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“» Computational chemistry

Library design

HTS screen Hit to lead Lead optimization
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“» Computational chemistry

Hit selection,
Library design Hit expansion

HTS screen Hit to lead Lead optimization
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“» Computational chemistry

Hit selection, Understanding SAR

Library design Hit expansion and binding

HTS screen Hit to lead

Lead optimization
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“» Computational chemistry

Hit selection, Understanding SAR  ADMET profile
Library design Hit expansion and binding prediction

HTS screen Hit to lead
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/Molecular descriptors\

» Number of oxygen atoms
* Molecular weight

* Greasiness

 Number of aromatic bonds

Describing the chemical matter

/ Circular fingerprints \

/ Pictures \

O
HN

\ /
/ 3D descriptors \

Diameter 2:
N\ . "
/ -0 . i} s
o - -..‘:.:'_'_C . Y N S
-N . | —

Identifiers:
-1266712900
=-1216914295

—_— 78421366

\ -887929888 /
-276894788
/ Neural fingerprints \

(graph convolutions)

Output:

Input: molecular graph chemic:
®

o® o ®

A e
@

o

Sa sl
/ Line notation \

* Phenobarbital
CCC1(C(=0)NC(=0)NC1=0)C1=CC=CC=C1
INChl=1S/C12H12N203/c1-2-12(8-6-4-3-5-7-8)

9(15)13-11(17)14-10(12)16/h3-7H,2H2,1H3,

(H2,13,14,15,16,17)
5-ethyl-5-phenyl-1,3-diazinane-2,4,6-trione
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“ History of deep learning for computational chemistry

Merck Molecular Activity Challenge

MERCK
Be well

Ay DO NI oo E voare omm
$40,000 - 236 teams - 5 years ago

Winning team: gggg

# 2spub
» George Dahl, Toronto, Canada
+ Ruslan Salakhutdinov, Toronto, Canada ' N
+ Navdeep Jaitly, Toronto, Canada No deep Iearning involved — 2 n
« Chris Jordan-Squire, Seattle, Washington 3 a?

» Geoffrey Hinton, Toronto, Canada

Their solution:
Mixture of single task neural networks, multitask neural networks, Gaussian
processes and boosted trees

5 /Il ICGEB-TRAIN Montanari May 2019

Help develop safe and effective medicines by predicting molecular activity.

Team Name

gggg

DataRobot

Score

0.49409

0.48811

0.48209
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Deep Neural Nets as a Method for Quantitative Structure—Activity
Relationships

Junshui Ma't, Robert P. Sheridant, Andy Liawt, George E. Dahls, and Viadimir Svetnikt
TBiometrics Research Department and #Structural Chemistry Department, Merck Research Laboratories, Rahy) ~ Thomas Unterthiner. Andreas Mayr, Guinter Klambauer, Sepp Hochreiter

Jersey 07065, United States < Published 2015 in ArXiv 2015
% Computer Science Department, University of Toronto, Toronto, Ontario ON Ma5, Canada

DOI: 10.1021/ci500747n 20 15
Publication Date (Web): January 30, 2015

Copyright © 2015 American Chemical Society 20 16
_—

History of deep learning for computational chemistry

o eormarion 2013 Multi-task Neural Networks for QSAR
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Alessandro Lusci,"k’T Gianluca Pollastri,T and Pierre Baldi®*
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School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland
iDepartment of Computer Science, University of California, Irvine, Irvine, California 92697, United States

2 O 14 rsalakhu@cs.toronto.edu

Department of Computer Science, University of Toronto,

6 King’s College Rd, Toronto, Ontario M5S 3G4, Canada

Deen ILearning as an Opportunity in Virtual

Toxicity Prediction using Deep Learning gning

o}

Institute of Bioinformatics
Johannes Kepler University Linz, Austria

J. Chem. Inf. ﬁfdeE'f, 2015 55 (2), Pp 263-274 unterthiner@bioinf. jku.at

Giinter Klambauer
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Modeling Industrial ADMET Data with Multitask Networks

Jorg K. Wegner
Johnson & Johnson
aceutical Research & Development
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Stanford University Vertex Pharmaceuticals Inc. Stanford University
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Continuous, data-driven
molecular descriptors

Learning continuous and data-driven molecular
descriptors by translating equivalent chemical
representations

Robin Winter, *a¢ Floriane Montanari@ Frank Nogb and Djork-Armeé Cleverta




= General idea

[Representation 1] Translation [Representation ZJ
1,3-Benzodioxole - D |Dec\< clccc2c(c1)OCO2
/\ O l /\ O
H\): > [ Molecular Descriptor ] H >
Z 0 N O
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“» Data and representations

Pub©hem
ZINC

JIl ICGEB-TRAIN Montanari May 2019 Winter et al., Chemical Sciences, 2019



+» Data and representations

Pub(Chem — g
ZINC O

Remove duplicates

Remove inorganic molecules
12 < MW < 600

>3 heavy atoms

-7 <logP <5

Remove stereochemistry
Keep largest fragments
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+» Data and representations

= 72 million
chemical

PubChem — g =
ZINC ®

Remove duplicates

Remove inorganic molecules
12 < MW < 600

>3 heavy atoms

-7 <logP <5

Remove stereochemistry
Keep largest fragments
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+» Data and representations

= 72 million

chemical Canonical SMILES

structures Non-canonical SMILES
Pu b © hem - '\ 3 InChi strings

—
\/ logP
max partial charge

Remove duplicates Min partial charge
Remove inorganic molecules Valence electrons
12 < MW < 600 HBA

