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• Graduate school
• ~250 PhD students in 10 PhD courses
• ~ 90 PIs, ~200 non-permanent scientific 

staff
• Mathematics, numerical simulations, 

statistical phys., cognitive neurosciences, 
condensed matter phys., physical 
chemistry, astrophysics, cosmology, data 
science.





Complex data landscapes are everywhere

Microbiota of the honey 

bee (P. Engel et al, PNAS, 109, 
11002 (2012)

The configuration space of a 60-

residue polypeptide explored by 

atomistic simulations (P. Cossio et al, 
Plos Comp. Biol. (2011)

Database landscape map:
https://451research.com/state-of-the-
database-landscape



How can I get a low-dimensional map from my data?



How can I get a low-dimensional map from my data?
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Projection

PCA, TICA,

CVs, ISOMAP…

𝐹𝑖 = −𝑘𝐵𝑇 log 𝑝𝑖

Histogram

Find the critical 

points

Assign configurations 

to  states

Knowledge



PROBLEMS
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Projection

Choose the collective 

variables…

𝐹𝑖 = −𝑘𝐵𝑇 log 𝑝𝑖

Histogram

Find the critical 

points

Assign configurations 

to  states

Knowledge

• Which dimension?

• Which variables?

• Impossible in high

dimension

• Binning parameters

• Far from trivial in high

dimension

• Assignation is method

dependent
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Map it to d=1 by 
Principal Component 
Analysis (PCA)

A critical difficulty: projection
(without choosing the collective variables)



What happens if the manifold 
containing the data is curved?

Here PCA cannot work
Non-linear projection:
• Kernel PCA [1]
• Diffusion map [2]
• Local Linear Embedding [3]
• Isomap [4]
• Sketch map [5]

[1] Nat. Biotechnol. 2008, 26, 303– 304.

[2] Proc. Natl. Acad. Sci. USA 2005, 102, 7426–7431. 
[3] Science 2000, 290, 2323–2326. 
[4] Science 2000, 290, 2319–2323.
[5] Proc. Natl. Acad. Sci. USA 2011, 108, 16916–16921 



What now? 
Approximately 
one dimensional, 
but can we map 
this to a line?



Real-world data:

Curved and twisted 
hypersurfaces

Complex topologies (no 
hyperplanes)

Local dimension of the 
embedding manifold of 
~10 or more

Mapping to d=2 or 3 is normally meaningless



Folding of a 32-residue 
protein (Villin headpiece)

• 0.4 ms of molecular dynamics

• ~32000 configurations

• ~1000 atoms+ solvent

• Project to two dimensions by 
ISOMAP [Science 2000, 290, 2319–
2323]
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… still, let’s do it!!!!!!!!!!

Mapping to d=2 or 3 is normally meaningless
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It is not a proper map: it conveys at the same time information 

about islands positions and sea swell directions

Learn from Marshallese sailors



Our perspective on data landscapes

• Data are generated from a 
high-dimensional probability 
distribution.

We do not attempt projecting the data on a low-dimensional 
manifold (like in PCA,  etc)

• We build a topography of the landscape, namely a list 
of probability peaks, and of the saddle points 
connecting them

A compact representation of this topography is possible even if the 
data are embedded in a high-dimensional manifold



The topography of a data landscape
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a list of properties of all the probability peaks, and of 
the saddle points connecting them



Building a topography of a data landscape

• We estimate the probability density 
at each data point. [JCTC in press (2018)]

• We then find the probability maxima by Density Peak 
clustering [Science, 1492, vol 322 (2014)]

• We compute the probability at the boundary
between each pair of maxima.

• Graphical representation of 
the topography

• We first compute the dimension of the manifold 
containing the data [Sci Rep.  12140, vol 7 (2017)]
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Estimate the intrinsic dimension of the data set
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• ID: Minimum number of parameters required to describe

the data while minimizing the information loss.

• Many methods for estimating it are based on the scaling

of the number of neighbors with the distance [1]

• We developed an estimator based only in the distance

from the two first nearest neighbors (Facco et al, Sci.

Rep. 2017).

𝜇𝑖 =
𝑟𝑖,2
𝑟𝑖,1

𝑛𝑖 𝑟 ≈ 𝜌𝑖𝑟
𝑑

𝑃 𝜇|𝜌 = 𝑃 𝜇 =
𝑑

𝜇1+𝑑 [1] PRL, 50, 346 (1983)

[2] Proc.  Machine Vision Conf., 27.1–27.10 (2003)
[3] Sci Rep. 6, 31377 (2016)

[4] Math. Prob. In Eng. Art. 759567 (2015)

[5] Patt. Recog. 42, 780 (2009) 

THE ESTIMATE OF d IS DECOUPLED 

FROM THE ESTIMATE OF r



D=2

d=1

The intrinsic dimension:

“soft” constraints: the 
system practically can 
move in only a few 
directions 

a matter of scale

Example: a sample of 

configurations in a MD run of a 

biomolecule with N atoms. No 

constraints on the bonds.

