Valorisation of lignocellulosic (LC) biomass by catalytic hydrotreatment

Dr. Miha S. Grilc Department of Catalysis and Chemical Reaction Engineering National Institute of Chemistry Slovenia

Department of Catalysis and Chemical Reaction Engineering

Research topics

- Research subfield: Carbon dioxide activation
- Research subfield: <u>Methane activation & conversion</u>
- Research subfield: <u>Hydrogen & fuel cells & electrocatal.</u>
- Research subfield: <u>Pharmaceutical process engineering</u>
- Research subfield: <u>Biomass-derived building blocks</u>

Ongoing projects

Horizon 2020:

- <u>MefCO2</u>, Synthesis of Methanol from Captured CO₂ Using Surplus Electricity (SPIRE-02-2014)
- FReSMe, Methanol from CO₂ Blast Furnace gasses (LCE-25-2016)
- <u>ADREM</u>, Adaptable Reactors for Resource- and Energy-Efficient Methane Valorisation (SPIRE-05-2015)
- <u>nextBioPharmDSP</u>, Next-generation Biopharmaceutical Downstream Process (BIOTEC-4-2014)
- •<u>CONVERGE</u>, CarbON Valorisation in Energy-efficient Green fuels (H2020-LC-SC3-2018)

•<u>BIZEOLCAT</u>, Bifunctional Zeolite based Catalysts and Innovative process for Sustainable HC Transformation (H2020-NMBP-2018)

•<u>ReaxPro</u>Software Platform for Multiscale Modelling of Reactive Materials and Processes (Reax Pro, H2020-NMBP-TO-IND-2018) **ERA-NET:**

• <u>Mar3Bio</u>, Biorefinery and Biotechnological Exploitation of Marine Biomasses (MarineBiotech - Marine Biotechnology ERA-NET)

• <u>RHODOLIVE</u>, Biovalorization of Olive Mill Wastewaater to Microbial Lipids and Other Products

NATO SPS:

• <u>984738</u>, Enhanced Portable Energetically Self-sustained Devices for Military Purposes (ESCD); <u>coordinator</u>

INTERREG (Italy-Slovenia):

• <u>BIOAPP</u>, Transregional platform for transfer of advanced biopolymers from lab to market

COST Actions: 3

Slovenian Research Agency programmes/projects: 5 **Bilateral cooperation projects:** 6

Department of Catalysis and Chemical Reaction Engineering

Then and now

Department of Catalysis and Chemical Reaction Engineering, NIC Slovenia

2019

SUBGROUP: BIOMASS-DERIVED BUILDING BLOCKS

- 9 Postdocs, 8 PhD students, 12 MSc students
- 1 Interreg, 2 ERA-NET, 1 Horizon 2020 project
- 2 Postdoctoral projects (ARRS)
- 2 COST actions

Ongoing activities

LC Biomass and Catalysis (Miha):

- Liquefaction
- Fractionation
- Furfural synthesis from hemicellulose
- Adipic acid synthesis from cellulose
- Isolation of extractives (flavonoids)
- Lignin valorisation by HDO
- Levulinic acid valorisation by HDO

Marine Biomass and Product Eng. (Uroš):

- Edible bio-based packaging material
- Biorefinery and Biotechnological Exploitation of Marine Biomasses
- Extraction of chitin from crustaceans
- Chitin conversion into chitosan and chitlac
- Isolation of oligosacharides from algae

SUBGROUP: BIOMASS-DERIVED BUILDING BLOCKS

Then and now (2013-2019)

BIOMASS TO FUELS: OIL REFINERY ANALOGY

CONCEPT: BIOREFINERY

Department of Catalysis and Chemical Reaction Engineering | National Institute of Chemistry

CELLULOSE AND HEMICELLULOSE VALORISATION: TOP - DOWN APPROACH

Bio-polymers

Monomers

Platform Chemicals Valuable

Valuable Chemicals

CELLULOSE AND HEMICELLULOSE VALORISATION: TOP – DOWN APPROACH

LEVULINIC ACID: PLATFORM CHEMICAL

AIM:

- Added-value biomass-derived products
 - Fuel additives
 - Monomers
 - Flavors
 - Solvents
- Use of cheap transition metal catalysts
- Avoiding the use of solvents
- Reaction mechanism proposal
- Microkinetic model development
- Process bottlenecks identification

LEVULINIC ACID HYDROTREATMENT TESTS:

- Solventless conditions
- Hydrogenation agent: gaseous H₂
- Batch regime (S,L), continuous purge of gas phase
- Commercial NiMo/γ-Al₂O₃ catalyst
- Catalyst activation with DMDS and H₂

