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Hit selection,

Hit expansionLibrary design

Understanding SAR 

and binding
ADMET profile

prediction

Hit to lead Lead optimization



Describing the chemical matter

4 /// ICGEB-TRAIN Montanari May 2019

Molecular descriptors Circular fingerprints Pictures

• Number of oxygen atoms

• Molecular weight

• Greasiness

• Number of aromatic bonds

…

3D descriptors Neural fingerprints

(graph convolutions)

Line notation

• Phenobarbital
• CCC1(C(=O)NC(=O)NC1=O)C1=CC=CC=C1

• InChI=1S/C12H12N2O3/c1-2-12(8-6-4-3-5-7-8)

9(15)13-11(17)14-10(12)16/h3-7H,2H2,1H3,

(H2,13,14,15,16,17)

• 5-ethyl-5-phenyl-1,3-diazinane-2,4,6-trione



History of deep learning for computational chemistry
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2012

Winning team: gggg

Their solution:

Mixture of single task neural networks, multitask neural networks, Gaussian

processes and boosted trees

No deep learning involved



History of deep learning for computational chemistry
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2013

2014

2015

2014

2016

2015



Continuous, data-driven 

molecular descriptors
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General idea
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Data and representations
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Remove duplicates

Remove inorganic molecules

12 < MW < 600

>3 heavy atoms

-7 < logP < 5
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Keep largest fragments
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Remove duplicates

Remove inorganic molecules

12 < MW < 600

>3 heavy atoms

-7 < logP < 5

Remove stereochemistry

Keep largest fragments

Data and representations
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≈ 72 million

chemical

structures

Canonical SMILES

Non-canonical SMILES

InChi strings

logP

max partial charge

Min partial charge

Valence electrons

HBA

HBD

Balaban‘s J

Molar refractivity

TPSA



Input tokenization

Training the translation model
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Database represented
by SMILES
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c1ccc2c(c1)OCO2

Token Index

c 0

1 1

2 2

( 3

) 4

O 5

C 6

…

Br 37

Lookup tableDatabase represented
by SMILES

One-hot encoding of tokens

„c“: [1, 0, 0, 0, …, 0]

„(„:  [0, 0. 0 ,1, …, 0]

…



Model architecture

Training the translation model
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Model architecture

Training the translation model
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bottleneck: 

embedding for

the input

SMILES string
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Model architecture

Training the translation model
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Extra multitask

classifier to predict

molecular descriptors

(i.e. TPSA) from the

embedding



Training the translation model
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Performance of the embedding

as descriptor for lipophilicity prediction

SMILES to canonical SMILES
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SMILES to canonical SMILES, 

no helper tasks

InChi to canonical SMILES



Training the translation model
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Translation accuracy

Performance of the embedding

as descriptor for lipophilicity prediction

SMILES to canonical SMILES

canonical SMILES to canonical SMILES

SMILES to canonical SMILES, 

no helper tasks

InChi to canonical SMILES

Best model for reconstruction: canSMI to
canSMI. It is also the poorest in terms of

quality of the embedding for
downstream tasks. The „helper tasks“ 

(i.e. additional loss for the embedding to
predict simple molecular properties) 

boosts the performance on downstream
tasks.



Performance of the autoencoder embedding as molecular descriptor
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- CDDD

- Fingerprints of diameter

2, 4, 6 and fold size 512, 

1024 or 2048

- Random Forest

- SVM

- Gradient boosting

Graph convolutional

network



Performance of the autoencoder embedding as molecular descriptor
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QSAR models
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Performance of the autoencoder embedding as molecular descriptor
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Competitive performance of CDDD with SVM against other optimized methods. Performance stable
under cluster split evaluation. Graph convolutional approaches tend to suffer of overfitting.

QSAR models



Performance of the autoencoder embedding as molecular descriptor
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Performance of the autoencoder embedding as molecular descriptor
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Virtual screening

Overall datasets, ranking using CDDD significantly outperforms the second best descriptors (p < 
0.05). Similarities as measured by the distance between CDDD embeddings seem to correlate well

with biological activity.



Wrap-up
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Inspired by language translation models, we pre-train an autoencoder on 72 million chemical structures.

The bottleneck of the model can be used to describe compounds.

The descriptors work very well in combination with SVM for building QSAR models.