>3 heavy atoms HBD

-7 <logP <5 Balaban's J
Remove stereochemistry Molar refractivity
Keep largest fragments TPSA
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% Training the translation model

Input tokenization

Database represented
by SMILES

clcee2e(c1)OCO2

10 JIl ICGEB-TRAIN Montanari May 2019 Winter et al., Chemical Sciences, 2019



% Training the translation model

Input tokenization

Database represented Lookup table
by SMILES
Token Index
C 0
1 1
2 2
( 3
clcee2e(c1)OCO2 ) 4
O 5
C 6
Br 37
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% Training the translation model

Input tokenization

Database represented Lookup table One-hot encoding of tokens
by SMILES
Token Index
0 ,c:[1,0,0,0,...,0]
¢ J( [0,0.0,1,...,0]
1 1
2 2
( 3
clcee2e(c1)OCO2 \ A
O 5
C 6
Br 37
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Training the translation model

Model architecture

encoder
]

-
-

-
-
-

- L=
-

Cd

=

GRU1  GRUZ GRU3
One-hot 512 _.--77 1024 _-~"72048

-

encoded - -
token at - \
stept N
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“¢» Training the translation model

Model architecture

encoder
, A
GRU1l  GRY 2 GRU 3

One-hot 512 7 1024 772048

encoded @

token at i

stept
bottleneck:
embedding for
the input

SMILES string
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“ Training the translation model

Model architecture

encoder
]

GRUL1  GRU?Z GR

One-hot 512 _--771024__-~772048
encoded > e
token at il 7--7" 4
stept
13 /Il ICGEB-TRAIN Montanari May 2019

(1S

deﬁoder

-
-

. “GRU1 GRU2 GRU3

\oS12 Tha02a 2048 Probability
:::5;\: distribution
‘ on all
tokens
O‘r]e,-hof'
--~"encoded token
atstept.;

Winter et al., Chemical Sciences, 2019



% Training the translation model

Model architecture

encoder decoder
[ l \ A \
GRU1  GRU2 GRU \ “GRU1 GRU2
One-hot 512 _.-771024 _-~*72048 " N oW 1024 X Probability
encoded - - — E %g’?“‘::i:‘;: distribution
token at 4 on all
stept tokens
|| One-hot
R _.--~"'encoded token
\l, at stept,
| j | ]
| 1 - classifier
14 JIl ICGEB-TRAIN Montanari May 2019 Winter et al., Chemical Sciences, 2019
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Training the translation model

Model architecture

encoder
]

deﬁoder

GRU1 GRYU3 GRU3S | " “GRU1l GRU2  GRU3
One-hot 512 .-~ 1024 _.-~772048 5 . L ' . 512 TUh1024 2048 Probability
encoded - - — |2 %ﬁ,“‘:::l\: distribution
token at A, on all
stept tokens
A || One-hot
\ || _--~"éncoded token
| atstept;
| hd o Extra multitask
| classifier to predict
| - classifier | molecular descriptors
| (i.,e. TPSA) from the
OJOXCICI0IOIOIVION embedding

/Il ICGEB-TRAIN Montanari May 2019
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“ Training the translation model

Performance of the embedding

Translation accuracy as 0d7escriptor for lipophilicity prediction

— canonical SMILES to canonical SMILES

—— SMILES to canonical SMILES,
no helper tasks

—— SMILES to canonical SMILES
InChi to canonical SMILES

Accuracy
r?

0.6

0.5
— Smi2canSml
= Smi2canSm|* |
0.4 Inchi2Sml ; '
canSmi2canSm ’
0.3 |
0 5k 10k 15k 5k 10k 15k

Steps Steps
15 JIl ICGEB-TRAIN Montanari May 2019 Winter et al., Chemical Sciences, 2019
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Accuracy

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Training the translation model

Performance of the embedding

as descriptor for lipophilicity prediction
0.7

Translation accuracy

r2

— Smi2canSml
— Smi2canSmi*

Inchi2Smil
canSmi2canSm

0 5k 10k 15k 5k 10k

Steps Steps

/Il ICGEB-TRAIN Montanari May 2019

— canonical SMILES to canonical SMILES
— SMILES to canonical SMILES,

no helper tasks
—— SMILES to canonical SMILES

InChi to canonical SMILES

Best model for reconstruction: canSMI to
canSML. It is also the poorest in terms of
quality of the embedding for
downstream tasks. The ,helper tasks”

(i.e. additional loss for the embedding to
predict simple molecular properties)
boosts the performance on downstream
tasks.

Winter et al., Chemical Sciences, 2019



= Performance of the autoencoder embedding as molecular descriptor

Dataset Acronym Task Split Number of compounds O/\\f,_o - I(::i[r?;)e[?prints of diameter
Ames mutagenicity ames  Classification Validation 6130 Bl 2,4, 6 and fold size 512,
HERG inhibition herg  Classification Test 3440 1024 or 2048

Blood—brain barrier penetration  bbbp Classification Test 1879

B-Secretase 1 inhibition bace Classification Test 1483 - Random Forest
Toxicity in honeybees beet Classification Test 188 qu_% ) SVM_ _
Epidermal growth factor inhibition egfr Regression Test 4451 - Gradient bOOStmg
Plasmodium falciparum inhibition plasmo Regression  Test 3999

