Measuring & Modeling Musical
Expression

Douglas Eck
University of Montreal

Department of Computer Science
BRAMS Brain Music and Sound

NIPS 2007 Music, Brain and Cognition Workshop

Université r”\

de Montréal International Laboratory for

Brain, Music and Sound Research




Overview

Why care about timing and dynamics in music!?

Previous approaches to measuring timing and
dynamics

Models which predict something about expression
Working without musical scores

A correlation-based approach for constructing
metrical trees
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Note-level measures (MIDI)
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Figure 1. (a) Definition of inter-onset interval (IOI,),
duration (DR,) and key overlap time (KOT,) for TONE,
followed by an overlapping TONE,.;. (b) Definition of
inter-onset interval (IOI,), duration (DR,) and key
detached time (KDT,) for TONE, followed by a non-
overlapping TONE,.,.
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Example:
Chopin Etude
Opus 10 No 3







Example:
Chopin Etude
Opus 10 No 3

Deadpan
(no expressive timing or dynamics)

Human performance
(Recorded on Boesendorfer ZEUS)

Differences limited to:
*timing (onset, length)
evelocity (seen as red)
epedaling (blue shading)

40
Time (seconds)




What can we measure?

® Repp (1989) measured note |IOls in |9 famous recordings of a
Beethoven minuet (Sonata op 31 no 3)

MINUET

J

%$¥J¥v v b]bixv

& 7 8 9 1@ 11 12 13 14 15 16
BAR NO.

Grand average timing patterns of performances with repeats plotted separately.

(From B. Repp “Patterns of expressive timing in performances of a Beethoven

minuet by nineteen famous pianists’, | 990)
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What can we measure?

PCA analysis yields 2 major  oa /\
_ /\\_///_\/\/\/\

components

[N o~

®  Phrase final lengthening
° Phrase internal variation

Simply taking mean |Ols yields can SR RN I AR ETIwtaTETTY
yield pleasing performance BAR ND.

Reconstructing using principal
component(s) can yield pleasing

performance ! \/ \/ \/ \/ \/ \/ v ] \/ \/\/
Concluded that timing underlies | \/ \/
musical structure

Adapted from Repp (1990)

1 2 3 4 S5 6 7 8 9 18 11 12 13 14 15 16
- ~ BAR NO. -
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Timing versus expressive dynamics

Repp (1997; experiment 2): generated MIDI from audio for |5 famous
performances of Chopin’s op. |0 No 3; Added 9 graduate student

performances
® Retained only timing (no expressive dynamics)

® Judges ranked the average timing profile of the expert pianists (EA)
highest, followed by EI I, S1, S3,S59, 52, and SA.

® Conclusions:
EA, SA sound better than average but “lack individuality” (Repp)

Something is lost in discarding non-temporal expressive dynamics.
Timing and expressive dynamics may be inter-dependent
However, interesting that EA, SA sound good at all
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KTH Model

Johan Sundberg, Anders Friberg, many others
Models performance of Western music

Rule-based system built using
® analysis-by-synthesis: assess impact of individual rules by listening
® analysis-by-measurement: fit rules to performance data

Incorporates wide range of music perception research (e.g.
meter perception, pitch perception, motor control
constraints)
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Table 1.

An overview of the rule system

Phrasing

Phrase arch

Final ritardando

High loud
Micro-level timing
Duration contrast
Faster uphill
Metrical patterns and grooves
Double duration
Inégales
Articulation
Punctuation

Score legato/staccato
Repetition articulation
Overall articulation
Tonal tension
Melodic charge
Harmonic charge
Chromatic charge
Intonation

High sharp

Melodic intonation
Harmonic intonation
Mixed intonation
Ensemble timing
Melodic sync
Ensemble swing
Performance noise

Noise control

Create arch-like tempo and sound level changes over phrases
Apply a ritardando in the end of the piece

Increase sound level in proportion to pitch height

Shorten relatively short notes and lengthen relatively long notes

Increase tempo in rising pitch sequences

Decrease duration ratio for two notes with a nominal value of 2:1

Introduce long-short patterns for equal note values (swing)

Find short melodic fragments and mark them with a final micropause
Articulate legato/staccato when marked in the score

Add articulation for repeated notes.