An exact estimator 

should give d=3N if 

the sample is large 

enough

This estimate is irrelevant!

A good estimate of the ID 

should provide the number of 

directions in which the system 

can move significantly



Building a topography of a data landscape

• We estimate the probability density 
at each data point. [JCTC in press (2018)]

• We then find the probability maxima by Density Peak 
clustering [Science, 1492, vol 322 (2014)]

• We compute the probability at the boundary
between each pair of maxima.

• Graphical representation of 
the topography

• We first compute the dimension of the manifold 
containing the data [Sci Rep.  12140, vol 7 (2017)]
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The k-nearest neighbor estimator

r13

density: r≈13/pr13
2

error≈
r

13

k=13



k=20 k=375
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We need a different k for each point

The key problem: highly non-uniform densities

density: r=k/prk
2



Adaptive density estimate
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Density ∝
𝑘

𝑉𝑘

Error ∝
1

𝑘

ONLY VALID AT CONSTANT DENSITY

• Small k: Big variance 
• Big k: Big bias (Error due to 

variations in the density )

Find a compromise

[1] Silverman, B. W. Density estimation 

for statistics and data analysis; 

Chapman and Hall, 1986 
[2] J. Am. Stat. Assoc. 1996, 91, 401–407. 
[3] Ann. Statist. 1997, 25, 929–947. 
[4] Ann. Inst. H. Poincar Probab. Statist. 
2013, 49, 900–914. 



Obtaining a position dependent k
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Starting with a very small k: 

Should we include the next neighbor in the density estimate?



Two different hypothesis
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The two points have 

the same density 
The two points have the 

different densities 
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DL
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k=270

k=13



Benchmarks on realistic densities

exp(− F )

Fi

b

exp(− F )

Fi

b

Analytical P 
in d between 
2 and 7

exp(− F )

Fi

b

Sample 
10000 points

exp(− F )

Fi

b

Embed on a 
curved 
hypersurface

Embed on 20 
dimensional  
space; rotate.

exp(− F )

Fi

b

Amyloid-b
d=2

GB3
d=4

hIAPP
d=7

• We correctly estimate 
the density on the 
manifold containing 
the data

• We correctly predict 
the error



Building a topography of a data landscape

• We estimate the probability density 
at each data point. [JCTC in press (2018)]

• We then find the probability maxima by Density Peak 
clustering [Science, 1492, vol 322 (2014)]

• We compute the probability at the boundary
between each pair of maxima.

• Graphical representation of 
the topography

• We first compute the dimension of the manifold 
containing the data [Sci Rep.  12140, vol 7 (2017)]



1) Compute the local density 
around each point

r(1)=7
r(8)=5
r(10)=4

2) For each point compute the 
distance with all the points 
with higher density. Take the 
minimum value.

Finding the density peaks
The idea: the point at the top of a density peak is far from 
any other point with higher density



3) For each point, plot the minimum distance  as a 
function of the density.

Finding the density peaks
The idea: the point at the top of a density peak is far from 
any other point with higher density



4) the “outliers”  in this graph are the cluster centers

SCIENCE, 1492, vol 322 (2014) 

Finding the density peaks
The idea: the point at the top of a density peak is far from 
any other point with higher density



4) ) the “outliers”  in this graph are the cluster centers
5) Assign each point to the same cluster of its nearest 
neighbor of higher density

SCIENCE, 1492, vol 322 (2014) 

Finding the density peaks



No optimization required…

ρi i

ρi =
j

χ (di j − dc)

χ (x) = 1 x < 0 χ (x) = 0 dc

ρi dc i

ρi =
j

1

dαi j

ρi

dc α

δi

i

δi = min
j :ρj > ρi

(di j )

{ j : ρj > ρi }

δi = maxj (di j ) δi

i

δ

i ρi

ρj > ρi

di j

δi

i

ρj > ρi δi

(distance of the closest data point of higher density)

Plot d as a function of r

Cluster centers: the points 
whose di is larger than the 
radius  of the neighborhood  
used to estimate its density

UNSUPERVISED: the density 
estimate is non-parametric. 
The number of clusters is 
determined automatically



The clustering approach at work



The clustering approach at work



The clustering approach at work



The clustering approach at work

• The approach allows detecting non-spherical clusters

• It allows detecting clusters with different densities



Building a topography of a data landscape

• We estimate the probability density 
at each data point. [JCTC in press (2018)]

• We then find the probability maxima by Density Peak 
clustering [Science, 1492, vol 322 (2014)]

• We compute the probability at the boundary
between each pair of maxima.

