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Outline

- Chemical and biological data

- Using in silico methods to understand modes of 
action, case studies

- The problem with ‘modes of action’

- Using understanding of MoA to go forward –
synergistic compound selection
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So what’s the point of it all?

We would like to answer questions!

- “What is the reason upon treatment with A 
for phenotypic effect B?”

-> Mode of Action

- “Which compound should I make to 
achieve effect C in a biological system?”

-> Chemistry

- “Does patient D or patient E respond 

better to drug F?”

-> Phenotype / Phenotype Change



BUT…This is a very simplified view…

- Links between drugs/targets/diseases are 
quantitative (and incompletely characterized)

- There are subtle differences in eg compound 
effects (partial agonists vs full agonists, off-targets, 
residence times, etc.)

- Effects are state-dependent (variation between 
individuals, … depends on even what you have 
eaten in the morning/absorption…), not captured 
in the data

- Data quality is often not sufficient (biology is 
inherently noisy; noise+species variation)

- …
- All of this makes assigning labels such as ‘active’, 

‘toxic’ etc to compounds very difficult!



Starting from in vivo efficacy we can 

predict the MoA, based on ligand chemistry
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A. Koutsoukas et al., J Proteomics 2011 (74) 2554 – 2574.
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• The models enable automated prediction of the 

targets or target  families of orphan ligands given 

only their chemical structures.

Exploiting known bioactivity data for new 

decisions: Target predictions

Target Class Models

Predicted 

Targets
Orphan 

compound

Chemogenomics Database

Ligand 1—Target 1

Ligand 1—Target 2

Ligand 2—Target2

…

Ligand N—Target N

Public model 

with AZ: 

Mervin et al.. 

J Cheminf. 

2015 



Prediction Examples: Gleevec, 

Ruboxistaurin

- Gleevec (Novartis),

- Launched

- Targets Bcr-Abl, c-kit,

PDGFRb

- Ruboxistaurin
(Lilly/Takeda),Phase III

- PKCb



Problem of representation of 

chemical structure

- No ‘natural’ way of encoding
molecules

- Graph-based descriptors are
information-rich; however
binding is mediated ‘via
the surface’ of the molecule

- Too close to the connectivity matrix doesn’t 
generalize; too abstract not specific enough

- ‘Middle ground’ is needed
- In (many) retrospective studies circular 

fingerprints gave best performance 



How do you describe molecules?

E.g. using ‘Circular fingerprints’

- Each fingerprint represents a central atom 
and its neighbors

- For each molecule, there are as many 
fingerprints as heavy atoms in the 
molecule

RC Glen, A Bender, CH Arnby, L Carlsson, S Boyer, J Smith

IDrugs 2006, 9:199-206



Public target prediction model, 

based on ~200 mio data points

- Work of Lewis Mervin, with AstraZeneca
- 2015, J. Cheminformatics (7) 51
- ChEMBL actives (~300k), PubChem 

inactives (~200m)
- Can be retrained on in-house data
- 1,080 targets

- https://github.com/
lhm30/PIDGIN

Also data is available
to everyone!



Training MoA models using in-house SAR data

• Orthologs with 85%

sequence similarity from

Homologene

• Retain targets with 10 or

more active data points

• 9,570,000 actives

• 2,882 Targets

• 420 HTS screens

• 343 Targets

• 189,500,000 inactives 

ChemConnect AZ HTS Datamart

• 300,000+ screens

• 2,116 Targets

• Annotated inactives 

from HTS screens

• 420,000,000  +

inactives

PubChem

AZ Data and PubChem data combined:

• 603,000,000 inactive data points

• 2,161 Targets
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Functional target prediction

• Compounds do not only have a ‘class label’ against a 

protein

• Modulating a protein can have multiple effects (say, in the 

simplest case, activating and inactivating/inhibiting effects)

• Needed to map activity types to binary activating/inhibiting 

labels

• Complicates classification even further – now we have 500-

5,000 classes, and two subtypes each!
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Problem: Biased data
Typical data looks as follows:
- ~ 500-5,000 classes
- ~ 20-10,000 actives per class
- ~ 1,000-1,000,000 inactives per class
- ~ 1-100 classes per compound (instance)
- Some classes are diverse, some are not

- No reliable way to estimate underlying 
distributions (‘background chemical space’), or 
priors for classes (‘how much’ of chemical 
space belongs to one class)

- Problem: Estimating class-membership across 
this type of biased data



- Project with Eli Lilly
- Male Wistar rats

- Treated with ~500 sleep-inducing compounds, 
dozens of readouts from EEG/EMG, Abdominal 
Minimitter, Cage that define ‘good sleep’

- Q: What are bioactivity profiles associated with 
compounds inducing good sleep?