Lipophilicity lipo Regression Validation 381/

Aqueous solubility esol Regression Test 1056 8 Graph convolutional
Melting point melt Regression Test 184 (/' network

16 JIl ICGEB-TRAIN Montanari May 2019 Winter et al., Chemical Sciences, 2019



Performance of the autoencoder embedding as molecular descriptor
QSAR models

ROC AUC
COCO000000w
NwaunoaNwmwO

oo
O

1.0

random CV cluster CV
09
08

0.7
0.6
. 05
x 04
03
0.2
0 I
0.0

plasmo plasmo

EEm circular fingerprints graph convolutions BN ours
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Performance of the autoencoder embedding as molecular descriptor
QSAR models

random CV cluster CV

0.6
05
2 0.4
03
0.2
B .
0.0

plasmo plasmo

ROC AUC
COCO000000w
NwaunoaNwmwO

oo
O

EEm circular fingerprints graph convolutions BN ours
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# Performance of the autoencoder embedding as molecular descriptor
QSAR models

> random CV cluster CV

09
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1
ames herg bbbp bace beet

ames herg bbbp bace beet

0.6
03
0.2
B n

Competitive performance of CDDD with SVM against other optimized methods. Performance stable

ROC AUC

RZ
o
&

under cluster split evaluation. Graph convolutional approaches tend to suffer of overfitting.

17 JIl ICGEB-TRAIN Montanari May 2019 Winter et al., Chemical Sciences, 2019



Performance of the autoencoder embedding as molecular descriptor

Virtual screening

MUV '
1 |

ket

s
< 08 YA\
QO
O \ "
o /) / /
| I
0.6 , L\ J
. 'l
I
bmmmmmmuw\:ummmmmmmmmnnamma;oo:'5Duuvmw<
m&o&mmowuwwww&mmmggﬁ%gg;sg“,“_,.m‘oﬂz'jmwgaggg
NOOBNONNWWNONON®OD I NN,.,g: T 30 oo.oc%:_ 2
N
Dataset @ <
tt laval -~ ap =-—e— ours -—e— ecfc4
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Performance of the autoencoder embedding as molecular descriptor

Virtual screening

MUV '
1 |

ket

s
< 08 YA\
QO
O \ "
o /) / /
| I
0.6 , L\ J
. 'l
I
bmmmmmmuw\:ummmmmmmmmnnamma;oo:'5Duuvmw<
m&o&mmowuwwww&mmmggﬁ%gg;sg“,“_,.m‘oﬂz'jmwgaggg
NOOBNONNWWNONON®OD I NN,.,g: T 30 oo.oc%:_ 2
N
Dataset @ <
tt laval -~ ap =-—e— ours -—e— ecfc4
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= Performance of the autoencoder embedding as molecular descriptor

Virtual screening

MUV . DUD

0.8 ,

ROC-AUC
/

Overall datasets, ranking using CDDD significantly outperforms the second best descriptors (p <
0.05). Similarities as measured by the distance between CDDD embeddings seem to correlate well
with biological activity.

19 JIl ICGEB-TRAIN Montanari May 2019 Winter et al., Chemical Sciences, 2019



BAYER

Wrap-up

Inspired by language translation models, we pre-train an autoencoder on 72 million chemical structures.
The bottleneck of the model can be used to describe compounds.

The descriptors work very well in combination with SVM for building QSAR models.

The descriptors outperform the benchmarked descriptors on the MUV and DUD virtual screening datasets.

One crucial point is that the embedding is a continuous space, and that one can use the decoder to reverse
the embedding to a molecule (not possible with other types of descriptors). More on that in the last part!

Trained model is available on github!

JIl ICGEB-TRAIN Montanari May 2019 Winter et al., Chemical Sciences, 2019


https://github.com/jrwnter/cddd

Multitask learning for
ADMET prediction



Absorption — Distribution — Metabolism — Excretion — Toxicity

Where will it go?
Distribution

How much will get there?

How long will it stay?
7 4 Will it be transformed?

How will it be removed?

Will it reach unwanted sites?

Excretion

Absorption

Excretion

22 /Il ICGEB-TRAIN Montanari May 2019



|BAYER

The data

R

<—— > 230 000 datapoints (LogD)
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# Different methods compared

Baseline Single task neural networks

&%

Multitask neural networks

OO
«‘A\

‘V

Graph convolutional neural networks

"o

24 /Il ICGEB-TRAIN Montanari May 2019



“  Multitask learning

Not the same as multiclass or multilabel learning!!

Multiclass

A €
Versicolor

N

New instance to predict can belong
to only one class among several
options. Classical examples:
MNIST, Iris, Imagenet, ...

25 /Il ICGEB-TRAIN Montanari May 2019



“¢  Multitask learning

Not the same as multiclass or multilabel learning!!

Multiclass Multilabel

ACTION
i

DRAMA
14
* SCI-FI
™~

O‘O

New instance to predict can belong
to only one class among several
options. Classical examples:

MNIST, Iris, Imagenet, ... to more than one category.

25 /Il ICGEB-TRAIN Montanari May 2019



< Multitask learning

Not the same as multiclass or multilabel learning!!

Multiclass Multilabel Multitask

\\

N

Wersicolor
New instance to predict can belong
to only one class among several _ _
optior?s. Classical examgples: learned simultaneously using a

: shared representation. Ex: text
MNIST, Iris, Imagenet, ... to more than one category. translation in multiple languages.

Multiple related learning tasks are

25 /Il ICGEB-TRAIN Montanari May 2019



< Multitask learning

Not the same as multiclass or multilabel learning!!