Add articulation for all notes except very short ones

Emphasize the melodic tension of notes relatively the current chord
Emphasize the harmonic tension of chords relatively the key

Emphasize regions of small pitch changes

Stretch all intervals in proportion to size
Intonate according to melodic context
Intonate according to harmonic context

Intonate using a combination of melodic and harmonic intonation

Synchronize using a new voice containing all relevant onsets

Introduce metrical timing patterns for the instruments in a jazz ensemble

Simulate inaccuracies in motor

From:A. Friberg, R. Bresin & J.
Sundberg (2006). Overview of the
KTH rule system for musical

performance. Advances in Cognitive
Psychology, 2(2-3):145-161.
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Figure 2. :
Overview of the KTH

The resulting I0I deviations by applying Phrase arch, Duration contrast, Melodic charge, and Punctuation to the Swedish nursery tune rule system for musical

“"Ekorr’'n satt i granen”. All rules were applied with the rule quantity k=1 except the Melodic charge rule that was applied with k=2. performance. Advances in

Cognitive Psychology, 2(2-3):
145-161.




Widmer et al. performance model

Automatic deduction of rules for music performance

Rich feature set (29 attributes including local melodic contour,
scale degree, duration, etc)

Performance is matched to score (metrical position).

PLCG: Partition Learn Cluster Generalize (Widmer, 2003)

® Discovery of simple partial rules-based models
® |Inspired by ensemble learning

PLCG compares favorably to rule learning algorithm RIPPER

Rules learned by PLCG similar to some KTH rules (Widmer
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RULE TL2:

abstract duration context = equal-longer
& metr strength < 1

= ritardando

“Given two notes of equal duration followed by a longer note, lengthen the note (i.e.,
play it more slowly) that precedes the final, longer one, if this note is in a metrically
weak position (‘metrical strength’ < 1).”

Learned rules
Pianist ==-=-—
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From: G.Widmer (2003).
Discovering simple rules in
complex data: A meta-

Fig. 5. Mozart Sonata K.331, 1st movement, 1st part, as played by pianist and learner. The curve plots the relative learning algorithm and some

tempo at each note—notes above the 1.0 line are shortened relative to the tempo of the piece, notes below 1.0 surprising musical

are lengthened. A perfectly regular performance with no timing deviations would correspond to a straight line at discoveries. Artificial
y=1.0 Intelligence 146:129-148.
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Music Plus One (C. Raphael)

Ta.Sk I . Listen Spectrogram ﬂute.way‘ __

R e . e e e S
. ’ 12

Inputs:
® sampled acoustic signal
® musical score = =
Output: | T | oo |

® Time at which notes occur ts T t‘7 ts

Task 2 : Play
Inputs:

T\
-

® output from Listen module

. Accompaniment
musical score 54

o
® rehearsal data from musician _ | i
o t

o
4 ts

performances of accompaniment t3

Output:

® Music aCCOmPaniment in real time Text and graphics on following pages from slide
presentation by Chris Raphael. Thanks Chris!
Université ﬂq\
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Five performances of same musical phrase

Intuition: there are regularities to be learned

measures




Graphical model for “Play” component

th = time 1n secs of nth note
sn = rate (secs/meas) at nth note

tn+1\ ([ 1 length, tn N
Sme1) 0 1 Sn Listen and Accomp modeled

as noisy observations of true
note time

Listen

Update

Composite

Accomp
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Inference and generation in “Play” component

Inference: Model trained using
EM, first on accompaniment
data then solo data.

Listen

Update

Composite

Accomp

Real time accompaniment:
Each time new info observed
recompute marginal for next
accomp. note and schedule.

Listen
Update

Composite

Accomp
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Yesterday’s talk so I'll keep it short...

