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Cryptography 101

Ingredient #1:
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• From Greek, meaning “secret writing”

• Confidentiality:  encrypt data to hide content

• Include “signature” or “message authentication code”

– Integrity:  Message has not been modified

– Authentication:  Identify source of message

• Modern encryption:

– Algorithm public, key secret and provides security

– Symmetric (shared secret) or asymmetric (public-private key)

plaintext ciphertext plaintext

encryption decryption

What is Cryptography?
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Symmetric Cipher Model
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Symmetric (Secret Key) Crypto

• Sender and recipient share common key

• Provides dual use:

– Confidentiality (encryption) 

– Message authentication + integrity

• 1000x more computationally efficient than asymmetric

• Main challenge:  How to distribute the key?  



Public-Key Cryptography

• Each party has (public key, private key)

• Alice’s public key PK  

– Known by anybody

– Bob uses PK to encrypt messages to Alice

– Bob uses PK to verify signatures from Alice

• Alice’s private/secret key: sk

– Known only by Alice

– Alice uses sk to decrypt ciphertexts sent to her

– Alice uses sk to generate new signatures on messages
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Public-Key Cryptography

• (PK, sk) = generateKey(keysize)

• Encryption API

– ciphertext = encrypt (message, PK)

– message = decrypt (ciphertext, sk)

• Digital signatures API

– Signature = sign (message, sk)

– isValid = verify (signature, message, PK)
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(Simple) RSA Algorithm
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(Simple) RSA Algorithm

• Generating a key:

– Generate composite n = p * q, where p and q are secret primes

– Pick public exponent e

– Solve for secret exponent d in  d⋅e ≡ 1 (mod (p -1) (q – 1))

– Public key = (e, n), private key = d

• Encrypting message m: c = me mod n

• Decrypting ciphertext c: m = cd mod n 

• Security due to cost of factoring large numbers

– For an b-bit value n, finding (p,q) takes

– We choose n to be 2048 or 4096 bits long.
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Cryptographic hash function

Ingredient #2:
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Cryptography Hash Functions I

• Take message m of arbitrary length and produces  

fixed-size (short) number H(m)

• One-way function

– Efficient:  Easy to compute H(m)

– Hiding property: Hard to find an m, given H(m)  

• Assumes “m” has sufficient entropy, not just {“heads”, “tails”}

– Random:  Often assumes for output to “look” random
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Cryptography Hash Functions I
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Cryptography Hash Functions II

• Collisions exist:  | possible inputs | >> | possible outputs |              

… but hard to find

• Collision resistance:

– Find any m != m’ such that    H(m) == H(m’)

– (harder) Given m,  find m’ such that    H(m) == H(m’)

– For 160-bit hash (SHA-1)

• Finding any collision is birthday paradox:  2^{160/2} = 2^80

• Finding specific collision requires 2^160 
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• Can’t store passwords in a file that could be read

– Concerned with insider attacks / break-ins

• Must compare typed passwords to stored passwords

– Does H (input) == H (password) ?

• Memory cheap: build table of all likely password hashes?

– Use “salt” to compute h = H (password || salt)

– Store salt as plaintext in password file, not a secret

– Then check whether  H (input, salt) == h

Example use:  Passwords
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Example use: Hash Pointers

h = H(  )

(data)
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Example Use: Self-certifying names

Fname = H(  )

• P2P file sharing software (e.g., Limewire)

– File named by   Fname = H (data)

– Participants verify that   H (downloaded) == Fname

(data)
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Self-certifying names

• Another example: BitTorrent

– Large file split into smaller chunks (~256KB each)

– Torrent file specifies the name/hash of each chunk

– Participants verify that   H (downloaded) == Cname

– Security relies on getting torrent file from trustworthy source

chunk chunk chunk chunk chunk

Cname = H(  ) H(  )H(  ) H(  ) H(  )



Creates a “tamper-evident” log of data
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Main Example: Hash chains

data

prev: H(  )

data

prev: H(  )

data

prev: H(  )

H(  )



If data changes, all subsequent hash pointers change

Otherwise, found a hash collision! 
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Hash chains

data

prev: H(  )

data

prev: H(  )

data

prev: H(  )

H(  )



• New bitcoins are “created” every ~10 min,                    

owned by “miner” (more on this later)

• Thereafter, just keep record of transfers

– e.g., Alice pays Bob 1 BTC

• Basic protocol:

– Alice signs transaction:   txn = SignAlice (BTC, PKBob)

– Alice shows transaction to others…
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Hash chain application – Blockchain



Can Alice “pay” both Bob and Charlie 

with same bitcoin ?

( Known as “double spending” )
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Avoiding  Equivocation!

Ingredient #3:
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How traditional e-cash handled problem

• When Alice pays Bob with a coin, Bob validates that coin 

hasn’t been spend with trusted third party

• Introduced “blind signatures” and “zero-knowledge protocols” 

so bank can’t link withdrawals and deposits

Alice Bob

Bank 
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How traditional e-cash handled problem

• When Alice pays Bob with a coin, Bob validates that coin 

hasn’t been spend with trusted third party

• Introduced “blind signatures” and “zero-knowledge protocols” 

so bank can’t link withdrawals and deposits

Alice Bob

Bank 

Bank maintains linearizable log of transactions



Avoiding Equivocation!