Run	Temperature	Pressure	Stirring speed	Catalyst	Doutiele size
	(°C)	(MPa)	(min ^{−1})	(wt.%)	Particle size
1	225	5.0	1000	2	1.5 mm pellets
2	250	5.0	1000	2	1.5 mm pellets
3	275	5.0	1000	2	1.5 mm pellets
4	275	2.5	1000	2	1.5 mm pellets
5	275	7.5	1000	2	1.5 mm pellets
6	275	5.0 (N ₂)	1000	2	1.5 mm pellets
7	250	5.0 (N ₂)	1000	2	1.5 mm pellets
8	275	5.0	200	2	1.5 mm pellets
9	275	5.0	600	2	1.5 mm pellets
10	275	5.0	1400	2	1.5 mm pellets
11	275	5.0	1000	0	1.5 mm pellets
12	250	5.0	1000	0	1.5 mm pellets
13	275	5.0	1000	1	1.5 mm pellets
14	275	5.0	1000	4	1.5 mm pellets
15	275	5.0	1000	2	500–710 μm
16	275	5.0	1000	2	150–250 μm
17	275	5.0	1000	2	< 40 μm
18	275	5.0	1000	2	1.5 Q pellets

LEVULINIC ACID HDO: EXPERIMENTAL SET-UP

LEVULINIC ACID HDO: EXPERIMENTAL SET-UP

LEVULINIC ACID HDO: EXPERIMENTAL SET-UP

LEVULINIC ACID HDO: ANALYTICS

Solid phase (catalyst):

- N₂-Physisorption
- TPR-TPO-TPR
- TEM, SEM/EDX
- XRD
- NH₃-TPD

Liquid phase analysis (sampling):

- GC-MS (Identification)
- GC-FID (Quantification)
- UHPLC-FC and 3D Benchtop NMR

Gas phase analysis (online):

- FTIR (flow-through cell)
- μ-GC

LEVULINIC ACID HDO: ANALYTICS

Solid phase (catalyst):

- N₂-Physisorption
- TPR-TPO-TPR
- TEM, SEM/EDX
- XRD
- NH₃-TPD

Liquid phase analysis (sampling):

- GC-MS (Identification)
- GC-FID (Quantification)
- UHPLC-FC and 3D Benchtop NMR

Gas phase analysis (online):

- FTIR (flow-through cell)
- μ-GC

LEVULINIC ACID HDO: ANALYTICS

Solid phase (catalyst):

- N₂-Physisorption
- TPR-TPO-TPR
- TEM, SEM/EDX
- XRD
- NH₃-TPD

Liquid phase analysis (sampling):

- GC-MS (Identification)
- GC-FID (Quantification)
- UHPLC-FC and 3D Benchtop NMR

Gas phase analysis (online):

- FTIR (flow-through cell)
- μ-GC

LEVULINIC ACID HDO: REACTION PATHWAY NETWORK

Elementary reactions:

- Decarboxylation
- Ketone group hydrogenation
- Dehydrative cyclisation
- Alkene hydrogenation
- Oligomerization by C-C coupling

LEVULINIC ACID HDO: MICROKINETIC MODEL

- Thermodynamics (VLE-EOS)
- Mass transfer G-L, L-S
- Adsorption & desorption
- Bulk reactions
- Surface reactions

Mass transfer rate through G-L film:

$$r_{j}^{GL} = k_{j}^{L} \cdot A_{G} \cdot (C_{j}^{Li} - C_{j}^{L})/V_{L}$$

$$k_{j}^{L} = 0.42 \cdot \left(\frac{\mu_{l} \cdot g}{\rho_{l}}\right) \cdot Sc^{-0.5} \cdot \alpha \cdot d_{b}$$

$$C_{j}^{Li} = f(P_{tot}, T, y_{j})$$

$$A_{G} = 6 \cdot V_{G} \cdot \varepsilon_{G}/d_{b}$$

$$\varepsilon_{G} = 0.45 \frac{(N - N^{*}) \cdot d_{l}^{-2}}{d_{r} \cdot (g \cdot d_{r})^{0.5}} + 0.31 \cdot \left(\frac{u_{G}}{4\sqrt{\frac{\sigma_{l} \cdot g}{\rho_{l}}}}\right)^{2/3}$$

$$d_{b} = \left(\frac{0.41 \cdot \sigma_{l}}{g \cdot (\rho_{l} - \rho_{g})}\right)^{0.5}$$
Mass transfer rate through L-S film
$$r_{j}^{LS} = k_{j}^{S} \cdot A_{S} \cdot (C_{j}^{L} - C_{j}^{Si})/V_{L}$$

$$k_{j}^{S} = 0.34 \cdot \left(\frac{g \cdot \mu_{l} \cdot (\rho_{s} - \rho_{l})}{\rho_{l}^{-2}}\right)^{1/3} \cdot Sc^{-2/3}$$

$A_{S} = m_{S} \cdot a_{BET}$

Adsorption rate:

 $r_j^A = k_j^A \cdot C_j^{Si} \cdot C_{VS}^*$ $C_{VS}^*(t=0) = m_S \cdot a_{BFT} \cdot C_{AS}/V_L$

Desorption rate: $r_j^D = k_j^D \cdot C_j^*$

Homogeneous reaction rate:

