Exploring the Invisible and Hot Universe:

A multi-wavelength view of galaxies and galaxy clusters

Spiral galaxy
Elliptical galaxy
Cluster of galaxies
Christine Jones Harvard-Smithsonian Center for Astrophysics
Cambridge, MA USA

Distance from Earth to Sun (AU) is about 8 light minutes

Spanning the Spectrum: Multiwavelength Astronomy

Our Sun

Radio

X-ray

Although X-rays and Gamma rays are very energetic, they are absorbed by the Earth's atmosphere. Need to go into space.

primary gases that are responsible the atmospheric absorption of energy are v/ater vapor, carbon dioxide, and ozone.

Early Evidence for Dark Matter

First suggested by Fritz Zwicky - 1933
Galaxies in the Coma cluster moving too FAST Not enough visible matter to hold galaxies together Cluster galaxies should just fly apart UNLESS the cluster is filled with 10 times more matter than seen in visible light!

Dark Matter In Galaxies

Vera Rubin showed that in spiral galaxies there is not enough luminous matter to hold the stars together. Instead about 10 times more dark matter, than luminous matter is needed to hold the stars together.

M51

The Whirlpool A typical spiral galaxy

Dark Matter in Clusters of Galaxies Could the missing matter just be hard to see?

at least some matter is "hard" to detect

BUT THERE'S MORE THAN MEETS THE EYE

Clusters of galaxies

- Massive/gravitationally bound
- Galaxies - 2-5 \% of total mass
- X-ray observations (first from Uhuru) found diffuse hot gas ($10^{8} \mathrm{~K}$)
- Hot X-ray emitting gas $\sim 15 \%$ of the total mass - most "normal" matter is hot gas.

Chandra X-ray image on optical field

- Most of the mass in clusters of galaxies is dark matter

X-ray Astronomy - from Sco X-1 to Chandra

-1962 - Detection of first non-solar X-ray source Sco X-1
-First imaging solar X-ray telescope (Giacconi 1963)

- About the same diameter and length as Galileo's 1610 telescope
- 380 years later, Hubble is 10^{8} times more sensitive
- In 37 years X -ray astronomy achieved comparable increase in sensitivity with launch of Chandra (launched in 1999)
-Largest/heaviest ($22,000 \mathrm{~kg}$) payload launched by shuttle (Chandra+IUS)
- Orbit goes $1 / 3$ of distance to the moon (64 hour orbit)
-Power 2300 watts $=1$ (good) hair dryer

Chandra X-ray Telescope

- Focus with two grazing incidence reflections (paraboloid/hyperboloid)
- almost 20 sq mof area
- Mirrors are very smooth. If mirror were enlarged to size of Spain, largest "bump" would be $<1 \mathrm{~cm}$ high
- Detect individual photons (time, position, energy)
- Chandra designed for 5 years - almost 20 years (July 23, 1999 launch)
- planning for another 10 years is underway!!!

The Bullet Cluster - X-ray and visible light

Dark Matter in Motion - The Bullet Cluster

-Visible image
-Galaxies, but nothing unusual

- Chandra X-ray image - shows the action
-Spectacular Merger at supersonic velocity

Hot gas moving through the dark matter at supersonic velocity of $3000 \mathrm{~km} / \mathrm{sec}$ forms a Mach cone

Need to measure where the dark matter is

Background galaxies magnified and distorted by foreground cluster give direct measure of cluster mass

Gravitational Lensing

From the MEFLIN hemepage at shttp:IWww.|bemar.ac.vilmerims

Add a black hole with the mass of Saturn over the middle of the Washington Mall, and view the Smithsonian Castle through the resulting gravitational lens.

Through a gravitational lens

Need to measure where the dark matter is

Background galaxies magnified and distorted by foreground cluster give direct measure of cluster mass

The Bullet Cluster

The Bullet Cluster

What are clusters of galaxies made of?

1) Galaxies
2) Hot gas $10^{8} \mathrm{~K}$
3) Dark Matter

MACS0717 - one of the richest, most massive clusters in the Universe.

Visible light image of HST frontier fields galaxy cluster MACS0717

Multi-wavelength observations are critical to understand cluster
 merging

Multiwavelength view of MACS0717

X-ray (hot gas, blue), radio (red) and visible light of rich cluster of galaxies.

Major merger of smaller clusters of galaxies.

Nobody knows what Dark Matter is.

