

Multifunctional shape memory polymers based on covalent adaptive networks

Prof. Christine JEROME

CERM, CESAM, University of Liege, Belgium <u>c.jerome@uliege.be</u>

Pregl Colloquium Series, Ljubljana, November 22nd, 2018

University of Liege, Belgium

ULiege: -23000 students -11 faculties

Center for Center for Education and Research on **Macromolecules**

> ~25 researchers 4 permanents

Shape-memory polymers (SMP)

Applications:

- Heat shrinkable tubes
- Medical devices: stents, resorbable self-tightening sutures

Hard segments: fix the **permanent shape** Soft segments: fix the **temporary shape**

Permanent shape

Hard segments: fix the **permanent shape** Soft segments: fix the **temporary shape**

Heating above **T**_{transition} Soft segments Hard segments Polymer

Permanent shape

Hard segments: fix the **permanent shape** Soft segments: fix the **temporary shape**

Hard segments: fix the **permanent shape** Soft segments: fix the **temporary shape**

Hard segments: fix the **permanent shape** Soft segments: fix the **temporary shape**

Physical or covalent bonds Crystallites or glassy regions

Shape-memory effect

Str Str Str Stim (Δ Stim	ess aulus T) Tempora shape	ry
Classes	Hard segments	Soft segments
Covalently cross-linked glassy thermoset networks (class I)	Covalent bonds	Glassy domains
Covalently cross-linked semi-crystalline networks (class II)	Covalent bonds	Crystallites
Physically cross-linked glassy copolymers (class III)	Physical bonds	Glassy domains
Physically cross-linked semi-crystalline block copolymers (class IV)	Physical bonds	Crystallites

C. Liu, H. Qin, P. T. Mather, J. Mater. Chem., 2007, 17, 1543–1558.

Classes	Hard segments	Soft segments	
Covalently cross-linked glassy thermoset networks (class I)	Covalent bonds	Glassy domains	
Covalently cross-linked semi-crystalline networks (class II)	Covalent bonds	Crystallites	
Physically cross-linked glassy copolymers (class III)	Physical bonds	Glassy domains	
Physically cross-linked semi-crystalline block copolymers (class IV)	Physical bonds	Crystallites	

C. Liu, H. Qin, P. T. Mather, J. Mater. Chem., 2007, 17, 1543–1558.

Covalently cross-linked semi-crystalline networks (class II)

Heat shrinkable tubings or films

Crosslinking by electron beam irradiation (β irradiation)

Cross-linked PE

 $T_m \sim 120^{\circ}C$

Cross-linked PTFE (Teflon®)

 $T_m \sim 320^{\circ}C$

Cross-linked poly(ϵ -caprolactone) (PCL) γ irradiation $T_m = 50^{\circ}C$

Degradable and biocompatible

Class II covalent networks

=> High shape memory performances

W. C. Rainer, E. M. Redding, J. J. Hitov, A. W. Sloan and W. D. Stewart, US Pat., 3144398, 1964.
R. Hosemann, J. Loboda-Cackovic and H. Cackovic, Z. Naturforsch., A: Astrophys. Phys. Phys. Chem., 1972, 27, 478.
G. Zhu, G. Liang, Q. Xu and Q. Yu, J. Appl. Polym. Sci., 2003, 90, 1589.

Processing the permanent shape: melt-flow injection

Thermoplastics

Polymer processing: melt-flow injection

Thermoplastics

Polymer networks do not flow!

