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Motivation

= Self-directed language learning is gaining popularity
= Challenges with the increasing number of learners

Hand-crafted exercises Automatically generated exercises
o Requires experts o No user interaction required
o Limited capacities vs o Large capacities

o High-quality exercises o Lesser-quality exercises
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Automated Exercise Generation

Automatically generate high-quality exercises that
= Match a learner’s skills and interests
= Allow better system estimates

How to create such an exercise generation system?

= Train an ML model which estimates the suitedness of an exercise according to a
given learner profile

= This requires annotated training data consisting of:
= An input exercise
= A suitedness annotation for a given learner profile

i
3

24.10.2018 | WG 3 & 5 Meeeting, Leiden | UKP Lab, TU Darmstadt | Ji-Ung Lee 4



TECHNISCHE
UNIVERSITAT
DARMSTADT

Data Acquisition Scenarios

Teacher-based data acquisition Learner-based data acquisition

= Teachers annotate exercises by = Learners “annotate” exercises by
assessing them solving them

= EXpensive / time-consuming = Cheap / quick

= Difficult to get a lot of teachers = Easy to get a lot of learners

= Teachers can assess exercises of = Learners only can give implicit
all proficiency levels feedback about their own

proficiency level (e.g. error-rate)
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Data Acquisition Scenarios

Teacher-based data acquisition Learner-based data acquisition
= Teachers annotate exercises by Learners ‘annotate” exercises by
assessing them g
. . : More likely for
= Expensive / time-consuming = (
= Difficult to get a lot of teachers = SJowesourcing or
! 9 online learning
= Teachers can assess exercises of . \ g _cit
all proficiency levels feedback about their own

proficiency level (e.g. error-rate)
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Online Learning Scenario

1) Automated tutor generates
exercises

2) Learner solves exercises

3) Learner performance evaluation is

g Please ‘

) ) > solve this
used to improve the machine — exercise
learning model |z|

. . . S
(is the exercise suited?) ==

4) Re-iterate from 1) V\_/

Exercise

score:
16/20
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Online Learning Scenario

1) Automated tutor generates
exercises
2) Learner solves exercises

3) |[Learner performance evaluation is
used to improve the machine
learning model

o Please ‘

(is the exercise suited?)
4) Re-iterate from 1)

Learner performance
provides feedback about the
suitedness of the exercise.

Exercise

score:
16/20
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Acquisition Bottleneck

Requirements for creating (sufficiently) huge datasets

= Big source of unlabeled data (any arbitrary exercise)

= Crowd-sourcing
= Learners as annotators: Learnersourcing
= Every learner is an expert of their own proficiency

= Active machine learning
» Reduce the number necessary data by sampling intelligently
» Has been shown to be effective for crowd-sourcing
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Requirements for creating (sufficiently) huge datasets

= Big source of un

= Crowd-sourcing
= Learners as alf
= Every learner

= Active machine
= Reduce the nu
= Has been shoy

de
/m'” a model machine learning
model

la beled

tra|n|ng set
unlabeled pool
sel ecr queries

oracle (e.g., human annotator)

Figure 1: The pool-based active learning cycle.

Active learning in a nutshell (picture from Settles, 2009)
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. ________________________________________________________________|
... avoid playing learner and system off against
each other

Advantages of Active machine learning

= Active machine learning aims to improve the learning efficiency of the ML model
= Models can be trained more efficiently with less data
= This reduces the amount of required data

Consequences for crowd-sourcing

= Does not necessarily reduce annotation time

= More difficult annotations lead to more errors of the annotators
= We may end up hindering a learner’s learning process

S UKP
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Explicit Use Case: C-tests

Please enter an English example text here . Common C-test [Cllll) consist FXI a

small from g news L1 with =4 len of I} to il
sentences . t! difficulty (L is 7 data [ university

L with BETEEEE competence | S of Engllsh and other languages .

* Proposed by Klein-Braley and Raatz (1982)

= Gap every second word in a text by removing the latter half

= The first and last sentence have no gaps to provide some context
= Less ambiguous than cloze tests
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Explicit Use Case: Suitedness

What is a suitable exercise?

= “Zone of proximal development” (Vygotsky, 1978)

= Guidance zone in which a learner is able

to learn optimally

» Measure suitedness implicitly using the

learner’s error-rate

=Our goal is to generate exercises fitting
into the approximately optimal error-rate

Zone of proximal development
Focused teaching

A Scaffolding
Anxiety
the support of
the ‘more
What the learmer will

knowing other
be able to achieve e
independently
_—

Level of
challenge x’ What the leamer can currently
~—— achieve independently
2 ;
What the leamer Boredom
can achieve with /
assistance

Level of competence

occurs through
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Previous Work at UKP Lab

Task: Difficulty prediction of C-Tests
= Feature-based approach
» Gap-level difficulty prediction

Data

=77 English C-Tests filled out by over 3,4k participants
* Provided by the Language Center of TU Darmstadt

= Each test has 20 gaps

= Each participant solved 5 tests

=72 tests for training (1440 gaps)

= 5 tests for testing (100 gaps)
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Predicting and manipulating the difficulty of text-completion
exercises for language learning (Beinborn, 2016)

Features based on four dimensions fterm Dependency
. Item dependency Exercise Candidate
Format Ambiguity

= Gap difficulty depends on the surrounding gaps

Exercise Word

. Candldate amblgl““ty Content Difficulty
= Inspired from automated solving (Zweig et al, 2012)

=\Word difficulty
= Length, class, singular/plural, ...

= Text difficulty
= Readability features from all linguistic levels (Balakrishna, 2015)
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Task Formalization

Research question
= Can we sample exercises which simultaneously help learner and model?

Learner objective
= Get exercises suited for their current skill level

Model objective
» Reduce the number of samples for predicting the gap difficulty
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Experimental Set up

=Linear regression model
» Hand-crafted features (Beinborn, 2016)
= Upper bound performance (trained on all training examples): 0.24 RMSE

= Starts with a single example
|ncrease training set by one example per iteration
» Sampling strategies:

= Random sampling (baseline)

= Uncertainty sampling
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Results - Model Objective

Test-level Difficulty -

RMSE

=100 iterations

= Simple uncertainty
sampling already
has a positive effect

| g
o

o
©

= Quite close to the
upper bound
(0.24 RMSE)

o
o

Rooted Mean Squared Error

14
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—— Random
—— Uncertainty Sampling
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Results - Learner Objective

Test-level Difficulty - True Ranking

* For both sampling

s aootess 1 —r—
s AT /\W RIRETIN
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Conclusion

Advantages
= Learnersourcing may reduce the workload on teachers
= Active machine learning may reduce the amount of required training data

But

» Random sampling and uncertainty sampling both do not care about the learner
= Brings the risk to harm a learner’s learning process

—» Unethical reduction of learners to mere labelers
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Ongoing Work

Methods which satisfy learner and model objective
*Improve learner and model in an online learning set up
= This is a difficult challenge

Extension to other use cases

= Currently: self-directed language learning

= Means to improve intelligent tutoring systems interactively

«May also be used to train personalized systems (e.g. recommender systems)
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Active Machine Learning for
Learnersourcing
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= Standard active machine learning approaches do not care about a learner’s goals
—» Learners are reduced to mere labelers
= May sample unfitting exercises for the learner (e.g. too easy, too difficult)

—» This may harm their learning process
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