Multiclass Multilabel Multitask

\\

N

Wersicolor
New instance to predict can belong
to only one class among several _ _
optior?s. Classical examgples: learned simultaneously using a

: shared representation. Ex: text
MNIST, Iris, Imagenet, ... to more than one category. translation in multiple languages.

Multiple related learning tasks are
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9  Motivation for a multitask approach and expected benefits

Some endpoints are (weakly) correlated
Some endpoints are complementary in a biological sense
Some endpoints are obtained from the same biological experiment

VCR G| * R ol |
™ - ju & a
VH 5:. % 2

—
=<
s -
T -
L~ ith. .

?% F - ..;‘.:' “ J

Sk O\ R A
o Bt ol Bl A AT B A i Bl
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9  Motivation for a multitask approach and expected benefits

Some endpoints are (weakly) correlated
Some endpoints are complementary in a biological sense
Some endpoints are obtained from the same biological experiment

VoR = = a3
N o -
dE . T =
VH 5:. % a

F—
= =
s -
o R
s ik .

?% F - ..;‘.:' “ J

- Larger training set: endpoints with less |
compounds benefit from the chemical space of
endpoints with more compounds. |

- Exploits correlations between endpoints

Sk O\ R A
o Bt ol Bl A AT B A i Bl

- Regularization method

26 /Il \ICGEB-TRAIN Montanari May 2019



)  Multitask learning in practice

- Choose N datasets that can be learned together:
N LogD (X3, ;)

c.se‘ Inhibition of CYP3A4 (X,, V,)
[
[

v)

els Caco2 permeability (X5, y3)

- Combine them into a multitask training set (X,, Y)

X, contains U unique compounds from X, X, and X,

Y is of shape (U, N) with missing values when a given u
doesn‘t have a measurement

There is no requirement of overlap between the different datasets. Some overlap helps!

27 /Il \ICGEB-TRAIN Montanari May 2019



)  Multitask learning in practice

Loss calculation:

NEL SR

-

v)

Consequence: the N tasks must be giving outputs in the same range! Necessary to scale

all y, (z-scaling works well in practice)

28 /Il \ICGEB-TRAIN Montanari May 2019



)  Multitask learning in practice

Loss calculation:
1 _ s
N Ly =ﬁ2()’l - )
\

c.se‘ ,l:l‘e / LEB |
e Y
] O

v)

Within a minibatch B
Independent for each task t
Ignore missing values

Consequence: the N tasks must be giving outputs in the same range! Necessary to scale

all y, (z-scaling works well in practice)
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)  Multitask learning in practice

Loss calculation:
1 Yew,L
_ NN _ tot
N Ly = EZ(}” - ¥ ‘ Lgiopar = Sw,
\

c.se‘ ,l:l‘e / LEB |
e Y
] O

v)

Within a minibatch B
Independent for each task t
Ignore missing values

Consequence: the N tasks must be giving outputs in the same range! Necessary to scale

all y, (z-scaling works well in practice)
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Multitask learning in practice

N

i
__
__

L~
e s

‘XX 3

/Il \ICGEB-TRAIN Montanari May 2019

Loss calculation:

I _ 2t WL
lobal —
g Z w,

Considerations on w,

Typical choice would be 1/N



)  Multitask learning in practice

Loss calculation:

I _ 2t WL
N global Z w,

-

Considerations on w,

‘XX 3

Typical choice would be 1/N

In case of highly varying task sizes, it might be useful to increase the
weight on the smaller task so that it participates more in the global
loss.

29 /Il \ICGEB-TRAIN Montanari May 2019



“ Graph convolutional networks for chemical data

‘/O Concept: represent the molecules as graphs (nodes = atoms, edges = bonds)

O 8 Learn node (atom) representations that will help with the task at hand
C/( \' (end-to-end learning)

Output: physico-
Input: molecular graph chemical endpoints

\ J
!

Graph convolution
operations

30 /Il ICGEB-TRAIN Montanari May 2019



“f» Graph convolution operations

M @
{? —P1Y\ Hol e\ o 1. Feature
" e propagation along
—r—— - @ the graph and affine
fgifaliﬁ?’"'“m” transformation

31 /Il ICGEB-TRAIN Montanari May 2019



“f» Graph convolution operations

M @
{? —P1Y\ Hol e\ o 1. Feature
" e propagation along
—r—— - @ the graph and affine
fgifaliﬁ?’"'“m” transformation
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“f» Graph convolution operations

M @
{? —P1Y\ Hol e\ o 1. Feature
" e propagation along
—r—— O the graph and affine
fgifaliﬁ?’"'“m” transformation
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“f» Graph convolution operations

M @
{? —1Y\ H1 ¢\ ® 1. Feature
" o propagation along
——— | @ the graph and affine
Graph convolution transformation

operations

31 /Il ICGEB-TRAIN Montanari May 2019



“f» Graph convolution operations

M @
{? —1Y\ H1 ¢\ ® 1. Feature
" o propagation along
——— | @ the graph and affine
Graph convolution transformation

operations

31 /Il ICGEB-TRAIN Montanari May 2019



“f» Graph convolution operations

!
Graph convolution N ' '

operations

1. Feature
propagation along

the graph and affine
transformation

31 /Il ICGEB-TRAIN Montanari May 2019



“f» Graph convolution operations

1 @
{?_* Le [T1% 4 : 2. Non linearity
| , (3. Batch norm
Graph convolution ® 4. Dropout)
operations