The descriptors outperform the benchmarked descriptors on the MUV and DUD virtual screening datasets.

One crucial point is that the embedding is a continuous space, and that one can use the decoder to reverse

the embedding to a molecule (not possible with other types of descriptors). More on that in the last part!

Trained model is available on github! https://github.com/jrwnter/cddd

https://github.com/jrwnter/cddd


Multitask learning for 

ADMET prediction
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Absorption – Distribution – Metabolism – Excretion – Toxicity

22

Where will it go?

How much will get there?

How long will it stay?

Will it be transformed?

How will it be removed?

Will it reach unwanted sites?

Absorption

Metabolism

Excretion

Excretion

Distribution
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The data
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0.5 million chemical structures

70 ADMET endpoints

cytochrome

inhibition

in vivo rat data

> 230 000 datapoints (LogD)



Different methods compared
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Baseline Single task neural networks

Multitask neural networks

Graph convolutional neural networks



Multitask learning
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Not the same as multiclass or multilabel learning!!

Multiclass

New instance to predict can belong

to only one class among several

options. Classical examples: 

MNIST, Iris, Imagenet, …
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Motivation for a multitask approach and expected benefits

26

Some endpoints are (weakly) correlated

Some endpoints are complementary in a biological sense

Some endpoints are obtained from the same biological experiment
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Motivation for a multitask approach and expected benefits

26

Some endpoints are (weakly) correlated

Some endpoints are complementary in a biological sense

Some endpoints are obtained from the same biological experiment

Benefits

- Larger training set: endpoints with less

compounds benefit from the chemical space of

endpoints with more compounds.

- Exploits correlations between endpoints

- Regularization method
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Multitask learning in practice

27 /// ICGEB-TRAIN Montanari May 2019

N 

datasets N 

models

- Choose N datasets that can be learned together:

LogD (X1, y1)

Inhibition of CYP3A4 (X2, y2)

Caco2 permeability (X3, y3)

- Combine them into a multitask training set (X4, Y)

X4 contains U unique compounds from X1, X2 and X3

Y is of shape (U, N) with missing values when a given u

doesn‘t have a measurement

There is no requirement of overlap between the different datasets. Some overlap helps!



Multitask learning in practice
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N 

datasets N 

models

Loss calculation:

𝐿𝑡 =
1

|𝐵|
෍

𝑖∈𝐵

(𝑦𝑖 − ො𝑦𝑖)²

Consequence: the N tasks must be giving outputs in the same range! Necessary to scale
all yt (z-scaling works well in practice)
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N 
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models
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෍
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N 

datasets N 

models

Loss calculation:

𝐿𝑔𝑙𝑜𝑏𝑎𝑙 =
σ𝑡𝑤𝑡𝐿𝑡
σ𝑤𝑡

Considerations on wt

Typical choice would be 1/N

In case of highly varying task sizes, it might be useful to increase the

weight on the smaller task so that it participates more in the global 

loss.



Graph convolutional networks for chemical data
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Concept: represent the molecules as graphs (nodes = atoms, edges = bonds)

Learn node (atom) representations that will help with the task at hand

(end-to-end learning)



Graph convolution operations
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Graph convolution operations
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2. Non linearity

(3. Batch norm

4. Dropout)

ReLU

ReLU

ReLU
ReLU

ReLU



Graph convolution operations
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Graph convolution operations
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5. Graph pooling

CONCAT
MAX



Graph convolution operations
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layer
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7. Dropout)



Graph convolution operations
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5. Atom-level dense

layer

(6. Batch Norm

7. Dropout)

ReLU(wX + b)

ReLU(wX + b)



Going back to a molecule-level representation
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8. GraphGather

operation

DeepChem 2.1

https://github.com/deepchem

https://github.com/deepchem
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Going back to a molecule-level representation
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8. GraphGather

operation

MEAN

MAX

CONCAT tanh

DeepChem 2.1

https://github.com/deepchem

https://github.com/deepchem


Model evaluation
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R² (in CV or test set)

Spearman‘s rho (ranking capability)

Cross-validation Separate test set

Cluster CV Random CV Strict or taskwise time split

Metrics



Absorption – Distribution: physico-chemical properties
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Solubility