 $r_i^H = k_i^H \cdot C_{j1}^L \cdot C_{j2}^L$

Surface reaction rate: $r_i^C = k_i^C \cdot C_{j1}^* \cdot C_{j2}^*$ Langmuir-Hinshel. $r_i^C = k_i^C \cdot C_{j1}^* \cdot C_{j2}^{Si}$ Eley–Rideal

Molar balances for component *j*:

$$\frac{dn_{j}^{G}}{dt} = -r_{j}^{GL} \cdot V_{L} \pm \sum \frac{y_{j} \cdot V \cdot P}{R \cdot T}$$
 In gas phase
$$\frac{dC_{j}^{L}}{dt} = r_{j}^{GL} - r_{j}^{LS} + \sum \pm r_{i}^{H}$$
 In liquid phase
$$\lim_{V_{si} \to 0} (V_{si} \frac{dC}{dt}) = r_{j}^{LS} - r_{j}^{ads} + r_{j}^{des}$$
 On L-S interphase

$$\frac{dC_j^L}{dt} = r_j^{GL} - r_j^{LS} + \sum \pm r_i^H \qquad \text{On active sites}$$

Molar balance for vacant sites:

$$\frac{dC_{VS}^{*}}{dt} = \sum_{j=1}^{J} r_{j}^{D} - \sum_{j=1}^{J} r_{j}^{A} + \sum \pm r_{i}^{C}$$

LEVULINIC ACID HDO: MASS TRANSFER

LEVULINIC ACID HDO: HOMOGENEOUS AND CATALYTIC REACTIONS

KINETIC MODEL: DIFFERENTIAL EQUATIONS SOLVED NUMERICALLY IN MATLAB

📣 MATLAB R2016b		
HOME PLOTS APPS E	EDITOR PUBLISH VIEW Search Documentation	P 7
New Open Save Compare	Insert E, fx III + E, fx IIII + E, fx IIIII + E, fx IIIIII + E, fx IIIII + E, fx IIIIII + E, fx IIIIIIIIIII + E, fx IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
	a > Local > Microsoft > Windows > Temporary Internet Files > Content.Outlook > YIZSCWNO	- <u></u>
Current Folder Workspace 💿 📝 Edi	itor - C:\Users\MihaG\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\Y1ZSCWNQ\koncentracije.m [Read Only]	🗑 🗙
Name ▲ Value 48 331 332 333 333 334 335 336 337 338 338 339 340 339 340 341 338 339 340 341 342 343 342 343 Command Window Image: Command Win	GLE_SCR.m × ModelTransferToEncandFelix, modelTransferToEncandFelix, noFit.m ×	
Started. 347 fr >> 348 -	- k ⁽¹²³ ar stevn/(-Fa k ⁽¹²³ a/Ra)*(1/T-1/548)). & reakcija PR	
349 350 - 351 - 352 353 - 354 355 - 356 - 357 357 358 - 359 - 359 - 360	<pre>kHHPC_H_s=kHHPC_H_av_s*exp((-Ea_kHHPC_H_s/Rg)*(1/T-1/548)); kHHPC_DH_s=kHHPC_DH_av_s*exp((-Ea_kHHPC_DH_s/Rg)*(1/T-1/548)); kKPC_KH_s=kKPC_KH_av_s*exp((-Ea_kKPC_KH_s/Rg)*(1/T-1/548)); kHHPB_H_s=kHHPB_H_av_s*exp((-Ea_kHHPB_H_s/Rg)*(1/T-1/548)); kHHPB_B_s=kHHPB_B_av_s*exp((-Ea_kHHPB_B_s/Rg)*(1/T-1/548)); kHPPB_B_s=kHHPB_B_av_s*exp((-Ea_kHHPB_B_s/Rg)*(1/T-1/548)); kHPC_MH_s=kMPC_MH_av_s*exp((-Ea_kHPC_MH_s/Rg)*(1/T-1/548)); kHPC_MH_s=kMPC_MH_av_s*exp((-Ea_kHPC_MH_s/Rg)*(1/T-1/548)); kHP314_s=kB134_av_s*exp((-Ea_kB134_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kPB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_av_s*exp((-Ea_kB1331_s/Rg)*(1/T-1/548)); kB1331_s=kB1331_sv_s*exp(AB1331_s(Rg)*(1/T-1/548)); kB1331_s=kB1331_sv_s*exp(AB1331_s(Rg)*(1/T-1/548)); kB1331_s=kB1331_sv_s*exp(AB1331_sv_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV_s*exp(AB1331_sV</pre>	ш
361 - 362 363 - 364	<pre>- kbi331_s=kbi331_av_s*exp((-La_kbi331_s/Rg)*(1/T-1/548)); % reakcije MPB - dcdt=[- kH_g_l * Ag * (P/He - cH2_l); % bilans za H2(g)</pre>	-