KCCA (Dorard, Hardoon & Shawe-Taylor)
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® Want to fit specific performer style Figure 3 Firt wo bars of Eude 3 Opi
(unlike, e.g., Widmer et.al.) 10ty Chopin

® Correlate musical score to performance Beat Melody Chord

2 E3 [E2 B2 G#3 B3 EA]
® Score features: melody and chords 3 D#s B2BAGHS DY

projected into vector using Paiement |
Figure 4: Feature representation of

Et.al . the score in Figure 3
—

h 4

"CCDDEFFGGAAB
g # # # #
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Yesterday’s talk so I'll keep it short...

KCCA (Dorard, Hardoon & Shawe-Taylor)

Chopin E major Etude: Pianist 18 (bar level)

Audio performance features:
instantaneous tempo and loudness of
onsets (“worm”of Dixon et al)

27 30 33
Tempo (bpm)

Use KC CA (a I(e rnel ve rSion Of Figure 1: Smoothed graphical view of

a worm

Canonical Correlation Analysis) to Beai Tompo — Toudess
. (bpm) (sone)
correlate these two views.

22.3881 3.2264
22.3881 2.3668
21.4286 6.7167
19.0597 4.2105
28.1426 8.3444
30.0000 10.2206
26.7857 14.1084
25.8621 14.0037
35.7143 7.8521

Required kernel for score features and
kernel for audio (worm) features

HEN-ECCIS Yo NEW RN NSOC S

Cu rre ntly on Iy Prel i minary resu Its. Figure 2: Machine representation of a

worm
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Summary

® |mportant information in timing and dynamics.
® Artificial expressive performances can be pleasing

® We saw four approaches to automatic performance:
“classic Al” rules-based system (KTH)
rules induction (Widmer)
generative model (Raphael)
kernel approach (Dorard et.al.)

But: these all make use of a musical score.
(Some less than others....)
Can we get away from that!
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Challenges in score-free expressive performance

Local information is not sufficient
for modeling music expression

Score contains long-timescale
information about phrasing and
metrical organization

Automatic methods exist for
estimating deep hierarchical
structure in music from a score

Without score, this task is more |
difﬁCUIt Fise———— ‘- : Graphic from

AITEC
Department
of Future
Technologies
(ftp.icot.or.jp)
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Focus: musical meter

Meter provides long-timescale
framework for music

Meter and performance are
closely related

Example: performance errors

correlate with meter.
Palmer & Pfordresher (2003)

Rest of the talk: use meter as
proxy for musical score to gain
access to nonlocal information

= 4/4 performances
® Model

Mean Error Proportions

|L| —® [[@]
1 2 3 4 5 6 7 8
Absolute Distance

Slov

Event
Strength

||| If| | | |||

> -F- ]
ﬁaﬁ'ﬁﬁ—'ﬁﬁ

Ty
=

Université rpn
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Audio pre-processing (not necessary for MIDI)

ChaChaCha from ISMIR 2004

Waveform at original
sampling rate

Log spectrogram
with ~10ms frames

Sum of gradient
yields ~100hz signal

10 15 20
time (seconds)
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Computing Autocorrelation

|00Hz signal

hll\ MM

15

| IMLLI Mllu,3

25

Autocorrelation

Lo A0
b N Il| Il' ll| / |
I"..J,v"l lI'-,__,,'l ) ‘. bk A

|', ."'I Il’l._ ;f Il.,' ,.-‘| l'.. !l

YR
L \S

0 1000 2000 '

lag (msec)

ﬁ Sl L D L,
LWL |

lllhlln’n I;I,f| hn\l lMlil.] ”I;*illﬂl]l:l..l I'Mh[.l Signal shifted

by k

Autocorrelation value a(k)
for a single lag k is the sum
of dot-product between

signal and signal shifted k
points.

a(k) = Ngl x(@D)x(i-k)
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Preserving phase (example: lag 380)

il )
Mﬂhm.muhm ].I.‘w Eiygrllal shifted

- J_MMLLM Ldioion

N N N N

points from || points from points from
0 to 379 380 to 759 k * lag to (k+1)* lag -1

Store autocorrelation
information for a single lag
K in a vector of length K.