32 /Il ICGEB-TRAIN Montanari May 2019



“f» Graph convolution operations

1 @
{? Tt s [T - 2. Non linearity
L : (3. Batch norm
Graph convolution 4. Dropout)
operations

32 /Il \ICGEB-TRAIN Montanari May 2019



“f» Graph convolution operations

;Y—}

Graph convolution

5. Graph pooling

operations

33 /Il \ICGEB-TRAIN Montanari May 2019



“f» Graph convolution operations

;Y—}

5. Graph pooling

Graph convolution
operations
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“f» Graph convolution operations

;Y—}

5. Graph pooling

Graph convolution
operations
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“f» Graph convolution operations

;Y—}

5. Graph pooling

Graph convolution
operations
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“f» Graph convolution operations

1| @
{? —|¥\ ¢\ Q@ 5. Atom-level dense
| ® EVC
Granh convorut ] ® (6. Batch Norm
ra convolution
opefations 7. Dropout)

34 /Il ICGEB-TRAIN Montanari May 2019



“ Graph convolution operations

1| @
{? —|¥\ ¢\ Q@ 5. Atom-level dense
| ® layer
Granh convorut ] ® (6. Batch Norm
ra convolution
opefations 7. Dropout)

ReLUWX + b)

........................................................................................ >

............................... I ReLU(WX + b)|>
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“ Going back to a molecule-level representation

1 @
| e 8. GraphGather
! o operation
Graph convolution
operations

DeepChem 2.1
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“ Going back to a molecule-level representation

1 @
| ® 8. GraphGather
— |l @ operation
Graph convolution
operations

DeepChem 2.1
https://github.com/deepchem
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<=  Model evaluation

Cross-validation

DD -
DSEIEB = .:"
O . 8| . Q
' g
Em o
Cluster CV Random CV
Metrics

R2 (in CV or test set)
Spearman’s rho (ranking capability)

/Il \ICGEB-TRAIN Montanari May 2019

Separate test set

Strict or taskwise time split



Absorption — Distribution: physico-chemical properties

- Nephelometry:

- PBS pH 6.5 from DMSO

- PBS pH 6.5 from Powder

- PBS pH 6.5 from DMSQO not fully dissolved
- PBS pH 6.5 unknown starting point

E - pH75 88 000 measured cpds

Solubility

LogD - pH23 236 000 measured cpds

Melting point C@ 92 000 compounds

%'yj 4"' \‘j @ s e ‘«j
Membrane affinity | 0 s 66 800 compounds

Serum albumin binding 64 000 compounds
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88 000 measured cpds
38 800 measured cpds
2 300 measured cpds
7 300 measured cpds
50 000 measured cpds



“»  Absorption — Distribution: physico-chemical properties

Random Forest versus single task neural networks

Average over 4 leave-cluster-out CV experiments, networks hyperparamters were only optimized on task LMP,
Spearman

0.20 0.4

LOA LOO LOP LMP LOD LOM LOH

0.15

0.10

0.05

ASpearman

0.00

- p

LOD LOM LOH

-0.05

Neural networks (fully connected, same features as RF) overperform RF for the physchem properties

LogD acid / Solubility DMSO / Solubility powder / melting point / LogD / Membrane affinity / HSA binding
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Absorption — Distribution: physico-chemical properties

Fully connected networks versus graph convolutional networks

' I L l l l I average, especially
LOA LOO LOP LMP LOD LOM LOH

task true for the larger
10 tasks. LOP is very

0o small (=2000 cpds) so
probably graph conv is
L. il
LOA LOO LOP tI;r:E LOM LOH

0.7
39 I IGGEB-TRAN Montanar May 2019 Average over 2 leave-cluster-out CV experiments

1.0
0.9
0.8

G 0.7

E 0.6

Yos

[Fs]

0.4
0.3

0.2

Graph convolution
— ?}:1?135{}{) bringS better
== sTwec performance on

0.6
0.5
0.4
0.3
0.2
0.1
0.0

r2

LOD



9 Absorption — Distribution: physico-chemical properties

Best model: multitask graph convolutional network

Average over 2 leave-cluster-out CV experiments

LogD pH 7.5 0.88 0.94 0.34
LogD pH 2.3 0.91 0.96 0.36
Membrane affinity 0.71 0.84 0.51
hSA binding 0.63 0.82 0.50
Melting point 0.53 0.74 39

Solubility DMSO 0.58 0.77 0.83

Solubility Powder 0.55 0.75 0.79
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Best model: multitask graph convolutional network

Average over 2 leave-cluster-out CV experiments

LogD pH 7.5 0.88 0.94 0.34
LogD pH 2.3 0.91 0.96 0.36
Membrane affinity 0.71 0.84 0.51
hSA binding 0.63 0.82 0.50
Melting point 0.53 0.74 39

Solubility DMSO 0.58 0.77 0.83
Solubility Powder 0.55 0.75 0.79

Excellent performance for all modeled endpoints

and significant improvement over models
previously in production.
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“»  Absorption — Distribution: physico-chemical properties

Best model: multitask graph convolutional network

Average over 2 leave-cluster-out CV experiments

LogD pH 7.5 0.88
LogD pH 2.3 0.91
Membrane affinity 0.71
hSA binding 0.63
Melting point 0.53
Solubility DMSO 0.58
Solubility Powder 0.55