Cross-linked polymers = network

Goal of the research: reversible covalent networks

Melt-flow processing

Highly stable covalent network

Covalent adaptable networks (CANs)

Stimulus

Cross-linked polymer

C. J. Kloxin, T. F. Scott, B. J. Adzima, C. N. Bowman, Macromolecules 2010, 43, 2643.

Selected reversible bonds for this work

Insertion of these bonds into PCL networks

Degradable Biocompatible Shape memory

Polymer matrix : Poly(ϵ -caprolactone) or PCL : $T_g = -60^{\circ}C; T_m = 50^{\circ}C$ Semi-crystalline polymer

General synthesis strategy

Thermally-controlled [4+2] cycloaddition (Diels-Alder reaction)

- **•** Furan
- **C** Maleimide

4-arm star-shaped PCL

Thermally-controlled [4+2] cycloaddition (Diels-Alder reaction)

- **C** Maleimide
- **Diels-Alder adduct**

4-arm star-shaped PCL

0

Diels-Alder adduct

Thermally-controlled [4+2] cycloaddition (Diels-Alder reaction)

Functionalization of 4-arm star-shaped PCL

Functionalization of 4-arm star-shaped PCL

Functionalization of 4-arm star-shaped PCL

Droomroord	Number of	DP a	Chain-ends	$\mathbf{M}_{\mathbf{n}}$	Ð (SEC) ^c
riccursors	chain-ends		conversion ^a	(¹ H NMR) ^b	
PCL ₇₆ -4MAL	4	76	95%	9600 g/mol	1.20
PCL ₇₆ -4FUR	4	76	88%	9400 g/mol	1.20

a) Conversion of the hydroxyl end groups into furan or maleimide determined by ¹H NMR

b) Average molar mass (DP x 114.14 g/mol + 400 g/mol (for PCL₇₆-4FUR and PCL₇₆-4MAL) or 200 g/mol (for PCL₃₈-2MAL) + molar mass of maleimide or furan end groups x chain-end conversion)

c) Molar mass distribution measured by SEC in THF at 45°C

Defize, T. et al, Macromol. Rapid Commun. 2011, 32, 1264.

Mixing of the precursors

Mixing in a mini-extruder at 105°C

Crosslinking study by swelling experiments

Determination of the optimal time of curing at 65°C

Crosslinking in a ventilated oven at 65°C: Diels-Alder adduct formation in the molten state

Evolution of the *insoluble fraction* and of the *swelling rate* (in chloroform) with curing time at 65°C for the mix composed of PCL₇₆-4MAL and PCL₇₆-4FUR

Efficient cross-linking of the material after 24h at 65°C

Defize, T.; Thomassin, J.-M.; Alexandre, M.; Gilbert, B.; Riva R.; Jérôme, C., Polymer 2016, 84, 234.

Crosslinking study by rheology (TA Ares G2: 1% deformation, 65°C)

Crosslinking kinetics by rheology at 65°C

Crosslinking in the rheometer at 65°C: Diels-Alder adduct formation in the molten state

Evolution of the gain modulus and of the loss modulus with curing time at 65°C for the mix composed of PCL₇₆-4MAL and PCL₇₆-4FUR

At 65°C: - G' increases due to network formation

- G" increases due to viscosity increase

Defize, T.; Thomassin, J.-M.; Alexandre, M.; Gilbert, B.; Riva R.; Jérôme, C., Polymer 2016, 84, 234.

Crosslinking kinetics by RAMAN spectroscopy

Crosslinking in a ventilated oven at 65°C: Diels-Alder adduct formation in the molten state

Zoom on the diffusion bands of interest of furan (1603 cm⁻¹), maleimide (1587 cm⁻¹) and DA adduct (1577 cm⁻¹)

PCL₇₆-4FUR
 PCL₇₆-4MAL
 Mix before crosslinking
 Mix after crosslinking during 24h at 65°C

Defize, T.; Thomassin, J.-M.; Alexandre, M.; Gilbert, B.; Riva R.; Jérôme, C., Polymer 2016, 84, 234.

Crosslinking kinetics by RAMAN spectroscopy

Crosslinking in a ventilated oven at 65°C: Diels-Alder adduct formation in the molten state

Defize, T.; Thomassin, J.-M.; Alexandre, M.; Gilbert, B.; Riva R.; Jérôme, C., Polymer 2016, 84, 234.

