
Avoid playing learner and system off
against each other 

Ji-Ung Lee, Christian M. Meyer, Iryna Gurevych

Ubiquitous Knowledge Processing Lab
Technische Universität Darmstadt
https://www.informatik.tu-darmstadt.de/ukp/ 

https://www.informatik.tu-darmstadt.de/ukp/


24.10.2018  |  WG 3 & 5 Meeeting, Leiden  |   UKP Lab, TU Darmstadt   |   Ji-Ung Lee  2

▪ Self-directed language learning is gaining popularity
▪ Challenges with the increasing number of learners 

Motivation

Hand-crafted exercises
❏ Requires experts 
❏ Limited capacities
❏ High-quality exercises

Automatically generated exercises
❏ No user interaction required
❏ Large capacities
❏ Lesser-quality exercises

vs
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▪ Self-directed language learning is gaining popularity
▪ Challenges with the increasing number of learners 

Motivation

Hand-crafted exercises
❏ Requires experts 
❏ Limited capacities
❏ High-quality exercises

Automatically generated exercises
❏ No user interaction required
❏ Large capacities
❏ Lesser-quality exercises

vs
Automatically generate high-quality exercises that

❏ Match a learner’s skills and interests
❏ Allow better system estimates



24.10.2018  |  WG 3 & 5 Meeeting, Leiden  |   UKP Lab, TU Darmstadt   |   Ji-Ung Lee  4

Automatically generate high-quality exercises that
▪ Match a learner’s skills and interests
▪ Allow better system estimates

How to create such an exercise generation system?
▪ Train an ML model which estimates the suitedness of an exercise according to a 

given learner profile
▪ This requires annotated training data consisting of:

▪ An input exercise
▪ A suitedness annotation for a given learner profile

Automated Exercise Generation
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Learner-based data acquisition
▪ Learners “annotate” exercises by 

solving them
▪ Cheap / quick
▪ Easy to get a lot of learners
▪ Learners only can give implicit 

feedback about their own 
proficiency level (e.g. error-rate)

Data Acquisition Scenarios

Teacher-based data acquisition
▪ Teachers annotate exercises by 

assessing them
▪ Expensive / time-consuming
▪ Difficult to get a lot of teachers
▪ Teachers can assess exercises of 

all proficiency levels
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Learner-based data acquisition
▪ Learners “annotate” exercises by 

solving them
▪ Cheap / quick
▪ Easy to get a lot of learners
▪ Learners only can give implicit 

feedback about their own 
proficiency level (e.g. error-rate)

Data Acquisition Scenarios

Teacher-based data acquisition
▪ Teachers annotate exercises by 

assessing them
▪ Expensive / time-consuming
▪ Difficult to get a lot of teachers
▪ Teachers can assess exercises of 

all proficiency levels

More likely for 
crowd-sourcing or

online learning
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Online Learning Scenario

Please 
solve this 
exercise

Exercise 
score: 
16/20

1) Automated tutor generates 
exercises

2) Learner solves exercises
3) Learner performance evaluation is 

used to improve the machine 
learning model 
(is the exercise suited?)

4) Re-iterate from 1) 
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Online Learning Scenario

Please 
solve this 
exercise

Exercise 
score: 
16/20

1) Automated tutor generates 
exercises

2) Learner solves exercises
3) Learner performance evaluation is 

used to improve the machine 
learning model 
(is the exercise suited?)

4) Re-iterate from 1) 

Learner performance 
provides feedback about the 
suitedness of the exercise.
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Acquisition Bottleneck

Requirements for creating (sufficiently) huge datasets

▪ Big source of unlabeled data (any arbitrary exercise)

▪ Crowd-sourcing
▪ Learners as annotators: Learnersourcing 
▪ Every learner is an expert of their own proficiency

▪ Active machine learning 
▪ Reduce the number necessary data by sampling intelligently
▪ Has been shown to be effective for crowd-sourcing 
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Acquisition Bottleneck

Requirements for creating (sufficiently) huge datasets

▪ Big source of unlabeled data (any arbitrary exercise)

▪ Crowd-sourcing
▪ Learners as annotators: Learnersourcing [3]
▪ Every learner is an expert of their own proficiency

▪ Active machine learning 
▪ Reduce the number necessary data by sampling intelligently
▪ Has been shown to be effective for crowd-sourcing [4, 5]

Active learning in a nutshell (picture from Settles, 2009)
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Acquisition Bottleneck

Requirements for creating (sufficiently) huge datasets

▪ Big source of unlabeled data (any arbitrary exercise)

▪ Crowd-sourcing
▪ Learners as annotators: Learnersourcing [3]
▪ Every learner is an expert of their own proficiency