LEVULINIC ACID HDO: HOMOGENEOUS REACTIONS

LEVULINIC ACID HDO: CATALYST LOADING

LEVULINIC ACID HDO: CATALYST LOADING

LEVULINIC ACID HDO: TEMPERATURE

Forum 40 | National Institute of Chemistry | 9. May 2019

LEVULINIC ACID HDO: H₂ PRESSURE

LEVULINIC ACID HDO: STIRRING SPEED

• Mass transfer rate through G-L film becomes limiting between 600 and 1000 rpm: $k_i^L \cdot a_G \ll k_i^S \cdot a_S$

M. S. Grilc et al., Chem. Eng. J., 2017, 330, 383.

LEVULINIC ACID HDO: CATALYST PARTICLE SIZE

- Catalyst particle size from <0.04 mm powder to 1.5 mm pellets had no significant effect.
- Internal mass transfer has a negligible effect on the global reaction rates.

LEVULINIC ACID HDO: VALIDATION EXPERIMENT

- Experiment prolonged to 220 min.
- Two times higher catalyst and levulinic acid mass (ratio remained unchainged).
- Very good agreement within 180 min, some discrepancies in last 30 min.

LEVULINIC ACID HDO: A LIST OF KINETIC PARAMETERS

Grilc, Likozar, Chemical Engineering Journal, Vol. 330, 2017, P. 383-397

Regression analysis:		r_{i}^{H}	k_{i}^{H} at 275 °C	k _i ^H unit	Ea_{i}^{H}	i	r_{i}^{C}	k; ^C at 275 °C	Eai ^C
• $k_{i}^{H}_{at 275 °C}$, Ea_{i}^{H}		·	1 40210 0	· ·	(kJ mol ⁻¹)		1	$(L \text{ mol}^{-1} \text{ min}^{-1})$	$(kJ mol^{-1})$
• $k_{i}^{C}_{at 275 °C}, Ea_{i}^{C}$	1	$k_1^{\mathrm{H}} [\mathrm{LA}^{\mathrm{L}}]$	5.17×10^{-3}	\min^{-1}	134	1	$k_1^{\rm C} [{\rm LA}^*] [*]$	2.15×10^{5}	113
• k_j^A, k_j^D	2	$k_2^{\mathrm{H}} [\mathrm{LA}^{\mathrm{L}}]$	6.12×10^{-5}	\min^{-1}	164	2	$k_2^{\rm C} [{\rm LA}^*] [*]$	$< 1 \times 10^2$	n.a.
Empirical correlations:	3	$k_3^{\rm H}$ [LA ^L] [LA ^L]	1.61×10^{-4}	$L \text{ mol}^{-1} \min^{-1}$	61.3	3	k_{3}^{C} [LA*] [LA*]	$< 2 \times 10^{3}$	n.a.
• k_{j}^{L}, k_{j}^{S}	4	$k_4^{\mathrm{H}} [\mathrm{OCPV}^{\mathrm{L}}]$	$>> k_3^{\mathrm{H}}$	\min^{-1}	n.a.	4	$k_4^{\rm C} [{\rm OCPV}^*] [*]$	n.a.	n.a.
• <i>a</i> ^G	5	$k_{5}^{H} [BK^{L}] [H_{2}^{L}]$	n.a.	$L \text{ mol}^{-1} \min^{-1}$	n.a.	5	$k_5^{\rm C} [{ m BK}^*] [{ m H}_2^*]$	n.a.	n.a.
Catalyst characterisation:	6	$k_{6}^{\rm H} [{\rm LA}^{\rm L}] [{\rm H}_{2}^{\rm L}]$	$< 1.00 \times 10^{-4}$	$L \text{ mol}^{-1} \text{ min}^{-1}$	n.a.	6	$k_6^{\rm C}$ [LA*] [H ₂ *]	2.02×10^{9}	19.9
• a^{s}, C_{VS}^{*}	7	$k_7^{\rm H} [\rm{AL}^{\rm L}] [\rm{H}_2^{\rm L}]$	3.61×10^{-1}	$L \text{ mol}^{-1} \text{ min}^{-1}$	20.3	7	$k_7^{\rm C} [{\rm AL}^*] [{\rm H}_2^*]$	$7.58 imes 10^{11}$	80.0
Parameter Value Unit	8	$k_8^{\rm H} [OBV^{\rm L}] [H_2^{\rm L}]$	3.59×10^{-3}	$L \text{ mol}^{-1} \text{ min}^{-1}$	12.9	8	$k_8^{\rm C} [{\rm OBV}^*] [{\rm H}_2^*]$	3.60×10^{9}	89.9
k_{μ}^{A} 5.47 × 10 ³ L mol ⁻¹ min ⁻¹	9	$k_9^{\rm H}$ [HVA ^L]	5.17×10^{-3}	\min^{-1}	134	9	$k_9^{\rm C} [{\rm HVA}^*] [*]$	2.15×10^{5}	113
п ₂	10	k_{10}^{H} [HVA ^L]	n.a.	\min^{-1}	n.a.	10	k_{10}^{C} [HVA*] [*]	$>> k_6^{\mathrm{C}}$	n.a.