Crosslinking kinetics by RAMAN spectroscopy

Crosslinking in a ventilated oven at 65°C: Diels-Alder adduct formation in the molten state

Defize, T.; Thomassin, J.-M.; Alexandre, M.; Gilbert, B.; Riva R.; Jérôme, C., Polymer 2016, 84, 234.

Crosslinking kinetics by RAMAN spectroscopy

Crosslinking in a ventilated oven at 65°C: Diels-Alder adduct formation in the molten state

Conversion of furan (%) = $100 - \frac{I(1503 \text{ cm}^{-1}) \text{ for the mix}}{I(1503 \text{ cm}^{-1}) \text{ for PCL}-4\text{FUR}/2}$. 100

Defize, T.; Thomassin, J.-M.; Alexandre, M.; Gilbert, B.; Riva R.; Jérôme, C., Polymer 2016, 84, 234.

crystallite

~ PCL

Shape-memory properties

Heating above

Permanent shape

160

140 120 100

80

60

40

20 0

 $10_{20}_{30}_{40}_{40}_{50}_{60}_{60}_{70}$

Temperature

(°C)

Stress-controlled deformation (0.06MPa/min up to 0.6MPa)

0.6 0.4 0.2 0.4 DMTA Q800, tensile mode, controlled stress, sample : 5x5x0.5 mm

Defize, T. et al.; Macromol. Rapid Commun. 2011, 32, 1264.

Stress

(MPa)

0.1

0.0

Study of the network thermoreversibility by rheology

<u>At 65°C</u>: - G' increases due to network formation

- G" increases due to viscosity increase

<u>At 125°C</u>: - G' decreases (network cleavage)

- G" decreases (viscosity decrease)

Gel points reached for the same G' and G" values

Almost perfect reversibility

High number of crosslinking/cleavage cycles can be achieved

Defize, T.; Thomassin, J.-M.; Alexandre, M.; Gilbert, B.; Riva R.; Jérôme, C., Polymer 2016, 84, 234.

Shape-memory properties before and after recycling

Initial material

Recycled material

- Second se
 - Similar mechanical properties before and after recycling

Diels-Alder/retro-Diels-Alder reactions allow recycling of cross-linked shape-memory materials

Defize, T. et al.; Macromol. Chem. Phys. 2012, 213, 187.

Shape-memory properties before and after recycling

Initial material

Recycled material

- 1st cycle

2nd cycle

3rd cycle

4th cycle

Nm

Some DA adducts break under elongation stress

0.6 0.2 0.1 0.2

0.0

Defize, T. et al.; Macromol. Chem. Phys. 2012, 213, 187.

Stress

(MPa)

What happens with a more stable Diels-Alder adduct ?

Furan/maleimide material

Anthracene/maleimide material

Defize, T. et al.; Macromol. Chem. Phys. 2012, 213, 187.

Advantages

- Good reversibility (proven by rheology)
- Easy melt reprocessability

Drawbacks

 \odot

Slow Diels-Alder reaction rate (24h to reach the equilibrium state at $65^{\circ}C$)

 $\overline{\mathbf{O}}$

Creep occuring under stress due to the disruption of some DA-adducts

Drawbacks

Slow Diels-Alder reaction rate (24h to reach the equilibrium state at 65°C)

Use of a faster thermally-reversible reaction

TAD-Indole reaction

Creep occuring under stress due to the disruption of some DA-adducts

Drawbacks

Slow Diels-Alder reaction rate (24h to reach the equilibrium state at 65° C)

Creep occuring under stress due to the disruption of some DA-adducts

Use of a faster thermally-reversible reaction

TAD-Indole reaction

Use of photoreversible reaction (thermally stable)

Dimerization of coumarin

Reversible TAD/Indole Alder-ene reaction

1,2,4-triazoline-3,5-dione (TAD)

TAD red maleimide

+ High reactivity of TAD

1,2,4-triazoline-3,5-dione (TAD)

+

Irreversible adduct

 \mathbf{O}

z

Furan

TAD

TAD-Furan adduct

red

- High reactivity of TAD +
- **Extremely fast reaction** +
- **Visual feedback** +