0.94
0.96
0.84
0.82
0.74
0.77
0.75

0.34
0.36
0.51
0.50
39
0.83
0.79

Excellent performance for all modeled endpoints

and significant improvement over models
previously in production.
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0.7
0.6
0.5
0.4

o~
= 0.3

0.2
0.1
0.0

0.8
0.7
0.6
0.5

N 0.4
0.3
0.2
0.1
0.0

Melting point LogD

r2
cCoooo00000
O N WEUIO -~ 0O W

Membrane affinity 08 HSA binding

0.7
0.6
0.5
~ 0.4
0.3
0.2
0.1
0.0

e baseline

s MTNNGC

Time split test set performance



9 Absorption — Distribution: physico-chemical properties

Impact of helper tasks and effect of multitask learning on small vs large tasks

il i)

LogD acid  LogD neutral Memb. affinity HSA binding Melting point Solubility

In multitask ‘

With helper task s

L A

&

Helper tasks (other solubility assays) help slightly with the solubility endpoints. They do
not really influence other endpoints.

Multitask learning penalizes the largest task (LogD acid) but in general benefits the smaller
tasks.
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Wrap-up
With the current amount of data for physico-chemical properties, Deep Learning boosts performance with
respect to classical ML models.

Graph convolutional networks are very poweful for those assays once the training set size is large enough.

Multitask learning improves the performance on all but the largest task, and adding more related tasks also
can help.

When doing multitask learning, one has to take care of a few things: that the outputs are in the same range
and maybe that some smaller task losses must be over-weighted.

Current model is in production and used by the medicinal chemists at Bayer.

Other endpoints have been modeled, graph convolutional networks are not always the best! and it is hard to
know how to group tasks, but overall one can get better performance with DL compared to Random Forest.
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Molecule Swarm
Optimization (MSQO)



“ Introduction: navigating the CDDD chemical space

[Representation 1] Translation > [Representation ZJ

1,3-Benzodioxole - D @ clccc2c(c1)OCO2

P e e e
H\): > [ Molecular Descriptor ] H I >
O N O
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Introduction: navigating the CDDD chemical space

H4C )to 0

@im

45 1 ICGEB-TRAIN Montanari May 2019 Winter et al., ChemRxiv, 2019



Introduction: navigating the CDDD chemical space

o}

H4C )to 0

OH

45 1 ICGEB-TRAIN Montanari May 2019 Winter et al., ChemRxiv, 2019



Introduction: navigating the CDDD chemical space

o}

H4C )to 0

OH

+ Ax

45 1 ICGEB-TRAIN Montanari May 2019 Winter et al., ChemRxiv, 2019



Introduction: navigating the CDDD chemical space

o}

H4C )to 0

OH

+ Ax

45 1 ICGEB-TRAIN Montanari May 2019 Winter et al., ChemRxiv, 2019



Introduction: navigating the CDDD chemical space

n; ()
J\ﬁ
A
k_'l \\L,-II

o}

H4C J\o 0

OH

45 /Il ICGEB-TRAIN Montanari May 2019 Wi nter et al _y

ChemRxiv, 2019



Introduction: navigating the CDDD chemical space

Y
u'--'::!l'\
[i]
f"’:j\.«”“\
\Jlll H
2 )
o
N I >
} —— \_71 0
0
{J
>
1.PC

45 1 ICGEB-TRAIN Montanari May 2019 Winter et al., ChemRxiv, 2019



“ Introduction: navigating the CDDD chemical space

:

‘ + Ax

O

H4C )ko 0

OH

l - Moving in the
= direction of the first
S ! Decoder P.C. of the training

EaTRWl set embedding results
N in smooth chemical
transitions towards
larger molecules.

>

1.PC

. 1 \CGEB-TRAIN Montanari May 2019 Winter et al., ChemRxiv, 2019



How to steer the navigation towards useful chemistry?

Gomez-Bombatrelli et al.,
ACS Central Science, 2018

Property
f(2)
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How to steer the navigation towards useful chemistry?

Gomez-Bombarelli et al.,

ACS Central Science, 2018 Enumerate large amounts of virtual

compounds. Prioritize them using a

predictive model for the property of
interest.

Property
f(z)
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How to steer the navigation towards useful chemistry?

Gomez-Bombatrelli et al.,

ACS Central Science, 2018 Enumerate large amounts of virtual

compounds. Prioritize them using a
predictive model for the property of
interest.

Property
(z)

Fine tune a pre-trained generative model
to distort the generation towards desired
properties.
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How to steer the navigation towards useful chemistry?

Gomez-Bombarelli et al.,

ACS Central Science, 2018 Enumerate large amounts of virtual

compounds. Prioritize them using a
predictive model for the property of
interest.

Property
f(z)

Fine tune a pre-trained generative model
to distort the generation towards desired
properties.

Use Reinforcement Learning to force the
generative model to take decisions that will
maximize its reward.
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“ How to steer the navigation towards useful chemistry?