$k_{\rm Liq}^{\rm A}$ 5.57 × 10 ⁴ L mol ⁻¹ min ⁻¹	11	$k_{11}^{\rm H}$ [BL ^L]	n.a.	min ⁻¹	n.a.	11	<i>k</i> ₁₁ ^C [BL*] [*]	n.a.	n.a.
$k_{\rm H_2}^D$ 2.22 × 10 ⁴ min ⁻¹	12	$k_{12}^{\rm H}$ [HVA ^L]	n.a.	\min^{-1}	n.a.	12	k_{12}^{C} [HVA*] [*]	$k_{10}^{-2} \times 2.04 \times 10^{-2}$	150
k^{D} 1.06 × 10 ⁴ min ⁻¹	13	$k_{13}^{H} [\text{GVL}^{L}] [\text{H}_{2}^{L}]$	$< 1.00 \times 10^{-5}$	$L \mod^{-1} \min^{-1}$	n.a.	13	k_{13}^{C} [GVL*] [H ₂ *]	$< 1 \times 10^{5}$	n.a.
Liq 1.20 ~ 10 mm	14	k_{14}^{H} [HBV ^L]	$>> k_8^{\mathrm{H}}$	\min^{-1}	n.a.	14	$k_{14}^{C} [\text{HBV*}] [*]$	$>> k_8^{\rm C}$	n.a.
$k_{\rm H_2(T=275^{\circ}C)}^L$ 2.56 × 10 ⁻² m min ⁻¹	15	$k_{15}^{\mathrm{H}} [\mathrm{VVA}^{\mathrm{L}}]$	n.a.	\min^{-1}	n.a.	15	k_{15}^{C} [VVA*] [*]	2.15×10^{5}	113
с. — с. — ,	16	$k_{16}^{H} [BE^{L}] [H_{2}^{L}]$	n.a.	$L \mod^{-1} \min^{-1}$	n.a.	16	k_{16}^{C} [BE*] [H ₂ *]	n.a.	n.a.
$k_{\rm H_2}^{\rm S}$ (T=275°C) 2.43 × 10 ⁻² m min ⁻¹	17	$k_{17}^{H} [VVA^{L}] [H_2^{L}]$	n.a.	$L \mod^{-1} \min^{-1}$	n.a.	17	k_{17}^{C} [VVA*] [H ₂ *]	$>> k_{12}^{C}$	n.a.
k^{S} 1.28 × 10 ⁻² m min ⁻¹	18	k_{18}^{H} [MFO ^L] [H ₂ ^L]	n.a.	$L \mod^{-1} \min^{-1}$	n.a.	18	k_{18}^{C} [MFO*] [H ₂ *]	n.a.	n.a.
LA (T=275°C)	19	$k_{19}^{\mathrm{H}} [\mathrm{VA}^{\mathrm{L}}]$	n.a.	\min^{-1}	n.a.	19	$k_{19}^{C} [VA^*] [*]$	2.15×10^{5}	113
$a_{\rm G} = A_{\rm G} / V_{\rm L}$ 1.06×10^3 m ⁻¹	20	$k_{20}^{\rm H} [{\rm VA}^{\rm L}] [{\rm H}_2^{\rm L}]$	n.a.	$L \mod^{-1} \min^{-1}$	n.a.	20	k_{20}^{C} [VA*] [H ₂ *]	$< 1 \times 10^{5}$	n.a.
$\alpha = A / V = 4.42 \times 10^6 = -1$	21	k_{21}^{H} [PDO ^L] [H ₂ ^L]	n.a.	$L \mod^{-1} \min^{-1}$	n.a.	21	k_{21}^{C} [PDO*] [H ₂ *]	n.a.	n.a.
$u_{\rm S} = A_{\rm S} / v_{\rm L}$ 4.45 × 10 III	22	k_{22}^{H} [PHO ^L]	n.a.	\min^{-1}	n.a.	22	<i>k</i> ₂₂ ^C [PHO*] [*]	n.a.	n.a.

M. S. Grilc et al., Chem. Eng. J., 2017, 330, 383.

LEVULINIC ACID HDO: CONCLUSIONS

- 225 °C slow but selective LA HDO
- Above 225 °C competitive non-catalytic DCX overdominates catalytic HDO
- Ea DCX 134 kJ mol⁻¹, dimerization 61 kJ mol⁻¹, HDO 19 kJ mol⁻¹
- HDO selectivity
 ¬ H₂ pressure and catalyst loading
- Mass transfer does not play major role, as long as gas hold-up is sufficient (> 800 rpm)
- Microkinetic model accounts process parameters well (T, p, catalyst loading, stirring, geometry)

AIM: UNDERSTANDING CATALYTIC HYDROTREATMENT THROUGH KINETIC MODELLING

CATALYST SCREENING: 1.) Metals on neutral support (C): Ru, Pt, Pd, Rh, Ni, Cu

2.) Metals on acidic support (Al₂O₃): Ru, Pt, Pd, Rh, Ni, Cu

3.) Variation of acidic supports: SiO_2 , SiO_2 -Al₂O₃, TiO_2 , HZSM-5

KINETIC MODELLING:

- Mass transfer
- Reactions in bulk phase
- Adsorption/desorption kinetics
- Surface reactions on metallic sites
- Surface reactions on acidic sites

MODELLING SUPPORT:

• Quantum mechanics (DFT)

Lignin monomers: more than 150 catalytic tests, 3600 samples, 54000 exp. points processed.