- Going from single to multiple targets 
(polypharmacology), and from single to multiple 
simultaneous MoA hypotheses for given phenotype

Understanding rat sleep data

Work by Georgios Drakakis

ACS Chem Biol. 2017



Compounds classified, followed by 

pattern discovery in target space

- Efficacy and side-effect readouts used to 
define ‘good’ and ‘bad’ compound class

- Target prediction, say:
- ‘Good’ compound targets: ABC, ABD, ABE
- ‘Bad’ compound targets: ACE, BCD, BCE

- Decision trees for pattern discovery: Here 
targets ‘AB’ are associated with efficacy, 
and tolerable side effects 



Decision trees learn receptor bioactivity 

profiles associated with ‘good’ and ‘bad’ sleep 



Bioactivity profiles give 6 MoA hypotheses 

for prospective testing (5 were selected)

Protein Targets
Polypharmacological Bioactivity Profiles

A B C D E F

D(2) dopamine receptor 1 1 1 0 0 0

Histamine H1 receptor 1 1 0 1 1 0

5-hydroxytryptamine receptor 2A 1 0 NA NA NA NA

Transient receptor potential 

cation channel subfamily A 

member 1

NA 1 NA NA NA NA

D(1B) dopamine receptor NA NA 1 NA NA NA

Muscarinic acetylcholine 

receptor M4
NA NA NA 1 1 NA

α-1A adrenergic receptor NA NA NA 1 0 NA

Muscarinic acetylcholine 

receptor M1
NA NA NA 1 0 NA

D(4) dopamine receptor NA NA NA NA NA 1



Prospective validation on both 

target and phenotypic level
- 7 marketed drugs/drug combinations were selected 

which are predicted to modulate sleep, are 
dissimilar to the training set, but were not annotated 
with this side effect

- 21 out of the 27 predicted targets (78%) were 
experimentally confirmed

- 5 out of 7 marketed drugs (71%) tested increased 
sleep parameters (a sixth led to hyperactivity!)

- Overall 78% correct on target level, ~71% on 
phenotypic level (‘positive predictive value’)



What did we learn?

- We went in silico from single targets to 
multiple targets, and multiple hypotheses, 
in mode of action analysis

- Able to understand (hypothesize) modes 
of action, and select new compounds

- Missing: Functional effects, quantitative 
activities (to some extent in new versions 
of in silico models), any in vivo (PK/PD) 
properties, etc.



Application: Understanding and 

predicting cytotoxicity in screening 

HTS collections
Work of Lewis Mervin, with AstraZeneca 

(Molndal/Cambridge)



Cytotoxicity in compound sets

- Even low level cytotoxicity is linked to 
adverse events in man, and is hence 
often undesired (…where not explicitly 
desired)

- Aims of project three-fold:

- Predict cytotoxicity of new compounds

- Gain chemical insight into cytotoxic 

substructures

- Gain biological insight into cytotoxicity-related 

mechanisms activated by small molecules



Predicting and understanding 

cytotoxicity of compound libraries
300k compounds profiled with AstraZeneca for 
cytotoxicity (in dose response)



Chemical fragments, targets can be used for 

predictions, interpretation of cytotoxicity



- The problem with ‘modes of action’



“Mode of action”… words easily 

said, not so easily verified

- Need to show achievement of effect, via proposed 
‘mechanism’

- Involves e.g. target engagement in vivo; ruling out 
other ‘routes’ of activity

- MoA has different levels – target, gene level, 
protein level, protein activity level, …

- Operating on eg target level ‘simplifies’ problem, 
but possibly also oversimplifies it

- Q: What is the desired activity of a small molecule 
that inverts the disease state (to ‘healthy’)?



