Lecture 5: Causality and Feature Selection

Isabelle Guyon
isabelle@clopinet.com

Variable/ feature selection

Remove features X_{i} to improve (or least degrade) prediction of Y.

What can go wrong?

What can go wrong?

What can go wrong?

Guyon-Aliferis-Elisseeff, 2007

Causal feature selection

Y

X

Uncover causal relationships between X_{i} and \mathbf{Y}.

Causal feature relevance

Causal feature relevance

Causal feature relevance

Markov Blanket

Strongly relevant features (Kohavi-John, 1997) \Leftrightarrow Markov Blanket (Tsamardinos-Aliferis, 2003)

Feature relevance

- Surely irrelevant feature X_{i} :

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y} \mid \mathbf{S}^{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathbf{S}^{\mathrm{li}}\right) \mathrm{P}\left(\mathrm{Y} \mid \mathbf{S}^{\mathrm{Li}}\right)
$$

for all $\mathbf{S i}^{i} \subseteq \mathbf{X}^{i}$ and all assignment of values to \mathbf{S}^{i}

- Strongly relevant feature X_{i} :

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y} \mid \mathbf{X}^{\mathrm{i} \mathrm{i}}\right) \neq \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathbf{X}^{\backslash \mathrm{i}}\right) \mathrm{P}\left(\mathrm{Y} \mid \mathbf{X}^{\backslash \mathrm{i}}\right)
$$

for some assignment of values to \mathbf{X}^{i}

- Weakly relevant feature X_{i} :

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y} \mid \mathbf{S}^{\mathrm{i}}\right) \neq \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathbf{S}^{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{Y} \mid \mathbf{S}^{\mathrm{i} \mathrm{i}}\right)
$$

for some assignment of values to $\mathbf{S}^{\text {ii }} \subset \mathbf{X}^{\text {i }}$

Markov Blanket

Strongly relevant features (Kohavi-John, 1997) \Leftrightarrow Markov Blanket (Tsamardinos-Aliferis, 2003)

Markov Blanket

Strongly relevant features (Kohavi-John, 1997) \Leftrightarrow Markov Blanket (Tsamardinos-Aliferis, 2003)

Markov Blanket

Strongly relevant features (Kohavi-John, 1997) \Leftrightarrow Markov Blanket (Tsamardinos-Aliferis, 2003)

Markov Blanket

Causal relevance

- Surely irrelevant feature X_{i} :

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y} \mid \mathbf{S}^{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathbf{S}^{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{Y} \mid \mathbf{S}^{\mathrm{li}}\right)
$$

- Causally relevant feature X_{i} :

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y} \mid \operatorname{do}\left(\mathbf{S}^{\mathrm{i}}\right)\right) \neq \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \operatorname{do}\left(\mathbf{S}^{\mathrm{i}}\right)\right) \mathrm{P}\left(\mathrm{Y} \mid \operatorname{do}\left(\mathbf{S}^{\mathrm{l}}\right)\right)
$$ for some assignment of values to \mathbf{S}^{i}

- Weak/strong causal relevance:
- Weak=ancestors, indirect causes
- Strong=parents, direct causes.

Examples

Immediate causes (parents)

Immediate causes (parents)

Non-immediate causes

 (other ancestors)

Non causes (e.g. siblings)

$$
\mathrm{X} \Perp \mathrm{Y} \mid \mathrm{C}
$$

Hidden more direct cause

Confounder

Immediate consequences (children)

Strongly relevant features (Kohavi-John, 1997) \Leftrightarrow Markov Blanket (Tsamardinos-Aliferis, 2003)

Non relevant spouse (artifact)

Another case of confounder

Truly relevant spouse

Sampling bias

Causal feature relevance

Formalism: Causal Bayesian networks

- Bayesian network:
- Graph with random variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ as nodes.
- Dependencies represented by edges.
- Allow us to compute $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)$ as
$\prod_{i} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{X}_{\mathrm{i}}\right)\right)$.
- Edge directions have no meaning.
- Causal Bayesian network: egde directions indicate causality.

Example of

Causal Discovery Algorithm

Algorithm: PC (Peter Spirtes and Clarck Glymour, 1999)

Let $A, B, C \in \mathbf{X}$ and $\mathbf{V} \subset \mathbf{X}$.
Initialize with a fully connected un-oriented graph.

1. Find un-oriented edges by using the criterion that variable A shares a direct edge with variable B iff no subset of other variables V can render them conditionally independent $(\mathrm{A} \perp \mathrm{B} \mid$ V).
2. Orient edges in "collider" triplets (i.e., of the type: $A \rightarrow C \leftarrow B$) using the criterion that if there are direct edges between A, C and between C and B, but not between A and B, then $A \rightarrow C \leftarrow$ B, iff there is no subset V containing C such that $A \perp B \mid V$.
3. Further orient edges with a constraint-propagation method by adding orientations until no further orientation can be produced, using the two following criteria:
(i) If $A \rightarrow B \rightarrow \ldots \rightarrow C$, and $A-C$ (i.e. there is an undirected edge between A and C) then $\mathrm{A} \rightarrow \mathrm{C}$.
(ii) If $\mathrm{A} \rightarrow \mathrm{B}-\mathrm{C}$ then $\mathrm{B} \rightarrow \mathrm{C}$.

Computational and statistical complexity

Computing the full causal graph poses:

- Computational challenges (intractable for large numbers of variables)
- Statistical challenges (difficulty of estimation of conditional probabilities for many var. w. few samples).
Compromise:
- Develop algorithms with good average- case performance, tractable for many real-life datasets.
- Abandon learning the full causal graph and instead develop methods that learn a local neighborhood.
- Abandon learning the fully oriented causal graph and instead develop methods that learn unoriented aranhs

A prototypical MB algo: HITON

Aliferis-Tsamardinos-Statnikov, 2003)

1 - Identify variables with direct edges to the target (parent/ children)

1- Identify variables with direct edges to the target (parent/ children)

2 - Repeat algorithm for parents

 and children of Y(get depth two relatives)

Aliferis-Tsamardinos-Statnikov, 2003)

3 - Remove non-members of the MB

A member A of PCPC that is not in PC is a member of the Markov Blanket if there is some member of PC B, such that A becomes conditionally dependent with Y conditioned on any subset of the remaining variables and B.

Conclusion

- Feature selection focuses on uncovering subsets of variables X_{1}, X_{2}, \ldots predictive of the target Y.
- Multivariate feature selection is in principle more powerful than univariate feature selection, but not always in practice.
- Taking a closer look at the type of dependencies in terms of causal relationships may help refining the notion of variable relevance.

Acknowledgements and references

1) Feature Extraction, Foundations and Applications
I. Guyon et al, Eds.

Springer, 2006.
http://clopinet.com/fextract-book
2) Causal feature selection

I. Guyon, C. Aliferis, A. Elisseeff

To appear in "Computational Methods of Feature Selection", Huan Liu and Hiroshi Motoda Eds.,
Chapman and Hall/CRC Press, 2007. http://clopinet.com/isabelle/Papers/causalFS.pdf