•

•

DENSITY FUNCTIONAL THEORY: Ru(0001)

Open-source software:

- Quantum Espresso
- Computationally cheap approach used:
- PW DFT with PBE + Grimme-D2
- Unit cell: 4x6x4 (96 Ru atoms)
- 500 structures calculated

Ru(0001) sites occupied at adsorption:

Propyl-benzene/C6: 6 $-OH/-OCH_3$: +1

Adsorption configurations

 $\Delta E_{ads} = E_{adsorbed} - E_{catalyst} - E_{species}$

Homogeneous and surface reactions

CATALYST CHARACTERISATION: Ru/C

• N₂-physisorption

S _{BET} ,	V _{pores} ,	Pore size,
(m ² g ⁻¹)	(cm ³ g ⁻¹)	(Å)
648	0.792	48.8

- CO-chemisorption C_{desCO} ≈ C_{Ru} = 38 µmol g⁻¹
- NH₃-chemisorption

• 1 adsorbed eugenol molecule covers 8 Ru(0001) atoms

CATALYST CHARACTERISATION: Ru/C

• N₂-physisorption

S _{BET} ,	V _{pores} ,	Pore size,
(m ² g ⁻¹)	(cm ³ g ⁻¹)	(Å)
648	0.792	48.8

- CO-chemisorption C_{desCO} ≈ C_{Ru} = 38 µmol g⁻¹
- NH₃-chemisorption

• 1 adsorbed eugenol molecule covers 8 Ru(0001) atoms

MICROKINETICS: MATLAB

- Thermodynamics (VLE-EOS)
- Mass transfer
- Adsorption & desorption
- **Bulk reactions**
- Surface reactions

Mass transfer rate through G-L film:

 $r_i^{GL} = k_i^L \cdot A_G \cdot (C_i^{Li} - C_i^L) / V_L$ $k_j^L = 0.42 \cdot \left(\frac{\mu_l \cdot g}{\rho_l}\right) \cdot Sc^{-0.5} \cdot \alpha \cdot d_b$ $C_i^{Li} = f(P_{tot}, T, y_i)$ $A_G = 6 \cdot V_G \cdot \varepsilon_G / d_b$ $\varepsilon_{G} = 0.45 \frac{(N-N^{*}) \cdot d_{t}^{2}}{d_{r} \cdot (g \cdot d_{r})^{0.5}} + 0.31 \cdot \left(\frac{u_{G}}{\sqrt[4]{\frac{\sigma_{l} \cdot g}{\rho_{l}}}}\right)^{2/3}$ $d_{b} = \left(\frac{0.41 \cdot \sigma_{l}}{g \cdot (\rho_{l} - \rho_{g})}\right)^{0.5}$ Mass transfer rate through L-S film: $r_i^{LS} = k_j^S \cdot A_S \cdot (C_j^L - C_j^{Si}) / V_L$ $k_{j}^{S} = 0.34 \cdot \left(\frac{g \cdot \mu_{l} \cdot (\rho_{s} - \rho_{l})}{\rho_{l}^{2}}\right)^{1/3} \cdot Sc^{-2/3} \qquad r_{i}^{C} = k_{i}^{C} \cdot C_{j1}^{*} \cdot C_{j2}^{Si} \quad \text{Eley-Rideal}$ $A_{\rm s} = m_{\rm s} \left(a_{\rm BE} \right)$

Adsorption rate: $r_i^A = k_i^A \cdot C_i^{Si} \cdot C_{VS}^*$ $C_{VS}^*(t=0)=m_sa_{BET}$ **Desorption rate:** $r_i^D = k_i^D \cdot C_i^*$ Homogeneous reaction rate:

 $r_i^H = k_i^H \cdot C_{i1}^L \cdot C_{i2}^L$

Surface reaction rate: $r_i^C = k_i^C \cdot C_{j1}^* \cdot C_{j2}^*$ Langmuir-Hinshel.

Parameters based on characterization or DFT

HOMOGENEOUS REACTIONS: ISOMERISATION AND HYDROGENATION

M. Huš et al., J. Catal., 2018, 358, 8.

T=275 °C, p(N₂)=5 MPa, No cat, N=1000 min⁻¹

HOMOGENEOUS REACTIONS: ISOMERISATION AND HYDROGENATION

HOMOGENEOUS REACTIONS: ISOMERISATION AND HYDROGENATION

Homogeneous hydrogenation not possible (SPIN!) without assistance of an acidic phenolic group M. Huš et al., J. Catal., 2018, 358, 8.

