Multi-task learning in the analysis of phenotypic data

Adam Arany KU Leuven, Belgium

15 May, 2019 Bled, Slovenia

Overview

- Multi-task learning
 - Motivation
 - Recommender systems view
- Matrix factorization
 - Matrix factorization with side information
 - Beyond 2-way relations
 - Connection to Deep Learning
- Application I: Chemogenomics
- Application II: Repurposing Imaging screens
- Application III: Gaining insight about mechanism of action

Multi-task learning

Motivation

- Biological learning agents are not single-task
 - Playing ball games
 - Studying languages
 - Playing video games
- Drug targets are similar
 - Orthology
 - Paralogy
 - Convergent evolution
- Pervasive features

Recommender systems

Netflix challenge

- Users rating Movies
- Very sparse matrix
- Filling in missing values

"If Alice likes Lord of the Rings and Harry Potter, and Bob likes Lord of the Rings, he will probably likes Harry Potter."

Recommender systems

Netflix challenge

- Cold start problem
- A user or a movie have very few or no rating
- Incorporate information on movies and users : side information

"The Hobbit is new in our system. Can we give prediction?"

Matrix Factorization

Matrix factorization

• Represent each user and movie by a latent vector

$$\mathbf{u}_{i} = \begin{bmatrix} u_{i,1} & u_{i,2} & \dots & u_{i,D} \end{bmatrix}$$

$$\mathbf{V}_{j} = \begin{bmatrix} \mathbf{V}_{j,1} & \mathbf{V}_{j,2} & \dots & \mathbf{V}_{j,D} \end{bmatrix}$$

- Prediction is made by $\hat{R}_{ij} = \mathbf{u}_i^{\mathsf{T}} \mathbf{v}_j$
- Learn latent vectors by minimizing error

$$\min\sum_{ij} I_{ij}(R_{ij}-\hat{R}_{ij})^2$$

Matrix factorization

- Each latent dimension will focus on certain aspect of the entities
- For example
 - whether a movie has action
 - whether user likes action movies

$$\mathbf{v}_1 = \begin{bmatrix} 2.1 & 0.1 & \dots & 0.5 \end{bmatrix}$$

 $\mathbf{u}_1 = \begin{bmatrix} 3.7 & -0.1 & \dots & 1.2 \end{bmatrix}$
 $\mathbf{u}_2 = \begin{bmatrix} 0 & -0.1 & \dots & 1.2 \end{bmatrix}$

• These patterns are learned from data

Results on Netflix challenge

Source: Salakhutdinov, R., & Mnih, A., ICML 2008

Matrix Factorization Adding Side Information

Cold start problem

- Cold start problem
- A user or a movie have very few or no rating
- No data to learn about a given latent vector!
- Incorporate information on movies and users : side information

Matrix factorization with side information

- Side information (x)
- Features that might have info on ratings
 - User: age, gender, location
 - Movie: Genre, director, ...
- Learn how features predict latents

- β maps features to latents
- Learn u, v, β jointly

Matrix factorization with side information

- Rich side information can be very predictive
- Examples
 - Compounds : structure fingerprints
 - Genes: ontology classification

Beyond 2-way relations

- More than two object relations
- *e.g.*: drug *x* gene *x* cell line

• The model is:

 $Y_{ijk} = d_{i,1}g_{j,1}c_{k,1} + ... + d_{i,D}g_{j,D}c_{k,D}$

"Treating cell line k with drug i results in differential expression Y_{ijk} in gene j."

Matrix Factorization Bayesian variant

J. Simm, A. Arany, et al. IEEE MLSP, Tokyo, Japan, September 2017 URL: https://ieeexplore.ieee.org/document/8168143

Probabilistic Model

- We learn **u** and **v** such that $Y_{ij} \sim \mathcal{N}(\mathbf{u}_i^{ op} \mathbf{v}_j, lpha^{-1})$
- side information In the prior mean of latent vectors

 $\mathbf{u}_i \sim \mathcal{N}(\mu_U + eta^ op \mathbf{x}_i, \Lambda_U)$

• Gibbs sampling

Matrix Factorization Connection to Deep Learning

Deep Learning

- Learning representation with nested function composition
- A usual choice for f_n(.) is f(x) = σ(W^Tx + b)
 Where σ is a nonlinearity, called the activation function, applied elementwise

Embedding and one-hot encoding

- We learn an **embedding** to every entity (*e.g.* every user)
- Feed it into the deep network
- Address a lookup table (LUT) by ID
- Equivalently multiplying a weight matrix with a **one-hot encoding**
- This introduces entity level reasoning into the network

Deep factorization model

Application: Chemogenomics

Chemogenomics

- Compound-target activity matrix
- Side information on compounds
 - Fingerprint of structure
 - Phenotypic effect
 - Gene expression changes
- Sparsely filled
- Protein side information
 - Proteochemometrics