Our approach

v Do not retrain the autoencoder
v Do not depend on the particular set of reward functions
v" Do not depend on enumeration of virtual compounds

/_) Reward function

Explore vs exploit

Memorize best explored _
spots Keep best candidates

~

m
-

H4C )Lo 0

@im
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Particle swarm optimization

0. Starting point: x (position in the 512-dimensional space)
Draw N random velocities to move N particles starting from x
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Particle swarm optimization

0. Starting point: x (position in the 512-dimensional space)
Draw N random velocities to move N particles starting from x

1. Update the positions of the particles

A+ =k h]
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Particle swarm optimization

0. Starting point: x (position in the 512-dimensional space)
Draw N random velocities to move N particles starting from x

1. Update the positions of the particles

A+ =k h]

2. Evaluate every particle with the reward function £

o 1 ICGEB-TRAIN Montanari May 2019 Winter et al., ChemRxiv, 2019



B

A
BAYER

E

R

Particle swarm optimization

48
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0. Starting point: x (position in the 512-dimensional space)
Draw N random velocities to move N particles starting from x

1. Update the positions of the particles

A+ =k h]

2. Evaluate every particle with the reward function £

3. Update the velocities using information from the
previous steps and from the other N-1 particles

current position for particle i

N\

/
T =k ey \@ xf)JFf?-"?- xf)

A
inertia
Winter et al., ChemRxiv, 2019



Particle swarm optimization

0. Starting point: x (position in the 512-dimensional space)
Draw N random velocities to move N particles starting from x

1. Update the positions of the particles

A+ =k h]

2. Evaluate every particle with the reward function £

3. Update the velocities using information from the
previous steps and from the other N-1 particles

current position for particle i

: argmax f(x;)  best position explored by particle i \

/
Vf“ = wvf—l—clrl k@ Xf) +carp x‘f)
: argmax f(x?*") overall best position ever explored —

inertia
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Particle swarm optimization

0. Starting point: x (position in the 512-dimensional space)
Draw N random velocities to move N particles starting from x

1. Update the positions of the particles
T =k k]
2. Evaluate every particle with the reward function £

3. Update the velocities using information from the
previous steps and from the other N-1 particles

current position for particle i

: argmax f(x;)  best position explored by particle i \

/
Vf“ = wvf—l—clrl k@ Xf) +carp x‘f)
: argmax f(x?*") overall best position ever explored —

inertia
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) Single parameter optimization

ORGAN JI'VAE GCPN MSO

reference 13| 18] ours
penalized logP 3.63 5.30 7.98 26.1
QED 0.896 0.925 0.948 0.948
EGFR [pICsp] - - - 10.3
BACE1 [pICsp] - - - 11.5
run time ~1d ~1d ~8h ~10m
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“  Single parameter optimization
EGFR activity optimization

ORGAN JI'VAE GCPN MSO 9
reference 13 18] ours
penalized logP 3.63 5.30 7.98 26.1 8
QED 0.896 0.925 0.948 0.948 .
EGFR [pICso] i i i 10.3 £ ¢
BACE1 [pICsp] - - - 11.5 5 . |
run time ~1d ~1d ~8h ~10m Startpoint
—— ChEMBL_200
> —— Benzene_200
—— ChEMBL_50
4 —— Benzene_50
0 20 40 60 80 100

Steps
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Single parameter optimization

ORGAN JI'VAE GCPN MSO

reference 13| 18] ours
penalized logP 3.63 5.30 7.98 26.1
QED 0.896 0.925 0.948 0.948
EGFR [pICsg] - - - 10.3
BACE1 [pICsp] - - - 11.5
run time ~1d ~1d ~8h ~10m
CH FF:"'tk u""‘“\\“
r a
D %‘irv |
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EGFR activity optimization

Startpoint
—— ChEMBL_200
—— Benzene_200
—— ChEMBL_50
—— Benzene_50

0 20 40 60 80 100
Steps

Winter et al., ChemRxiv, 2019
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Single parameter optimization

ORGAN JI'VAE GCPN MSO

reference 13| 18] ours
penalized logP 3.63 5.30 7.98 26.1
QED 0.896 0.925 0.948 0.948
EGFR [pICsp] - - - 10.3
BACE1 [pICsp] - - - 11.5
run time ~1d ~1d ~8h ~10m
LD N,
T Y

~
X
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EGFR activity optimization

Steps

Startpoint
ChEMBL_200
Benzene_200
ChEMBL_50
Benzene 50

80 100

MSO method is able to optimize random
starting points towards single objectives like
predicted activity towards EGFR. The

embedding does not need to be retrained. At
this stage no control over the explored

chemical space.
Winter et al., ChemRxiv, 2019




) Restraining the chemical space

Discovery of an Orally Available, Brain Penetrant BACE1 Inhibitor That
Affords Robust CNS AR Reduction

Andrew W. Stamford™}, Jack D. Scott}, Sarah W. Lit, Suresh Babui, Dawit Tadessef, Rachael Huntert, Yusheng
Wuf, ._l-.eﬁ‘rna.-‘_l,.lr MISI&SEER‘I‘, ._l_ared N Cummingt, Erlc J. Gilbertt, Chunli Huangt, Brian A. McKittrick{, Liwu
Hongt, Tao Guot, Zhaoning Zhu1-, Corey ¢ Strlckland# Peter Orth#, Johannes H. Valgt# Matthew E. Kennedy§, Xia

Chen§, Reshma Kuvelkar§, Robert Hodgsan§, Lynn A. Hyde§, Kathleen Coxi, _I__eonard Favreaui, _Erlc M.
Parker§, and William J. Greenleet

NH
N -

Ar2\ o

Ar’

iy
w ' o
P

iminopyrimidinone
scaffold
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|
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v Restraining the chemical space

Discovery of an Orally Available, Brain Penetrant BACE1 Inhibitor That
Affords Robust CNS AR Reduction

Andrew W. Stamford™}, Jack D. Scott}, Sarah W. Lit, Suresh Babui, Dawit Tadessef, Rachael Huntert, Yusheng
Wuf, ._l-.eﬁ‘rna.-‘_l,.lr Misiaszekf, ._l_ared N Cummingt, Erlc J. Gilbertt, Chunli Huangt, Brian A. McKittrick{, Liwu

Hongt, Tao Guot, Zhaoning Zhu1-, Corey ¢ Strlckland# Peter Orth#, Johannes H. Valgt# Matthew E. Kennedy§, Xia
Chen§, Reshma Kuvelkar§, Robert Hodgsan§, Lynn A. Hyde§, Kathleen Coxi, _I__eonard Favreaui, _Erlc M.