CATALYTIC TESTING OF Ru/C: KINETIC PARAMETERS BY REGRESSION ANALYSIS

Reaction condition: p=5 MPa, m_{cat}/m_{EUG}=4.5%, N=1000 minForum 40 | National Institute of Chemistry | 9. May 2019

Reaction condition: p=5 MPa, m_{cat}/m_{EUG}=4.5%, N=1000 minForum 40 | National Institute of Chemistry | 9. May 2019

CATALYTIC TESTING OF Ru/C: KINETIC PARAMETERS BY REGRESSION ANALYSIS

EUGENOL HYDROTREATMENT: INFLUENCE OF PRESSURE (275 °C)

A. Bjelić et al., Chem. Eng. J., 2018, 333, 240.

EUGENOL HYDROTREATMENT: INFLUENCE OF Ru/C CATALYST LOADING (275 °C, 5 MPa)

A. Bjelić et al., Chem. Eng. J., 2018, 333, 240.

EUGENOL HYDROTREATMENT: KINETIC PARAMETERS BASED ON REGRESSION ANALYSIS

*Ea*_{HYD} < *Ea*_{HDO}

Adsorption and desorption constants						
$\frac{k_{\rm ads}}{\rm m^3 \ mol^{-1} \ min^{-1}} \\ \ge 5.5 \times 10^3$	$\begin{array}{c} k_{\mathrm{ads}(\mathrm{H})} \\ \mathrm{m}^3 \mathrm{mol}^{-1} \mathrm{min}^{-1} \\ \geq 3.0 \times 10^6 \end{array}$	$\frac{k_{des}}{\min^{-1}}$ $k_{ads} \times 31.7$	$\frac{k_{des(H)}}{\min^{-1}}$ $k_{ads(H)} \times 3.15$			
	Heterogeneo	ous reactions				
Reaction rate constants at 275 °C, $m^3 mol^{-1} min^{-1}$ Activation energies, J mol^{-1}						
k _{HMAB-A}	1.34×10 ⁸	Ea _{HMAB-A}	5.77×10^{4}			
k _{IHMAB-IA}	1.34×10 ^{\$}	Ea _{IHMAB-IA}	5.77×10 ⁴			
k _{HMPB-B}	2.04×10 ⁵	Ea _{HMPB-B}	3.72×10^{4}			
k _{HMPB-M}	6.99×10^{4}	Ea _{HMPB-M}	4.07×10^{4}			
k _{HMPC-M}	1.91×10 ³	Ea _{HMPC-M}	2.05×10 ⁵			
k _{HPB-B}	5.54×10 ⁵	Ea _{HPB-B}	2.79×10 ⁴			
k _{HPB-H}	1.86×10 ⁵	Ea _{HPB-H}	1.25×10 ⁵			
k _{HPC-H}	4.37×10^{3}	Ea _{HPC-H}	1.83×10 ⁵			
k _{PB-B}	3.47×10 ⁵	Ea _{PB-B}	3.16×10 ⁴			
k _{HMPC-MH}	1.30×10^{3}	Ea _{HMPC-MH}	8.00×10 ⁴			
k _{HHPC-H}	2.30×10 ⁴	Еа _{ннрс-н}	1.50×10 ⁵			
k _{MPB-B}	2.03×10 ⁵	Ea _{MPB-B}	1.6×10 ⁴			
k _{MPC-M}	4.30×10 ³	Ea _{MPC-M}	1.00×10^{4}			
k _{HMPC-C}	8.28×10 ²	Ea _{HMPC-C}	1.64×10 ⁵			
k _{HMePCP-HMe}	> 10 ⁶	Ea _{HMe} PCP-HMe	n.a.			
k _{HMePCP-H}	<< k _{HMePCP-HMe}	Еа _{НМеРСР-Н}	n.a.			

A. Bjelić et al., Chem. Eng. J., 2018, 333, 240.

CATALYST SCREENING: VARIATION OF METALS ON CARBON

CURRENT WORK: LINKING SCALES (DFT, KMC, MEAN-FIELD)

LIGNIN VALORISATION: CONCLUSIONS

- Lignin is a complex molecule to start a process with
- **Depolymerisation** leads to various monomeric units
- Hydrotreatment: competition between aromatic ring saturation and oxygen removal
- Activation energy of HDO is higher than for hydrogenation over noble metals
- Noble metals should be used to convert lignin into cyclohexanolic species

TAKE-HOME MESSAGE: BIOMASS IS A SUSTAINABLE SOURCE OF CHEMICALS

STEP 1

• Fractionation of LC Biomass: Cellulose, hemicellulose, lignin, extractives

STEP 2

Depolymerisation of bio-polymers into building blocks (platform chemicals)

STEP 3

- Selective (catalytic) conversion of building blocks into added-value chemicals
- Hydrotreatment (treatment with H₂) is only one among many possible transformation routes

Thank you for your attention!