Series effect

- Chemical series effect
 - Same scaffold small modification
 - They need to end up in the same fold
- **Clustering** the structures
 - *e.g.* Tanimoto > 0.5
 - using ECFP6
- Nested cross-validation over the clusters
 - For hyperparameter tuning

Evaluation results

- Model: Non-linear version
- Dataset: ChEMBL v23
 - **#Assays**: 702
 - **#Compounds**: 296k
 - #Activity threshold: 4
 - Clustering threshold: 0.5
- AUC: 0.8574
- (Non clustered: 0.9195)

Quality	#Assay - threshold pair
> 0.9 AUC	550 / 2808
> 0.8 AUC	1156 / 2808
> 0.7 AUC	1355 / 2808

Application: Binding mode

A. Arany, J. Simm, et al. MLCB/MLSB 2015, NIPS Workshop, December 2015 URL: https://arxiv.org/abs/1512.00315

Affinity and potency

- Affinity: Amount required to occupy a given proportion of the target

 e.g: Ki
- **Potency**: Amount required to produce an effect of given intensity
 - e.g.: IC50

Competitive vs. non-competitive inhibition

S

For non-competitive:

 $pK_i = pIC_{50}$

For competitive:

$$pK_i = pIC_{50} + C\left([S], K_m\right)$$

Assumption: Enzymes follow Michaelis-Menten kinetics

Goal: Predict which model is true

Non-competitive interaction

Identification of binding mode

• drug *x* target *x* measurement type

• The model is:

 $Y_{ijk} = d_{i,1}p_{j,1}t_{k,1} + ... + d_{i,D}p_{j,D}t_{k,D}$

Q1: Dominant interaction mode for a target **Q2:** Interaction mode for a target-ligand pair

The setup

- Model: Bayesian version
 30 latent dimensions
- Dataset: ChEMBL v19
 - Proteins: 346
 - Compounds: 15k
 - 59k IC50 observations
 - 3121 Ki observations
 - Fingerprint: ECFP6 (dim: 106k)

Latent dimensions for IC₅₀ and K_i

- Compared latent vectors for IC $_{50}$ and K $_{i}$ (t $_{0}$ and t $_{1}$)
- There are 3 latent dimensions encoding their differences

$$pK_i = pIC_{50} + C\left([S], K_m\right)$$

Predicting interaction of pairs

- We chose 30 protein-compound pairs with both Ki and IC50 measurements
 - Randomly 10 from top 100 pairs with highest pKi pIC50
 - Randomly 10 from top 100 pairs with highest pIC50 pKi
 - Randomly 10 from 100 pairs with smallest abs(pIC50 pKi)
- Removed them to test set and tried to predict
- Predicted abs(pKi pIC50) for all test pairs

Protein-compounds	Mean abs(pKi - pIC50)
Competitive pairs	0.671
Non-competitive pairs	0.234

Predicting dominant behaviour

TOP10 Predicted competitive

ChEMBL ID	Protein name		
CHEMBL284	Dipeptidyl peptidase IV		
CHEMBL325	Histone deacetylase 1		
CHEMBL260	MAP kinase p38 alpha		
CHEMBL1865	Histone deacetylase 6		
CHEMBL1937	Histone deacetylase 2		
CHEMBL289	Cytochrome P450 2D6		
CHEMBL4005	PI3-kinase p110-alpha subunit		
CHEMBL1978	Cytochrome P450 19A1		
CHEMBL2581	Cathepsin D		
CHEMBL4793	Dipeptidyl peptidase IX		

TOP10 Predicted uncompetitive

ChEMBL ID	Protein name	
CHEMBL240	HERG	
CHEMBL3772	Metabotropic glutamate receptor 1	
CHEMBL5145	Serine/threonine-protein kinase B-raf	
CHEMBL3663	Growth factor receptor-bound protein 2	
CHEMBL4641	Voltage-gated T-type calcium channel alpha-1G subunit	
CHEMBL3230	Sphingosine 1-phosphate receptor Edg-6	
CHEMBL2001	Purinergic receptor P2Y12	
CHEMBL1785	Endothelin receptor ET-B	
CHEMBL287	Sigma opioid receptor	
CHEMBL3227	Metabotropic glutamate receptor 5	

Possible future work

We are interested to collaborate on analysis of different type of **compound - protein interaction** data:

- Unprocessed measurement series for IC₅₀
 determination
- Hill slope
- **k**_{on}, **k**_{off}
- ...