Du Prez et al., Nature Chemistry, 2015, 6, 815-821

1,2,4-triazoline-3,5-dione (TAD)

+

Irreversible adduct

 \mathbf{O}

z

Furan

TAD

TAD-Furan adduct

red

- High reactivity of TAD +
- **Extremely fast reaction** +
- **Visual feedback** +

Du Prez et al., Nature Chemistry, 2015, 6, 815-821

1,2,4-triazoline-3,5-dione (TAD)

Thermo-reversible Alder-ene adduct

Indole

TAD red TAD-Indole adduct

- + High reactivity of TAD
- + Extremely fast reaction
- + Visual feedback

Reversible reaction between TAD and indole

- Synthesis of 6-arm star-shaped PCL by ring opening polymerization of ε-caprolactone
- Use of a bis-TAD (functionalization of PCL with TAD moieties is <u>not</u> easy)

¹H NMR
T. Defize, R. Riva, J.-M. Thomassin, M. Alexandre, N. Van Herck, F. Du Prez, C. Jérôme, Macromol. Rapid Commun. 2017, 38, 1600517.

T. Defize, R. Riva, J.-M. Thomassin, M. Alexandre, N. Van Herck, F. Du Prez, C. Jérôme, Macromol. Rapid Commun. 2017, 38, 1600517.

Processing of the precursors

Stoichiometric amounts in reactive groups of PCL-6Indole and bis-TAD were grinded, mixed together and injected in a mini-extruder at 120°C.

- Mixing during 15min (50 rpm) at 120°C
- A cross-linked material is recovered

Crosslinking occurred at 120°C and/or during the cooling of the blend

Preparation of films by compression molding (1h, 120°C, 100 bars)

Shape-memory properties Mechanical Heating stress above 0.3 MPa T_{melting} **Cooling below** (0°C) **T**_{crystallization} 65°C **Stress release Permanent shape Temporary shape** crystallites covalent links PCL **Heating above T**_{melting} 65°C 120 100 Strain (%) 1st cycle 80 2nd cycle 60 3rd cycle 40 4th cycle 20 $\begin{array}{c}0\\10\\20\\30\\40\\50\\60\\70\end{array}$ Temperature (°C)

T. Defize, et al, Macromol. Rapid Commun. 2017, 38, 1600517.

Shape-memory properties Mechanical Heating stress 0.3 MPa above T_{melting} **Cooling below** (0°C) T_{crystallization} 65°C **Stress release Permanent shape Temporary shape** crystallites covalent links PCL **Heating above T**_{melting} 65°C 120 100 Strain (%) 1st cycle 80 2nd cycle 60 3rd cycle 40 4th cycle 20

Stress-relaxation experiment

- Application of a constant strain to the sample (100%)
- Measurement of the stress in the function of time at 120°C

Upon long-time strain (1h)

- Relaxation of the material by the dynamic breakingup/formation of the adducts at 120°C
- Formation of a novel network :
- The disruption of TAD-indole adducts under stress
- The formation of new TAD-indole adducts
- Permanent deformation of the material (90%)

Indole

TAD

TAD-Indole adduct

- Application of a constant strain to the sample (100%)
- Measure of the stress in the function of time at 120°C

Upon long-time strain (1h)

- Relaxation of the material by the dynamic breakingup/formation of the adducts at 120°C.
- Formation of a novel network :
- The disruption of TAD-indole adducts under stress
- The formation of new TAD-indole adducts
- Permanent deformation of the material (90%)

Indole

Upon short-time strain (1 min)

- Minimal stress relaxation (~90% of the initial stress)
- No permanent deformation of the material (3%)

The material is not able to reorganize within this short time frame

Reprocessing experiment

- Dissociation of TAD/indole adducts under stress
- Formation of new TAD/indole adducts

Solid-state plasticity enables the material to be reprocessed

T. Defize, R. Riva, J.-M. Thomassin, M. Alexandre, N. Van Herck, F. Du Prez, C. Jérôme, Macromol. Rapid Commun. 2017, 38, 1600517.