Investigating links between indications  

and neurotransmitter level changes

- Frequent working hypotheses of CNS active 
drugs: We aim for particular activity on the 
target level and/or the biomarker level (eg
here neurotransmitter/brain area level)

- Hoped to be linked to efficacy in vivo

- One might assume that disease, and 
treatment (mode of action of drugs), are in 
some way ‘defined’

- So let’s look at the data…



So what do sedatives, stimulants, 

antipsychotics, … have in common?

- Hypothesis: “A CNS-active drug of a certain type 
works by modulating neurotransmitters (specific 
neurotransmitter(s), specific region(s))”

- We* compiled information from 15,777 research 
articles (comprising 110,674 rats) from literature:

- Drug class (ATC code - antipsychotic, stimulant, …), 
etc., neurotransmitter, region

*Neurochemical Fingerprints of Psychiatric Drugs.
Hamid R. Noori (MPI Tuebingen), Lewis Mervin, Vahid
Bokharaie, Özlem Durmus, Lisamon Egenrieder, Stefan Fritze, 
Britta Gruhlke, Hans-Hendrik Schabel, Sabine Staudenmaier, 
Nikos K. Logothetis, Andreas Bender,, Rainer Spanagel (under 
revision) www.syphad.org (publicly, freely accessible)



So what do antidepressants, 

antipsychotics,… have in common?

- You would assume that diseases, and hence 
treatments (via their ‘mode of action’), are in some 
way ‘defined’

- How consistent are changes to neurotransmitter 
levels, within and between drug classes?

- Let’s look at the data…



Neurotransmitter (functional) similarity within 

and between ATC classes

Same use, but no functional 

readout similarity 

Different use, but same response 

profile (repurposing options?)

Neurotransmitter changes are vaguely correlated with use 

(ATC codes) … but only very weakly



So… how should we define the mode of 

action of a CNS-active compound?

- Not really defined on neurotransmitter (so likely also 
not protein) level

- Using protein targets to explain mode of action/ design 
compounds probably only ‘really’ works in narrowly 
defined cases (eg infectious diseases, activation of 
kinases/enzyms, …)

- Using biological readouts is likely better, but… they 
need to be mechanistically related to disease

- Poses problems when developing a design MoA
hypothesis – what do we need to target, and how?

- Time and spatially resolved data might help



Novel 2-Amino-Chromene-Nitrile that Targets

Bcl-2 in Acute Myeloid Leukemia (AML)

O

R

H2N

N

Screening of active 

compounds 

affecting the 

proliferation of HL-

60 cells from a 

library of chromene 

derivatives

Work  with Dr Basappa’s and Prof 

Rangappa’s Groups and Philip Koeffler; 

first authors are Keerthy, Manoj Garg



In Silico Target Predictions Suggest Bcl-2 as a 

Protein Targeted by this Compound

Target Class Models

Predicted 

Targets: 

Bcl-2 as 

top target

2-Amino-

Chromene-

Nitrile

Chemogenomics Database

Ligand 1—Target 1

Ligand 1—Target 2

Ligand 2—Target2

…

Ligand N—Target N
O

R

H2N

N

Note: In some cases – such as here – the predicted target is 

not necessarily the direct target, often they turn out to be 

indirectly targeted!



Compound 4g Decreases Expression of Bcl-2 

And Increases Levels of Activated, Cleaved 

Caspase-9 in Human AML Cell Lines

MOLM13, MOLM14, MV4-11 
and HL-60 all expressed anti-

apoptotic Bcl-2 as determined 
by Western Blotting

Treatment with 
compound 4g 

decreased bcl-2 
expression and 
increased levels 

of activated, 
cleaved  

Caspase-9



Integrated chemical and biological 

view on compound action..??



- Using gene expression data to understand modes 
of action, and explain/select synergistic 
compound combinations



Note on chemical and biological data

- In chemistry
- We can (generally) characterize the system (compound) 

reasonably well

- Chemical space is large (say, 10^63 molecules?)

- Compounds exist in different forms (conformations, etc.).

- Biology
- Operates on ‘different levels’ (spatial, time, context such 

as cell type and state, etc.)

- Space is smaller (say 200k proteins?) but highly 

connected, conditional (different cells, states of a 

cell/protein, etc.)