= Phase of autocorrelation

I : . energy is preserved
lag-380 autocorrelation energy stored mod-380 : spatially in the vector.
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The Autocorrelation Phase Matrix (APM)

TR NN

5000

® The autocorrelation phase
matrix (APM) has a row 4500 |

for each lag. ek

Rows are ordered by lag. 3500 |

, , »'3000 |
Phase is stored in S

milliseconds. Thus the 2500
matrix is triangular (long 2000 |
lags take more time before

1500
they cycle around).

1000 |

500 r

A A A A A

1000 2000 3000 4000 5000
phase (ms)
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The Autocorrelation Phase Matrix (APM)

The APM provides a local
representation for tempo
variations and rhythmical
variations

Small horizontal changes on APM
reach near-neighbors in frequency

Small vertical changes on APM
reach near-neighbors in phase

1000 2000 3000 4000 5000
phase (ms)

Université rpn
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Metrical Interpretation

A metrical tree can be
specified as a set of

metrically related points
on the APM

Search is thus done in
space of meter and tempo

1000 2000 3000 4000 5000
phase (ms)

Université rpn
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Finding beat and meter

Search is done through the space of metrical trees using Viterbi alignment.

Resulting metrical tree “contracts” and “expands” with changing tempo.

Details in Eck (2007).

Uné‘éeﬁggtih Douglas Eck douglas.eck@umontreal.ca / NIPS 2007 MBC Workshop 30



mailto:douglas.eck@gmail.com
mailto:douglas.eck@gmail.com

Expressive performance dynamics

Use the APM to identify meter as it
changes in time.

Measure expressive dynamics and
timing with respect to the APM

Measurements made in milliseconds
. . . 1000 2000 3000 4000 5000
(time) but stored in radians (phase) phase (ms)

. . Integrate over time the
Allows us to generalize to new pieces winning metrical tree.

of music with different tempi and
meter

0.4 0.6
Morph file chopin deadpan.mid beat profile tempo=1770
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Modest example

Morph the Chopin etude to
sound a bit like me playing
Heart and Soul after a couple
of beers.

Use hill climbing to find nearest
maxima in target vector.

Provides rudimentary measure-
level perturbation only
(preliminary and unrealistic).

Timing, velocity, chord spread.

0.4 0.6
Morph file chopin deadpan.mid beat profile tempo=1770
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Collecting performance stats for the piano

90

80

For piano, identify hands using
clustering

Easier than finding leading
melodic voice. No melodic
analysis required

NOtes
=

Once hands are identified,
identify chords

Measure duration, velocity,
legato,chord spread

Time (seconds)
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Hand-specific statistics for piano

new_heart.mid
20

| |
500 1000 1500 500 1000 1500 500 1000 1500
msec (full file) msec (left hand) msec (right hand)

® Hands are somewhat rhythmically independent

® Measurements with respect to single hand are
different than those for both hands (here: duration)
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Conclusions

Expressive timing and dynamics are important part of music
Short overview of approaches

Discussed task of score-free expressive performance
Suggest using metrical structure as proxy for musical score

Related this to APM model

Future work:

® There remains more future work than completed work!
® So this list would be too long....
® Thank you for your patience.
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Following are deleted slides
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Example:
Chopin Etude
Opus 10 No 3

Deadpan
(no expressive timing or dynamics)

Human performance
(Recorded on Boesendorfer ZEUS)

Differences limited to:
etiming (onset, length)
evelocity (seen as red)
epedaling (blue shading)

Flat timing
Flat velocity

Expressive timing Expressive timing
Flat velocity Expressive velocity

Time (seconds)
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Focus: musical meter

Meter is the measurement of a musical line into
measures of stressed and unstressed "beats",
indicated in Western music notation by the time
sighature.

Many methods for (imperfectly) estimating metrical
structure in audio and MIDI
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