Goal:  No double-spending in decentralized environment

Main idea:  Make transaction log    

1. public

2. append-only

3. strongly consistent
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Ingredient #3:



• Public 

– Transactions are signed:   txn = SignAlice (BTC, PKBob)

– All transactions are sent to all network participants

• No equivocation:  Log append-only and consistent

– All transactions part of a hash chain

– Consensus on set/order of operations in hash chain
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Bitcoin (10,000 foot view)



• Recall:  hash chain creates “tamper-evident” log of txns

• Security based on collision-resistance of hash function

– Given m and h = hash(m), difficult to find m’                          

such that  h = hash(m’) and m != m’
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Blockchain: Append-only hash chain

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )
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Blockchain: Append-only hash chain
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Problem remains:  forking

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

txn 7’

prev: H(  )

txn 6’

prev: H(  )
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Problem remains:  forking

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

txn 7’

prev: H(  )

txn 6’

prev: H(  )

Which leads to our next 

ingredient…



The Consensus Problem

Ingredient #4:
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PULL approach

(0)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)



PULL approach

(1)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)



PULL approach

(2)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)



PULL approach

(3)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)



PULL approach

(4)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)



PULL approach

(5)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)



PULL approach

(6)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)



PULL approach

(7)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)



PULL approach

(8)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)



PULL approach

(9)
Agree withanything!

Initial 

distribution:  (r, 

g, b) ∼  (0.6,

0.25,0.15)
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2-Voter Approach (0)
Example 1 (r,g,b) ∼ (0.6,0.25,0.15)



2-Voter Approach (1)
Example 1



2-Voter Approach (2)
Example 1



2-Voter Approach (3)
Example 1



2-Voter Approach (0)
Example 2: distribution (r,g,b) ∼ (0.35,0.33,0.32)



2-Voter Approach (1)
Example 2: distribution (r,g,b) ∼ (0.37,0.33,0.30)



2-Voter Approach (2)
Example 2: distribution (r,g,b) ∼ (0.40,0.32,0.28)



2-Voter Approach (3)
Example 2: distribution (r,g,b) ∼ (0.47,0.30,0.23)



2-Voter Approach (4)
Example 2: distribution (r,g,b) ∼ (0.61,0.24,0.15)



2-Voter Approach (5)
Example 2: distribution (r,g,b) ∼ (0.83,0.13,0.05)



2-Voter Approach (6)
Example 2: distribution (r,g,b) ∼ (0.98,0.02,0)



2-Voter Approach
(7)

Example 2
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• All consensus protocols based on membership…

– … assume independent failures …

– … which implies strong notion of identity

• “Sybil attack”  (p2p literature ~2002)

– Idea: one entity can create many “identities” in system

– Typical defense:  1 IP address =  1 identity

– Problem:  IP addresses aren’t difficult / expensive to get,                     
esp. in world of botnets & cloud services
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Consensus susceptible to Sybils



The Proof of Work

Ingredient #5:

77



• Rather than “count” IP addresses, bitcoin “counts” the 

amount of CPU time / electricity that is expended

• Proof-of-work:  Cryptographic “proof” that certain 

amount of CPU work was performed
78

Consensus based on “work”

“The system is secure as long as honest nodes 

collectively control more CPU power than any 

cooperating group of attacker nodes.”

- Satoshi Nakamoto



• After enough work is performed:

– New leader elected for past ~10 min 

– Leader elected randomly, probability of selection 
proportional to leader’s % of global hashing power

– Leader decides which transactions comprise block

79

Form of randomized leader election



80

Key idea: Chain length requires work

txn 7

prev: H(  )

txn 6

prev: H(  )

txn 5

prev: H(  )

• Generating a new block requires “proof of work”

• “Correct” nodes accept longest chain 

• Creating fork requires rate of malicious work >> rate of correct

– So, the older the block, the “safer” it is from being deleted

txn 9

prev: H(  )

txn 8

prev: H(  )

txn 6’

prev: H(  )



• Recall hash functions are one-way / collision resistant

– Given h, hard to find m such that h = hash(m)

• But what about finding partial collision?

– m whose hash has most significant bit = 0?

– m whose hash has most significant bits = 00?

– Assuming output is randomly distributed, complexity grows 

exponentially with # bits to match
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Use hashing to determine work!



Find nonce such that

hash (nonce || prev_hash || block data)  <  target

i.e., hash has certain number of leading 0’s
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The Proof of Work

Miner’s job description:

• Pick a set of transactions for block.

• Build “block header”: prevhash, version, timestamp, txns, …

• Try to find nounce till hash < target OR till another node wins!



Find nonce such that

hash (nonce || prev_hash || block data)  <  target

i.e., hash has certain number of leading 0’s

What about changes in total system hashing rate?