- We (generally) don’t know what the readouts (genes, 

imaging readouts, ..) mean, where the signal is

- Technology development & relevance of data don’t always 

go hand in hand (‘technology push’ not always helpful…)



Combined gene expression / on-target activity 

analysis for compound selection

- Select compounds based both on gene 
expression and target prediction profiles

KalantarMotamedi et al. Cell Death Discovery 2016



“BioStateConverter”

(work of Yasaman KalantarMotamedi)

- Compound-Disease mapping via gene expression 

data

- Drug should invert gene expression profile of 

disease

- This ‘returns the system to the healthy state’ 

(better seen as signal, not necessarily interpreted 

mechanistically)



Data Sources

- ConnectivityMap (1,300 compounds to Affymetrix
chips)

- LINCS (12,000 compounds to 1,000-gene expression 
signatures)

- Many issues with the data (dose/timepoint variability; 
reproducibility of controls, etc.)

- In our experience data contains sufficient signal for 
signal detection (but, possibly, less so for ‘modelling’)

- Gene expression data is still ‘difficult’ (regarding 
conditions, interpretability – less so its generation)  



Selected compound induces differentiation of 

stem cells into cardiac myocytes (by RT-PCR; 

work with Dr Nasr, Royan Institute, Isfahan)

3 days 5 days

Control

Compound

KalantarMotamedi et al. Cell Death Discovery 2016



Startup ‘Healx’ founded, for ‘data-driven 

drug repurposing in rare diseases’

- Emphasis 

on patient 

groups

- CEO Tim 

Guilliams, 

funded by 

Amadeus 

and others

- CUE ‘Life 

Science 

Startup of 

the Year’ 

2015

www.healx.io; 4yrs old; ~35 people

July 2018 Series A funding

$10m, led by Balderton Capital



Identifying synergistic combinations with 

Gemcitabine in Pancreatic cancer

- Pancreatic cancer difficult to treat 
(chemotherapy; targeted treatments erlotinib, 
larotrectinib, not many other options)

- Gemcitabine frequently used, but efficacy 
relatively low

- Looking for synergistic combinations

- How? Correlation, anticorrelation, particular 
pathways, …

- “Desired combination on pathways level –
keeping desired anticorrelation part of activity, 
finding second drug that increases overall 
anticorrelation with disease signature”



Criteria for selecting combinations

- Score for (a) reversing undesired anticorrelation
with disease signature, and (b) taking (resistant) 
Panc-1-specific differentially expressed genes 
into account (Panc1 vs BXPC3, Mia Paca-2, 
HPAFII and HS766T) 



LINCS dataset for selection of compounds 

selective for Panc1 vs epithelial cells

- Gene expression from Panc-1, BXPC3, Mia Paca-
2, HPAFII and HS766T cells as signal, selective 
over human pancreatic ductal epithelial cells 

- 20,413 compounds applied to 77 different cell 
lines including 59 cancer and 10 primary cell lines 
with eight other cell lines compared to gene 
expression

- No Panc-1 in LINCS, assumed/hoped MCF-7 
differential gene expression extrapolates to Panc-
1

- Pathway-based signature matching of disease and 
compound space



Prospective validation – 9/30 combinations 

synergistic

- 30 compound combination prospectively tested

- 9 out of 30 compounds showed synergy (according to 
SUM_SYN_WEIGHTED metric in the Combenefit
software using Bliss and Loewe synergy definitions) 



Conclusions from pancreatic cancer part

- Gemcitabine+entinostat dose reduction index/DRI50 = 
43, compared to gemcitabine+trichostatin-A DRI50=3

- Despite Trichostatine HDAC1 IC50 of 20nM, entinostat
IC50 of 510nM, so other factors in addition to HDAC 
inhibition possible relevant

- LINCS-derived Hypothesis (untested!): “Entinostat
transcriptional profile in LINCS reverses undesired 
effect of gemcitabine on chromosome maintenance 
pathway by down-regulating BRCA1, RFC5, LIG1, 
POLE2 and PCNA. Only PCNA and POLE2 are down 
regulated in gene signature profile of Trichostatine-A 
as well”

- Combination changes mechanism over gemcitabine 
treatment alone



Understanding synergy in Shexiang 

Baoxin Pill (SBP)

- SBP is treatment for cardiovascular 
diseases from Traditional Chinese 
Medicine; 7 Materia Medica, 22 
compounds detected in blood plasma –
how do they interact pairwise?