Acknowledgements:

Dr. Ana Bjelić

Ms. Brigita Hočevar

Dr. Matej Huš

Mr. Matic Grojzdek

Catalyst synthesis

Fractionation

Good behavior

Thermodynamics

Catalyst synthesis Modelling challenges

Visit our website: www.ki.si Follow me on Researchgate: Miha Grilc Follow us on Twitter: @kemijski Send me an e-mail: miha.grilc@ki.si

EUGENOL HYDROTREATMENT: CATALYSED REACTIONS WITH INTERMEDIATES (275 °C, 5 MPa)

EUGENOL HYDROTREATMENT: INFLUENCE OF PRESSURE (275 °C)

EUGENOL HYDROTREATMENT: INFLUENCE OF Ru/C CATALYST LOADING (275 °C, 5 MPa)

EUGENOL HYDROTREATMENT: INFLUENCE OF STIRRING SPEED (275 °C, 5 MPa)

External mass transfer had no influence on global reaction rate.

Department of Catalysis and Chemical Reaction Engineering | National Institute of Chemistry

Forum 40 | National Institute of Chemistry | 9. May 2019

HMAB

Adsorption and desorption constants

$k_{\rm ads}{\rm m^3~mol^{-1}~min^{-1}}$	$k_{\rm ads(H)}{\rm m^3~mol^{-1}~min^{-1}}$	$k_{\rm des}{\rm min^{-1}}$	$k_{\mathrm{des}(H)}\mathbf{min^{-1}}$
$\geqslant 5.6\times 10^3$	$\geqslant 3.2 imes 10^3$	$k_{\rm ads} \times (32 \pm 4)$	$k_{ m ads(H)} onumber \ imes (3.2 \pm 0.2)$

Heterogeneous reactions

Reaction rate constant	s at 275 °C, m³ mol ⁻¹ min ⁻¹	Activation er	nergies, J mol ⁻¹
k _{HMAB-A}	$(1.3411\pm 0.0002)\times 10^8$	$Ea_{\rm HMAB-A}$	$(5.8\pm0.5)\times10^4$
$k_{ m IHMAB-IA}$	$(1.3411\pm 0.0002)\times 10^8$	$E \mathbf{a}_{\mathrm{IHMAB-IA}}$	$(5.8\pm0.5) imes10^4$
$k_{\mathrm{HMPB-B}}$	$(2.0\pm0.1) imes10^5$	$Ea_{\rm HMPB-B}$	$(3.7\pm0.1) imes10^4$
$k_{ m HMPB-M}$	$(7.0\pm0.8)\times10^4$	$E \mathbf{a}_{\mathrm{HMPB-M}}$	$(4.1\pm0.2) imes10^4$
$k_{ m HMPC-M}$	$(1.9\pm0.4) imes10^3$	$Ea_{\rm HMPC-M}$	$(2.1\pm0.1) imes10^5$
$k_{ m HPB-B}$	$(5.5\pm0.2)\times10^5$	$E \mathbf{a}_{\mathrm{HPB-B}}$	$(2.8\pm1.6) imes10^4$
$k_{ m HPB-H}$	$(1.7\pm0.3) imes10^5$	$Ea_{\rm HPB-H}$	$(1.3\pm0.2) imes10^5$
$k_{ m HPC-H}$	$(4.4\pm0.5) imes10^3$	$Ea_{\rm HPC-H}$	$(1.5\pm0.1) imes10^5$
$k_{\mathrm{PB-B}}$	$(3.5\pm0.1) imes10^5$	$Ea_{\rm PB-B}$	$(3\pm2) imes10^4$
k _{HMPC-MH}	$(1.3\pm0.6) imes10^3$	$Ea_{\rm HMPC-MH}$	$(8\pm1) imes10^4$
k _{HHPC-H}	$(2.3\pm0.8)\times10^4$	$Ea_{\rm HHPC-H}$	$(1.5\pm0.2) imes10^5$
$k_{\rm MPB-B}$	$(2.0\pm0.4) imes10^5$	$Ea_{\rm MPB-B}$	$(1.6\pm0.3) imes10^4$
$k_{\rm MPC-M}$	$(4.3\pm0.6)\times10^3$	Ea_{MPC-M}	$(1\pm1) imes10^4$
k _{HMPC-C}	$(8\pm1) imes10^2$	$Ea_{\rm HMPC-C}$	$(1.9\pm0.1) imes10^5$
k _{HMePCP-HMe}	$> 10^{6}$	$E \mathbf{a}_{\mathrm{HMePCP-HMe}}$	n.a.
$k_{\rm HMePCP-H}$	$\ll k_{\rm HMePCP-HMe}$	$Ea_{\rm HMePCP-H}$	n.a.

A. Bjelić et al., Chem. Eng. J., **2018**, 333, 240.