• Target is recalculated every 2 weeks

• Goal:  One new block every 10 minutes
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The Proof of Work
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Historical hash rate trends of bitcoin

Current peaks: >60 Exahash/s

60 x 1018

Tech:  CPU → GPU → ASICs 



• Creating a new block creates bitcoin!

– Initially 50 BTC, decreases over time, currently 12.5

– New bitcoin assigned to party named in new block

– Called “mining” as you search for gold/coins
85

Why consume all this energy?



• Race to find nonce and claim block reward, at which time 

race starts again for next block

hash (nonce || prev_hash || block data) 

– As solution has prev_hash, corresponds to particular chain

• Correct behavior is to accept longest chain

– “Length” determined by aggregate work, not # blocks

– So miners incentivized only to work on longest chain, as 

otherwise solution not accepted

– Remember blocks on other forks still “create” bitcoin, but 

only matters if chain in collective conscious (majority)
86

Incentivizing correct behavior?



The Block Structure

Ingredient #6:
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One block = many transactions

• Each miner picks a set of transactions for block;

• Builds “block header”: prevhash, version, timestamp, txns, …

• Tries to find nounce s.t. hash < target OR another node wins:

– Pick nonce for header, compute hash = SHA256(SHA256(header))
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Transaction format:

Create 12.5 coins, credit to Alice

Transfer 3 coins from Alice to Bob SIGNED(Alice)

Transfer 8 coins from Bob to Carol SIGNED(Bob)

Transfer 1 coins from Carol to Alice SIGNED(Carol)

How do you determine if Alice has balance?  

Scan backwards to time 0 ?
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Transaction format

Inputs: Ø // Coinbase reward

Outputs: 25.0→PK_Alice

Inputs: H(prevtxn, 0) // 25 BTC from Alice

Outputs: 25.0→PK_Bob SIGNED(Alice)

Inputs: H (prevtxn, 0) // 25 BTC From Alice

Outputs: 5.0→PK_Bob, 20.0 →PK_Alice2 SIGNED(Alice)

Inputs: H (prevtxn1, 1), H(prevtxn2, 0)   // 10+5 BTC

Outputs: 14.9→PK_Bob SIGNED(Alice)

• Transaction typically has 1+ inputs, 1+ outputs

• Making change:  1st output payee, 2nd output self

• Output can appear in single later input (avoids scan back)
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Transaction format

Inputs: Ø // Coinbase reward

Outputs: 25.0→PK_Alice

Inputs: H(prevtxn, 0) // 25 BTC from Alice

Outputs: 25.0→PK_Bob SIGNED(Alice)

Inputs: H (prevtxn, 0) // 25 BTC From Alice

Outputs: 5.0→PK_Bob, 20.0 →PK_Alice SIGNED(Alice)

Inputs: H (prevtxn1, 1), H(prevtxn2, 0)   // 10+5 BTC

Outputs: 14.9→PK_Bob SIGNED(Alice)

• Unspent portion of inputs is “transaction fee” to miner

• In fact, “outputs” are stack-based scripts

• 1 Block = 1MB max
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Storage / verification efficiency

• Merkle tree

Binary tree of hashes

Root hash “binds” leaves 

given collision resistance

• Using a root hash 

Block header now 

constant size for hashing

Can prune tree to reduce 

storage needs over time
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Storage / verification efficiency

• Merkle tree

Binary tree of hashes

Root hash “binds” leaves 

given collision resistance

• Using a root hash 

Block header now 

constant size for hashing

Can prune tree to reduce 

storage needs over time

Can prune when all 

txn outputs are spent

Now: 80GB pruned, 

300GB unpruned



Hard questions?
+random details

Ingredient ##:
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How long does one transaction take?

• At some time T, block header constructed

• Those transactions had been received [ T – 10 min, T] 

• Block will be generated at time T + 10 min (on average)

• So transactions are from 10 - 20 min before block creation

• Can be much longer if “backlog” of transactions is long
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When do you trust a transaction?

• We trust:

– After we know it is “stable” on the hash chain

– Recall that the longer the chain, the hard to “revert”

• Common practice:  transaction “committed” when 6 blocks deep

– i.e., Takes another ~1 hour for txn to become committed
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Does it scale?

• Scaling limitations

– 1 block = 1 MB max

– 1 block ~ 2000 txns

– 1 block ~ 10 min

– So, 3-4 txns / sec

– Log grows linearly, joining requires full dload and verification

• Visa peak load comparison

– Typically 2,000 txns / sec

– Peak load in 2013:  47,000 txns / sec

b
lo
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k
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Bitcoin & blockchain intrinsically linked

security of 
block chain

value of 
currency

health of 
mining 

ecosystem
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Rich ecosystem:   Mining pools

• Mining == gambling:

– Electricity costs $, huge payout, low probability of winning

• Development of mining pools to amortize risk

– Pool computational resources, participants “paid” to mine            
e.g.,  rewards “split” as a fraction of work, etc

– Verification?  Demonstrate “easier” proofs of work to admins

– Prevent theft?  Block header (coinbase txn) given by pool

health of 
mining 

ecosystem



More than just a currency…
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