Photo-reversible coumarin dimerization

- Crosslinking of 4-arm star-shaped PCL by coumarin dimerization
- Photo-reversible dimer
- Thermo-stable PCL network

Functionalization of PCL by coumarin moieties

T. Defize, J.-M. Thomassin, H. Ottevaere, C. Malherbe, G. Eppe, R. Jellali, M. Alexandre, C. Jérôme, R. Riva Macromolecules. 2018, under review. 35

Functionalization of PCL by coumarin moieties

- Quartz plate
- Cross-linked PDMS film

60°C

Mold

 $\lambda = 365 \text{ nm}$

- Cross-linked PDMS film
 - Mold

UV irradiation

Addition of a photosensitizer (benzophenone)

- PCL-4COU with 0% mol Bzph: PCL₇₆-4COU-Bzph₀
- PCL-4COU with 25% mol Bzph: PCL₇₆-4COU-Bzph₂₅
- PCL-4COU with 50% mol Bzph: PCL₇₆-4COU-Bzph₅₀

Crosslinking study by swelling experiments

- Optimal swelling rate and insoluble fraction after:
 - 360 min without benzophenone
 - 30 min and 60 min with 25 or 50mol% of benzophenone, respectively
- Dramatic increase of the dimerization rate with benzophenone

Crosslinking study by rheology

Irradiation of the sample at 365 nm

- Dimerization of coumarin
- Dramatic increase of the dimerization rate with benzophenone

Crosslinking study by rheology

Irradiation of the sample at 365 nm

Dime

Dimerization of coumarin

- Dramatic increase of the dimerization rate with benzophenone
- Switching on/off cycles

Remote control of the cross-linking process

Quantitative conversion of the coumarin groups after the optimal time of irradiation

Determination of the crystallization temperature

- T_c of PCL₇₆-4COU-Bzph₀ : $7^{\circ}C$
- T_c of PCL₇₆-4COU-Bzph₂₅ : -14°C
- T_c of **PCL₇₆-4COU-Bzph₅₀ : -19°C**

Cooling below 0°C is mandatory

Stable temporary shape at R.T.

 \checkmark

Shape-memory properties

PCL₇₆-4COU-Bzph₀

PCL₇₆-4COU-Bzph₂₅ and PCL₇₆-4COU-Bzph₅₀

Excellent fixity and recovery for each cycle

NO creep from cycle to cycle

Adjustment of the mechanical properties by controlling the irradiation time

Remote control of the cross-linking density => fine tuning of the mechanical properties of the network In presence of benzophenone, 5min. of irradiation leads already to SMP

- Regeneration of 50% of the coumarin groups under irradiation at 256 nm (60 min)
- No influence of the benzophenone on the cleavage rate of the dimer

Quantitative conversion of the coumarin groups under a second irradiation at 365 nm
T. Defize, J.-M. Thomassin, H. Ottevaere, C. Malherbe, G. Eppe, R. Jellali, M. Alexandre, C. Jérôme, R. Riva *Macromolecules*. 2018, under review. 42

Reprocessing experiment

The dimerization of coumarin and the cleavage of coumarin dimers allow the shape-memory material to be reprocessed

Conclusions

	Stability of the precursor(s)	Crosslinking rate	Control on the crosslinking process	Shape- memory properties	Reprocessing
Furan/maleimide	\odot	8	e	(C
TAD/indole	8	\odot	8	\odot	8
Coumarin	\odot	٢	٢	٢	(

Applications of cross-linked polymers

Acknowlegdments

Dr. Thomas DEFIZE Dr. Jean-Michel Thomassin Dr. Raphaël Riva

Pr B. Gilbert, Dr. C. Malherbe

Pr. F. Du Prez, N. Van Herck

Pr. P. Dubois, Dr. J.-M. Raquez

Pr. H. Ottevaere

Acknowlegdments

Fundings:

Thank you for your attention