• Graphical representation of 
the topography

• We first compute the dimension of the manifold 
containing the data [Sci Rep.  12140, vol 7 (2017)]



Clustering a MD trajectory

3000 ns of molecular dynamics of  3-Ala in water 
solution, at 300 K

Building a MARCKOV STATE MODEL
• Find the microstates (set of very similar 

configurations). Typically 1000
• Compute the transition probability between 

the microstates at a time lag t: P(a,t|b)
• Diagonalize P. Its eigenvalues are the 

relaxation times of the system. The sign of 
eigenvector allow distinguishing the 
conformers



Clustering a MD trajectory

3000 ns of molecular dynamics of  3-Ala in water 
solution, at 300 K

7 slow relaxation 
times



Clustering a MD trajectory



Clustering a MD trajectory

Dihedral 
distance

RMSD



Clustering a MD trajectory

Dihedral 
distance

RMSD

SCIENCE, 1492, vol 322 (2014) 



Clustering a MD trajectory

Density-Peak clusters  ≈   Inherent states of a 
Markov State Model



Density Peak clustering + MSM
(analysis from G. Pinamonti and G. Bussi)

Coordinates: TICA-projected with 
kinetic map rescaling (F. Noe and 
C. Clementi). Core set approach.



Density Peak clustering + MSM
(analysis from G. Pinamonti and G. Bussi)

Coordinates: TICA-projected with 
kinetic map rescaling (F. Noe and 
C. Clementi) Core set approach



Density Peak clustering + MSM
(analysis from G. Pinamonti and G. Bussi)

Coordinates: TICA-projected with 
kinetic map rescaling (F. Noe and 
C. Clementi). Core set approach.



Folding of a 32-residue 
protein (Villin headpiece)

• 0.4 ms of molecular 
dynamics

• ~32000 configurations

• ~1000 atoms+ solvent

• Project to two dimensions by 
ISOMAP [Science 2000, 290, 2319–
2323]

49

e
x
p
(−

F
)

F
i

b



50

Folding of a 32-residue 
protein (Villin headpiece)

• 0.4 ms of molecular 
dynamics

• ~32000 configurations

• ~1000 atoms+ solvent

• Intrinsic dimension d~12

• ~5 statistically meaningful 
probability peaks (clusters)

• The most populated cluster 
is the folded state

• Two unfolded states

Figure 3: Upper sect ion: Diagrams present ing the dihedral angles values and their variance

for the core set structures of each cluster, next to the diagrams the VMD structures of the

clusters centers are shown. The arrows link the clusters involved in the relevant t ransit ions,

for each transit ion a color code is assigned, the relaxat ion t imes(⌧1,⌧2,⌧3,⌧4) are writ ten

over the arrows. Lower left panel: relaxat ion t imes obtained from the transit ion matrix, as a

funct ion of the t imelag. Lower right panel: logarithm of thenegat ivecumulat ivedist ribut ion

(ie log(1− cumulative)) of the permanence t imes(∆ t) in each of the 5 clusters

11
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Folding of a 32-residue 
protein (Villin headpiece)

• 0.4 ms of molecular 
dynamics

• ~32000 configurations

• ~1000 atoms+ solvent

• Intrinsic dimension d~12

• ~5 statistically meaningful 
probability peaks (clusters)

• Clean kinetics: exponential 
distribution of residence 
time. 

Figure 3: Upper sect ion: Diagrams present ing the dihedral angles values and their variance

for the core set structures of each cluster, next to the diagrams the VMD structures of the

clusters centers are shown. The arrows link the clusters involved in the relevant t ransit ions,

for each transit ion a color code is assigned, the relaxat ion t imes(⌧1,⌧2,⌧3,⌧4) are writ ten

over the arrows. Lower left panel: relaxat ion t imes obtained from the transit ion matrix, as a

funct ion of thet ime lag. Lower right panel: logarithm of thenegat ivecumulat ivedist ribut ion