-"Cold" -it falls into galaxies and into clusters
-Best guess - exotic particles from the very early Universe
-WIMPS - weakly interacting massive particles
-Examples - Axions, neutralinos
-Active searches to find this missing component of the Universe

Supermassive black holes lie at the centers of galaxies

The more massive the dark matter halo, the more massive the black hole

Our Milky Way is a spiral galaxy with a relatively small central bulge, and a relatively small black hole (4 x $10^{6} \mathrm{M}_{\text {sun }}$)

Motions of stars around the Black Hole in our Galactic Center (Ghez+ 2008)

Centaurus A - the Nearest Radio Galaxy

Merger with gas rich galaxy

The X-ray Jet in Centaurus A

Chandra Observation

Centaurus A in X-rays - Bubbles and Jets

Bubble diameter 3 kpc
-Counter-jet
-Southern lobe - sharp, smooth

Centaurus A

Visible light

Chandra X-ray

Visible + VLA Radio
"Bubbles" are not empty,
but are filled with energetic particles and magnetic fields

Clusters of Galaxies - Virgo Cluster - Optical

Central galaxy (M87) in Virgo cluster

Virgo Cluster - X-ray/Optical

Central galaxy (M87) in Virgo cluster Distance $=16 \mathrm{Mpc}$
-Extensive gaseous atmosphere $.6 \times 109 \mathrm{M}_{\text {sum }}$ supermassive black hole in M87 -Ideal system to study SMBH/gas interaction

Chandra X-ray emission for M87 on optical field

X-ray Features in the Central Region of M87

- The X-ray jet
- X-ray cavities surrounding the jet and the (unseen) counteriet
- X-ray cavity associated with the 'budding' bubble to the S/SW
- Cavities/bubbles in the eastern arm

Chandra view of M87

"Raw" images
Just select different energy bands
See the over-pressurized regions = shocks

Matched scales

The M87 galaxy - Latest News!

Only resolved black hole image by Event Horizon Telescope (asymmetry from rapidly rotating plasma and relativistic beaming.

M87* April 11, 2017

X-ray (soft) Xray (hard) Optical

ISCO - innermost stable circular obit EHT Paper 1; fig. 3. 2019 ApJ L 875, 1

Fate of Bubble Energy

Rising bubble loses energy to surrounding gas

$$
f=\left(p_{1} / p_{0}\right)^{(\gamma-1) / \gamma}
$$

Generates gas motions in wake Kinetic energy (eventually) converted to thermal energy (via turbulence)

Bubble energy remaining vs. radius

$\Delta E_{g s}=-\Delta E_{\text {Rubble }}=-\Delta \frac{\gamma}{\gamma-1} P V=E_{0}\left\lceil 1-\left(\frac{P}{P_{0}}\right)^{1-1 / \gamma}\right\rceil$

~100 Myr - old (radio) bubbles

~40 Myr - torus \& uplifted arms
to observer
~12 Myr - shock \& initial cavity (still surrounds SMBH)
now - re-inflating cavity

Soft band X-ray

Repetitive Radio Outbursts in M87

$\sim 10^{8} \mathrm{yrs}$

Energy input into the radio halo around M87 on three different time scales

within ~ 40 kpc
total energy ~3 10^{59} ergs
(= Sun's total energy over its lifetime)

Family of early type Galaxies with hot gas Evidence of Supermassive Black Hole Outbursts in Atmospheres

Jones+

NGC4636 Galaxy 1 kpc 10^{56} ergs $10^{42} \mathrm{erg} / \mathrm{s}$

Fabian+

MS0735 Cluster 100 kpc $10^{62} \mathrm{ergs}$
$1046 \mathrm{erg} / \mathrm{s}$

Powerful outflows from the SMBH
Little radiation from black hole - not the familiar "AGN"
Span a wide range of dark matter halo mass
Bubbles are very common across the mass range

Gas Rich Early Type Galaxies

As a class, luminous early type galaxies ($L_{k}>10^{11}$ $L_{\text {sun }}$) have hot corona

- AGN outbursts, typical
- Massive galaxies do NOT have "dry" mergers
- Complementary view
 from optical

Dark Energy - Most of the mass-energy in the Universe

Dark Matter and Dark Energy

Composition of the Universe

Dark Energy 73%

Spectrum-Roentgen-Gamma (eRosita)

Launch

 2019All Sky Survey

Athena X-ray mission - launch 2028

More distant future

Lynx mission concept in a nutsheII

- Armb tious concept for X-ray optics. Mirrors work at grazing incidence, and are tightly packed into a -3 m diameter envelope. New technologies are needed for manufacturing such a minor.
- We currently aim at $-0.5^{\prime \prime}$ angular resolution (hall-power dameter), detailed trades are pending
- Focal length -10m, providing 0.2-10 kev energy band
- A suite of 3 advanced science instruments, with requirements TBD. Instrument Working Croup is in place
- X-ray microcalorimeter anay with -1" pixels
- High-definition X-ray images (si-based active pixes array)
- X-ray gratings with high effic iency and spectral resolving power >-5000

If I had been present at the creation, I would have given some hints for the better arrangement of the Universe.
Alfonso the Wise - king of Castile and León (1252-1284),
patron of the arts and learning

The most incomprehensible thing about the world is that it is comprehensible.

Albert Einstein

THANKS !