▪ Active machine learning 
▪ Reduce the number necessary data by sampling intelligently
▪ Has been shown to be effective for crowd-sourcing [4, 5]

Active learning in a nutshell (picture from Settles, 2009)

Sounds great, but ...
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… avoid playing learner and system off against 
each other

Advantages of Active machine learning
▪ Active machine learning aims to improve the learning efficiency of the ML model

▪ Models can be trained more efficiently with less data
▪ This reduces the amount of required data

Consequences for crowd-sourcing
▪ Does not necessarily reduce annotation time
▪ More difficult annotations lead to more errors of the annotators

▪ We may end up hindering a learner’s learning process
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Explicit Use Case: C-tests

▪Proposed by Klein-Braley and Raatz (1982)
▪Gap every second word in a text by removing the latter half
▪The first and last sentence have no gaps to provide some context
▪Less ambiguous than cloze tests
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Explicit Use Case: Suitedness

What is a suitable exercise?
▪ “Zone of proximal development” (Vygotsky, 1978)
▪Guidance zone in which a learner is able 
to learn optimally

▪Measure suitedness implicitly using the 
learner’s error-rate

▪Our goal is to generate exercises fitting
into the approximately optimal error-rate
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Previous Work at UKP Lab

Task: Difficulty prediction of C-Tests 
▪Feature-based approach
▪Gap-level difficulty prediction

Data 
▪77 English C-Tests filled out by over 3,4k participants
▪Provided by the Language Center of TU Darmstadt
▪Each test has 20 gaps
▪Each participant solved 5 tests
▪72 tests for training (1440 gaps) 
▪  5 tests for testing (100 gaps)
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Predicting and manipulating the difficulty of text-completion 
exercises for language learning (Beinborn, 2016)

Features based on four dimensions

▪ Item dependency
▪ Gap difficulty depends on the surrounding gaps

▪Candidate ambiguity
▪ Inspired from automated solving (Zweig et al, 2012)

▪Word difficulty
▪ Length, class, singular/plural, …

▪Text difficulty
▪ Readability features from all linguistic levels (Balakrishna, 2015)
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Task Formalization

Research question
▪Can we sample exercises which simultaneously help learner and model?

Learner objective
▪Get exercises suited for their current skill level

Model objective
▪Reduce the number of samples for predicting the gap difficulty
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Experimental Set up

▪Linear regression model
▪Hand-crafted features (Beinborn, 2016)
▪Upper bound performance (trained on all training examples): 0.24 RMSE

▪Starts with a single example 
▪ Increase training set by one example per iteration
▪Sampling strategies:

▪ Random sampling (baseline)   
▪ Uncertainty sampling
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Results - Model Objective

▪100 iterations

▪Simple uncertainty 
sampling already 
has a positive effect

▪Quite close to the 
upper bound 
(0.24 RMSE)
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Results - Learner Objective

▪For both sampling 
strategies, the ordering
of exercise difficulties is 
nearly random

▪This is far from starting 
with the easiest exercise



24.10.2018  |  WG 3 & 5 Meeeting, Leiden  |   UKP Lab, TU Darmstadt   |   Ji-Ung Lee  21

Advantages
▪Learnersourcing may reduce the workload on teachers
▪Active machine learning may reduce the amount of required training data

But
▪Random sampling and uncertainty sampling both do not care about the learner
▪Brings the risk to harm a learner’s learning process

Unethical reduction of learners to mere labelers

Conclusion
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Advantages
▪Learnersourcing may reduce the workload on teachers
▪Active machine learning may reduce the amount of required training data

But
▪Random sampling and uncertainty sampling both do not care about the learner
▪Brings the risk to harm a learner’s learning process

Unethical reduction of learners to mere labelers

Conclusion

How can we still utilize the benefits of active machine learning?
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Methods which satisfy learner and model objective
▪ Improve learner and model in an online learning set up
▪This is a difficult challenge

Extension to other use cases
▪Currently: self-directed language learning
▪Means to improve intelligent tutoring systems interactively
▪May also be used to train personalized systems (e.g. recommender systems)

Ongoing Work
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Thank you for listening!

https://ticary.com/2017/12/12/what-is-nlp.html

https://ticary.com/2017/12/12/what-is-nlp.html
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Active Machine Learning for 
Learnersourcing
▪ Standard active machine learning approaches do not care about a learner’s goals 

     Learners are reduced to mere labelers

▪ May sample unfitting exercises for the learner (e.g. too easy, too difficult)

This may harm their learning process

How can we still utilize the benefits of active machine learning?