- Nephelometry:  88 000 measured cpds

- PBS pH 6.5 from DMSO 38 800 measured cpds

- PBS pH 6.5 from Powder 2 300 measured cpds

- PBS pH 6.5 from DMSO not fully dissolved 7 300 measured cpds

- PBS pH 6.5 unknown starting point 50 000 measured cpds

LogD

Melting point

Membrane affinity

Serum albumin binding

92 000 compounds

- pH 7.5 88 000 measured cpds

- pH 2.3 236 000 measured cpds

66 800 compounds

64 000 compounds



Random Forest versus single task neural networks

Absorption – Distribution: physico-chemical properties
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Average over 4 leave-cluster-out CV experiments, networks hyperparamters were only optimized on task LMP, 
Spearman

Neural networks (fully connected, same features as RF) overperform RF for the physchem properties

LogD acid / Solubility DMSO / Solubility powder / melting point / LogD / Membrane affinity / HSA binding

Δ
S

p
e
a
rm

a
n

Δ
R

²



Fully connected networks versus graph convolutional networks

Absorption – Distribution: physico-chemical properties
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Graph convolution

brings better

performance on 

average, especially

true for the larger 

tasks. LOP is very

small (≈2000 cpds) so 

probably graph conv is

overfitting..

Average over 2 leave-cluster-out CV experiments



Best model: multitask graph convolutional network

Absorption – Distribution: physico-chemical properties
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R² Spearman RMSE

LogD pH 7.5 0.88 0.94 0.34

LogD pH 2.3 0.91 0.96 0.36

Membrane affinity 0.71 0.84 0.51

hSA binding 0.63 0.82 0.50

Melting point 0.53 0.74 39

Solubility DMSO 0.58 0.77 0.83

Solubility Powder 0.55 0.75 0.79

Average over 2 leave-cluster-out CV experiments
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R² Spearman RMSE

LogD pH 7.5 0.88 0.94 0.34

LogD pH 2.3 0.91 0.96 0.36

Membrane affinity 0.71 0.84 0.51

hSA binding 0.63 0.82 0.50

Melting point 0.53 0.74 39

Solubility DMSO 0.58 0.77 0.83

Solubility Powder 0.55 0.75 0.79

Average over 2 leave-cluster-out CV experiments

Excellent performance for all modeled endpoints

and significant improvement over models

previously in production.

Melting point LogD

Membrane affinity HSA binding

baseline

MTNNGC
Time split test set performance



Impact of helper tasks and effect of multitask learning on small vs large tasks

Absorption – Distribution: physico-chemical properties
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Helper tasks (other solubility assays) help slightly with the solubility endpoints. They do 
not really influence other endpoints.

Multitask learning penalizes the largest task (LogD acid) but in general benefits the smaller
tasks. 

LogD acid LogD neutral

With helper task

In multitask

Memb. affinity HSA binding Melting point Solubility



Wrap-up
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With the current amount of data for physico-chemical properties, Deep Learning boosts performance with

respect to classical ML models.

Graph convolutional networks are very poweful for those assays once the training set size is large enough.

Multitask learning improves the performance on all but the largest task, and adding more related tasks also 

can help. 

When doing multitask learning, one has to take care of a few things: that the outputs are in the same range

and maybe that some smaller task losses must be over-weighted.

Current model is in production and used by the medicinal chemists at Bayer.

Other endpoints have been modeled, graph convolutional networks are not always the best! and it is hard to

know how to group tasks, but overall one can get better performance with DL compared to Random Forest.



Molecule Swarm

Optimization (MSO)
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Introduction: navigating the CDDD chemical space
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Introduction: navigating the CDDD chemical space
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+ Δ𝑥

Moving in the
direction of the first
P.C. of the training

set embedding results
in smooth chemical
transitions towards

larger molecules. 



How to steer the navigation towards useful chemistry?
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ACS Central Science, 2018
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Gomez-Bombarelli et al., 

ACS Central Science, 2018
Enumerate large amounts of virtual

compounds. Prioritize them using a 

predictive model for the property of

interest.

Fine tune a pre-trained generative model

to distort the generation towards desired

properties.

Use Reinforcement Learning to force the

generative model to take decisions that will 

maximize its reward.



