

Batch normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\}; Parameters to be learned: \gamma, \beta
```

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

 $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad // \text{mini-batch variance}$$

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad // \text{normalize}$$

Learned linear transformation to adapt to non-linear activation function $(\gamma \text{ and } \beta \text{ are trained})$

NEURAL NETWORK ONLINE COURSE

Topics: online videos

- for a more detailed description of neural networks...
- ... and much more!

http://info.usherbrooke.ca/hlarochelle/neural_networks

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\mathsf{T}} \mathbf{W} \mathbf{x} - \mathbf{c}^{\mathsf{T}} \mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution:
$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z_{\mathbf{x}}$$

> partition function (intractable)

Click with the mouse or tablet to draw with pen 2

NEURAL NETWORK ONLINE COURSE

Topics: online videos

- for a more detailed description of neural networks...
- ... and much more!

http://info.usherbrooke.ca/hlarochelle/neural_networks

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\mathsf{T}} \mathbf{W} \mathbf{x} - \mathbf{c}^{\mathsf{T}} \mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution:
$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z_{\mathbf{x}}$$

> partition function (intractable)

Click with the mouse or tablet to draw with pen 2

MERCI!