Cell Chemical Biology

RESOURCE | VOLUME 25, ISSUE 5, P611-618.E3, MAY 17, 2018

Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery

Jaak Simm ⁸ • Günter Klambauer ⁸ • Adam Arany ⁸ • Marvin Steijaert • Jörg Kurt Wegner • Emmanuel Gustin • Vladimir Chupakhin • Yolanda T. Chong • Jorge Vialard • Peter Buijnsters • Ingrid Velter • Alexander Vapirev • Shantanu Singh • Anne E. Carpenter • Roel Wuyts • Sepp Hochreiter ⁹ • Yves Moreau ⁹ Hugo Ceulemans <u>8</u> ⁹, ¹⁰ 🖸 • Show less • Show footnotes

Published: March 01, 2018 • DOI: https://doi.org/10.1016/j.chembiol.2018.01.015 •

Classical high-content imaging

Cell images

Predicting unrelated protein assays

Assay preparation

- Cell-line: H4 *Homo sapiens* brain neuroglioma
- Assay was designed for detecting Glucocorticoid receptor nuclear translocation and **repurposed**
- Compounds applied @ 10µM and incubated 1 hour
- 1μ M hydrocortisone for 1 hour
- Fixed, stained, imaged
 - Hoechst, CellMask deep red, indirect immunofluorescence on GCR
- 842 dimensional **feature extracted** via CellProfiler pipeline

Machine Learning Approaches

Deep Learning

Matrix Factorization (MACAU)

Experimental Results

- Imaging assay for glucocorticoid receptor (GR)
 - 500k compounds
 - Repurposed for **535** protein targets
 - Using **15M IC**₅₀ measurements
- Estimated AUC-ROC for targets with at least 25 actives, 25 inactives

AUC-ROC threshold	Macau	DNN	Common
0.9	31 (5.8%)	43 (8.0%)	26 (4.9%)
0.7	218 (40.7%)	245 (45.8%)	209 (39.1%)

• **6-8%** of protein assays are predictable (AUC-ROC > 0.9)

In vitro validation

- Two targets (with AUC-ROC > 0.9) were followed up.
- Oncology
 - kinase (unrelated to GR)
 - **36.3% hit rate** (124 submicromolar hits)
 - 50-fold enrichment
- CNS
 - non-kinase enzyme
 - We used diversity maximization
 - 25.5% hit rate (36 submicromolar hits)
 - 280-fold enrichment

Combining Multiple cell lines

Cell line	Description	Incubation time	Compounds tested
H4	Human brain neuroglioma	1h	500k
HepG2	Human hepatocellular carcinoma	72h	500k
РНН	Primary human hepatocytes	168h	150k

Combining Multiple cell lines

Number of targets

Number of well predicted targets

AUC-ROC > 0.9

AUC-ROC > 0.7

Significant differences in recognized assays

Data fusion results

H4 weaker - fusion performance is better H4 stronger - fusion performance is worse p > 0.01

- Fusion is implemented by concatenating features
- 400k common compounds
- There are no assays with significant loss
- Average AUC improves from 0.707 to 0.732

Discussion and future work

- Established a proof of concept that image-based feature can be used for **unrelated targets**.
- Advantages
 - Scaffold hopping: does not depend on chemical similarity
 - Generalizes to other treatments (antibodies, RNAi, etc)
- Future work
 - Using assays for general use (cell painting assay)
 - Machine learning side
 - Single cell based pipelines
 - convolutional neural networks
- There is a need for public data!

SCIENTIFIC REPORTS

Article OPEN Published: 29 May 2018

Linking drug target and pathway activation for effective therapy using multi-task learning

Mi Yang, Jaak Simm, Chi Chung Lam, Pooya Zakeri, Gerard J. P. van Westen, Yves Moreau & Julio Saez-Rodriguez 🐱

Scientific Reports 8, Article number: 8322 (2018) Download Citation 🛓

Computational setup

- Model: Bayesian version
- Side information
 - Drug: known targets
 - Cell line: transcriptomics
 - Pathway level aggregation
- Data
 - 265 drugs
 - 990 cell lines
 - 228 targets
 - 11 pathways

Possible questions

What will be the effect

- Q1: given a well characterized drug, and a new cell line knowing its expression profile
- Q2: given a known cell line, and a new drug given its targets
- **Q3**: if both are known, but not tested in this combination
- **Q4**: if both are new

Feature interaction analysis

Only taking into acount the predictable part of the latents:

$$IC50 = (\beta_D^T \mathbf{x})^T \beta_C^T \mathbf{z}$$
$$IC50 = \mathbf{x}^T \beta_D \beta_C^T \mathbf{z}$$

Interaction matrix

"Upregulating of gene Y correlates with drug sensitivity when targeting protein X"

Feature interaction analysis

Packages

License: MIT License

• Macau

https://github.com/jaak-s/macau

• SparseFlow

• https://gitlab.com/biolearning/sparseflow

Thank you fo your attention!

Jaak Simm Yves Moreau Pooya Zakeri

Günter Klambauer Sepp Hochreiter

Anne E. Carpenter Shantanu Singh

Hugo Ceulemans Jörg Kurt Wegner Marvin Steijaert Alexander Vapirev Emmanuel Gustin Vladimir Chupakhin Yolanda T. Chong Jorge Vialard Peter Buijnsters Ingrid Velter Roel Wuyts

Mi Yang Chi Chung Lam Gerard J. P. van Westen Julio Saez-Rodriguez