Our approach

How to steer the navigation towards useful chemistry?
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 Do not retrain the autoencoder

 Do not depend on the particular set of reward functions

 Do not depend on enumeration of virtual compounds

Keep best candidates

Explore vs exploit

Memorize best explored

spots

Reward function



Particle swarm optimization
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0. Starting point: x (position in the 512-dimensional space)

Draw N random velocities to move N particles starting from x

Winter et al., ChemRxiv, 2019

current position for particle i

inertia

1. Update the positions of the particles

2. Evaluate every particle with the reward function f

3. Update the velocities using information from the

previous steps and from the other N-1 particles
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2. Evaluate every particle with the reward function f

3. Update the velocities using information from the

previous steps and from the other N-1 particles



Single parameter optimization
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Single parameter optimization
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EGFR activity optimization

MSO method is able to optimize random
starting points towards single objectives like 

predicted activity towards EGFR. The 
embedding does not need to be retrained. At 

this stage no control over the explored
chemical space. 



Restraining the chemical space
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Restraining the chemical space
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Enumerate

possible R, 

Ar1 and Ar2 groups

14 compounds

made and tested

IC50: 11 nM

Me

Phe



Restraining the chemical space
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Building the reward function:

This scaffold has to be present

BACE1 

pIC50

SVM model to predict

BACE1 activity

Training set: from ChEMBL,

removing all compounds

containing that scaffold

Chemistry health check-up:

- No more than 26 heavy 

atoms

- No toxic moiety

- No rare substructure

(i.e. not occurring in ChEMBL)

Winter et al., ChemRxiv, 2019
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Restraining the chemical space

52 /// ICGEB-TRAIN Montanari May 2019

MSO-optimized compounds are in the chemical vicinity of the Stamford et al. reported best
compound. The exact compound was not found among the best particles because the BACE1 QSAR 

model gives it a worse prediction than the final candidates (170 nM). MSO is able to produce
compounds in a given restricted chemical space.

Winter et al., ChemRxiv, 2019



Multi-parameter optimization
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BACE1 

pIC50

SVM model to predict

BACE1 activity

EGFR 

pIC50

SVM model to predict

EGFR activity
Solubility Metabolic stability Cell permeability

Drug likeness

Synthetic accessibility

No toxic substructures

No rare substructures

200 < MW < 600

10 individual objectives to fulfill, scaled between

0 and 1. Different weights can be applied to the

different objectives. Final reward function is a 

weighted average of the individual objectives.



Multi-parameter optimization
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Overall score of the best particle

Orange: potency on BACE1

Blue: potency on EGFR

Green: permeability score

Blue: solubility score

Orange: metabolic stability score

Purple: drug likeness

Red: synthetic accessibility



Multi-parameter optimization
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Overall score of the best particle

Orange: potency on BACE1

Blue: potency on EGFR

Green: permeability score

Blue: solubility score

Orange: metabolic stability score

Purple: drug likeness

Red: synthetic accessibility



Wrap-up
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It is possible to use the pre-trained autoencoder for compound optimization by combining reward functions

with a Particle Swarm Optimization heuristic.

It is possible to find solutions for complex optimization problems with multiple, possibly contradicting

objectives.

The method is fast and flexible: one does not need retraining of the autoencoder when the reward function

changes.

The tool relies on useful reward functions: one need to build strong QSAR models to steer compounds into

a meaningful direction.

Article is submitted to Chemical Sciences but already available on ChemRxiv! 

https://chemrxiv.org/articles/Efficient_Multi-

Objective_Molecular_Optimization_in_a_Continuous_Latent_Space/7971101

https://chemrxiv.org/articles/Efficient_Multi-Objective_Molecular_Optimization_in_a_Continuous_Latent_Space/7971101


Conclusions
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Thank you!

Robin Winter

Djork-Arné Clevert

Lara Kuhnke

Antonius ter Laak
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Where? Berlin

How long? 3 years

What? IMI project MELLODDY

When? July 2019

Drop us an email with your CV!

floriane.montanari@bayer.com

djork-arne.clevert@bayer.com

https://www.career.bayer.com/en/

career/job-search/?fulltext=

&accessLevel=&functional_area=

&country=*&location=

sap_lo_1013353&division=

sap_di_PH

mailto:floriane.montanari@bayer.com
mailto:Djork-arne.clevert@bayer.com
https://www.career.bayer.com/en/