Parker§, and William J. Greenleet

iminopyrimidinone
scaffold
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Enumerate
possible R,
Arl and Ar2 groups

14 compounds
made and tested

Stamford et al.,

ICe,: 11 NM

ACS MedChem Letters, 2012



) Restraining the chemical space

Building the reward function:

NH
HN’J\N" —I—
LN
1% : O

R
This scaffold has to be present

Ar?
\\‘Ar

SVM model to predict
BACEL activity

Training set: from ChEMBL,
removing all compounds
containing that scaffold

51 /Il \ICGEB-TRAIN Montanari May 2019

Chemistry health check-up:

- No more than 26 heavy
atoms

- No toxic moiety

- No rare substructure

(i.e. not occurring in ChEMBL)

Winter et al., ChemRxiv, 2019



“¢ Restraining the chemical space

(d) 37nM (f) 53nM
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) Restraining the chemical space

(d) 37nM (f) 53nM
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) Restraining the chemical space

(d) 37nM (f) 53nM

MSO-optimized compounds are in the chemical vicinity of the Stamford et al. reported best
compound. The exact compound was not found among the best particles because the BACE1 QSAR

model gives it a worse prediction than the final candidates (170 nM). MSO is able to produce
compounds in a given restricted chemical space.

52 /Il \ICGEB-TRAIN Montanari May 2019 Wlnter et al., ChemRXIV, 2019



“r)  Multi-parameter optimization

SVM model to predict SVM model to predict Solubility ~ Metabolic stability Cell permeability
BACEL1 activity EGFR activity

Drug likeness 10 individual objectives to fulfill, scaled between

Synthetic accessibility 0 and 1. Different weights can be applied to the

No toxic substructures different objectives. Final reward function is a
U . . . . . .

No rare substructures weighted average of the individual objectives.

200 < MW < 600

53 /Il \ICGEB-TRAIN Montanari May 2019 Wlnter et al., ChemRXIV, 2019



B

A
BAYER

E

R

54

Multi-parameter optimization

Experiment 1

0 100
Step
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200

Overall score of the best particle

Orange: potency on BACE1l
Blue: potency on EGFR

Green: permeability score

Blue: solubility score

Orange: metabolic stability score
Purple: drug likeness

Red: synthetic accessibility

Winter et al., ChemRxiv, 2019



“r)  Multi-parameter optimization

Experiment 1

—

100
Step
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200

Winter et al., ChemRxiv, 2019

Compound EGFR BACE stab sol perm QED SA
_TF:T
~o0 37 80 8 390 72 090 3.0
0 ;. 44 85 8 500 130 0.94 3.4
A N
(). 41 83 78 570 90 073 3.0
U -,
ﬁj*% 43 83 86 25 69 069 28
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It is possible to use the pre-trained autoencoder for compound optimization by combining reward functions
with a Particle Swarm Optimization heuristic.

It is possible to find solutions for complex optimization problems with multiple, possibly contradicting
objectives.

The method is fast and flexible: one does not need retraining of the autoencoder when the reward function
changes.

The tool relies on useful reward functions: one need to build strong QSAR models to steer compounds into
a meaningful direction.

Article is submitted to Chemical Sciences but already available on ChemRxiv!
https://chemrxiv.org/articles/Efficient Multi-
Objective Molecular Optimization in a Continuous Latent Space/7971101
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Conclusions
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Thank youl!

Robin Winter

Djork-Arné Clevert
Lara Kuhnke
Antonius ter Laak
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¢ We are recruiting!!

tellenbezeichnung: Research Scientist - Machine learning/Deep
learning (m/f/d)

Passion to

iInnovate |

Research Scientist - Machine learning/Deep learning (m/f/d)

Bayer is looking for a highly creative and motivated Research Scientist with strong expertise in deep learning and computational life science to join the
Imachine learning research team in R&D in Berlin, Germany. The position will be advertised within the EU-funded Innovative Medicines Initiative (IMI) project
MELLODDY. With MELLODDY, ten leading European biopharmaceutical companies have come together to exchange their research data in a privacy
preserving matter to improve the predictive performance of their machine learning models by federated learning. The position will involve research in direct
collaboration with scientists from toxicology., medicinal chemistry, high-throughput image analysis, computer scientists, as well as leading European
research groups in both academia and industry.

The successful applicant will be part of a cross-organizational team, applying deep learning within the R&D organization on our existing big data sets. She /
he will contribute to the implementation of a deep learning platform providing impact on drug discovery and will be responsible for developing, testing and
continually improving deep learning methods to predict properties of novel molecules (e.g. drug toxicity, assay bioactivity).

Where? Berlin

How long? 3 years

What? IMI project MELLODDY
When? July 2019

Drop us an email with your CV!
florliane.montanari@bayer.com

djork-arne.clevert@bayer.com

https://www.career.bayer.com/en/
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career/job-search/?fulltext=
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