(ie log(1− cumulative)) of the permanence t imes(∆ t) in each of the 5 clusters

11
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clusters centers are shown. The arrows link the clusters involved in the relevant t ransit ions,

for each transit ion a color code is assigned, the relaxat ion t imes(⌧1,⌧2,⌧3,⌧4) are writ ten

over the arrows. Lower left panel: relaxat ion t imes obtained from the transit ion matrix, as a

funct ion of thet ime lag. Lower right panel: logarithm of thenegat ivecumulat ivedist ribut ion

(ie log(1− cumulative)) of the permanence t imes(∆ t) in each of the 5 clusters
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The topography of a data landscape
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a list of properties of all the probability peaks, and of 
the saddle points connecting them



•Benchmark: PFAM. A widely used database 

of curated protein families, containing over 

14800 families

Clan

family

Protein 
domains

Families that are supposed to share 

the same evolutionary history are 

grouped into clans

A family is defined by a profile hidden Markov model (HMM)

Profile HMMs are built from an aligned set of curator-defined 

family-representative sequences

A high-quality seed for alignment is essential. 

Automatic recognition of protein families

A lot of 
handwork



Automatic recognition of protein families

Distance between two sequences: Hamming distance after pairwise 

alignment

 Triangular inequality satisfied

We analyze the PUA clan 

(~20000 sequences, 8 

families)

We find ~40 density peaks
• Clusters are pure (contain 

only proteins from the same 

family)

• Clusters belonging to the 

same family are linked 

together 



• However, families show a statistically 
robust inner structure : 
ARCHITECTURES!!!!!

Automatic recognition of protein families

Comparison between the topography and the PFAM classifiation

• A automatic and parameter-free 
approach for classifying protein 
sequences in families. 

• Results are consistent with Pfam
classification on the coarse grain 
scale
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Analysis of a fMRI experiment (D. Amati, M. Maieron, F. Pizzagalli)

Outcome of a fMRI experiment: signal intensity for ~100,000 
voxels covering densely the brain. The signal is measured every 
~2 seconds for a total time of a few minutes. 

General idea: if the subject is performing a task, the voxels in 
the brain region involved in this task must have a similar v(t).

Intensity

Voxel index: i=1,2,…,# of voxels

We look for large and connected regions with voxels with a 
similar v(t), namely with a similar time evolution.

Similarity measure:



Analysis of a fMRI experiment (D. Amati, M. Maieron, F. Pizzagalli)

The subject was scanned while moving the right or left hand. They saw the words 
"move left", "move right" or "stop" in a random fashion through the glasses.
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102 scans3T Achieva Philips 
T2* BOLD–sensitive gradient-recalled EPI sequence 
standard Head Coil 8 channels 
TR/TE = 2500/32 ms
matrix 128X128 , in-plane resolution 1.8 X 1.8 
#slices 34, thickness = 3mm, no gap 



The clustering approach at work:
Analysis of a fMRI experiment (D. Amati, M. Maieron, F. Pizzagalli)

Time window 24-36: decision graph Time window 24-36: clusters

Overlap between the cluster 
of all the time windows



Conclusions
An unsupervised method able to map the topography of a multidimensional 
probability distributions, providing a measure of the position and height of 
density peaks and of the saddle points between them. 
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Giulia Sormani
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Thank-you:
Daniele Amati, Erio Tosatti,
Francesca Rizzato, Marco 
Borrelli

Key ingredients:

• A density estimator, capable of providing also 
an estimate of  the error [JCTC (2018)]

• A procedure for finding automatically the 
probability peaks, regardless of their shape and 
of the dimensionality [SCIENCE, 1492, vol 322 (2014)]

• A robust algorithm for determining the intrinsic dimension of 
the manifold containing the data  [Sci. Rep. (2017)



Finding the saddle points

• A point i, belonging to cluster c, is assumed to be at the border 

between cluster c and c’′ if its closest point j belonging to c’′ is 

within a distance dCˆi and if i is the closest point to j among those 

belonging to c. 

ij

i j



Finding the saddle points

• A point i, belonging to cluster c, is assumed to be at the border 

between cluster c and c’′ if its closest point j belonging to c’′ is 

within a distance dCˆi and if i is the closest point to j among those 

belonging to c. • Saddle point: the point with the highest density among the border 

points between cluster c and c’′



A scale-dependent estimation of the ID:

We randomly extract subsamples in the dataset. The 

smaller its size, the larger the typical nearest neighbor 
distance

We  compute the ID as a function of the size of the subsample

Example: 2d gaussian wrapped around a swissroll and embedded 
in a 30 dimensional space+ 30 dimensional noise.

A plateau in the plot of d vs N indicates 
the number of “soft” directions