- Modelled based on predicted targets, 
network information

- Work of Siti Zobir, Ranjoo Choi, Tai-Ping 
Fan, Dezso Modos (Cambridge)



• SheXiang BaoXin Pill (SBP) is a widely-used Chinese 
prescription medicine for the treatment of 
cardiovascular diseases in China.

• Comprises seven materia medica, with “aromatic herbs 
activating yang, benefiting vital energy and 
strengthening the heart for treating angina and 
myocardial infarction caused by ischemia.”

• MOAs of SBP involves neovascularization through 
promoting angiogenesis in the heart

Shexiang Baoxin Pill (SBP)

1 gamabufotalin

2 bufalin

3 cinobufagin

4 ginsenoside Re

5 ginsenoside Rb1

6 ginsenoside Rb2

7 ginsenoside Rb3

8 ginsenoside Rc

9 ginsenoside Rd

10 cholic acid

11 hyodeoxycholic acid

12 chenodeoxycholic acid

13 deoxycholic acid

14 borneol

15 cinnamaldehyde

16 cinnamic acid

17 muscone

18 benzyl benzoate

19 17-hydroxyprogesterone

20 11- hydroxyprogesterone

21 ginsenoside Rg1

22 ginsenoside Rg3

SBP’s plasma 
absorbed compounds

AIM: To elucidate mechanism of action of the synerg
istic pairwise combination in promoting angiogenesis 
by using in silico and RNA-seq analysis



Gene expression and 

proteomic analysis of highest 

observed synergy

a) Compounds 

mapped to targets

b) Generation of 

disease network

c) Network-based 

prediction of 

compound 

synergies

d) Quantitative validation 

of synergy predictions

e) Mechanistic 

analysis



SBP targets the central nodes of the angiogenesis 
and coronary hearth disease network



A ginsenoside and an adjuvant compound 
(cholic acid) or progesterone often show 
synergy 

Correct prediction:

Synergistic prediction (Top 
20), true positive

Non-synergistic prediction
(Bottom 20), true negative

Incorrect prediction:

Synergistic prediction
(Top 20), false positive

Non-synergistic prediction
(Bottom 20), false negative
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2. Rescue of Homocysteine-induced tub

e damage
3. RNA-seq analysis
4. Validation of key genes and pathways

Elucidate MOAs

Biological readouts

Rg3/Rb2 combination synergistic in cell proliferation, tube 

formation assay



1. Endothelial cell proliferation 
2. Rescue of Homocysteine-induced tube 

damage
3. RNA-seq analysis
4. Validation of key genes and pathways

Elucidate MOAs

Biological readouts

94 genes

White module 

(WGCNA) 

(Intramodular 

correlation>0.7, 

p<0.01)

337 genes

(DEG analysis 

by DESeq2, 

cutoff : FDR 

< 0.01)

11 
overlap
ping 
genes

Category Term PValue

GOTERM_BP_DIREC

T GO:0097191 extrinsic apoptotic signaling pathway 0.014722

GOTERM_BP_DIREC

T GO:0001525 angiogenesis 0.016897

GOTERM_BP_DIREC

T GO:0090050

positive regulation of cell migration involved 

in sprouting angiogenesis 0.030449

GOTERM_BP_DIREC

T GO:0008152 metabolic process 0.038043

GOTERM_BP_DIREC

T GO:0097105 presynaptic membrane assembly 0.038979

GOTERM_BP_DIREC

T GO:0070886

positive regulation of calcineurin-NFAT sign

aling cascade 0.038979

GOTERM_BP_DIREC

T GO:0043085 positive regulation of catalytic activity 0.049651

GO analysis of the white 

module : angiogenesis 53 genes

from top10 

GSEA 

canonical 

pathways

22 genes

from top10 

ConsensusDB

pathways

frequently occurring genes (more than twice)

WGCNA

Highly correlated genes

GO Shortlisted 7 genes

12 genes from 
GSEA

6 genes from 
ConsensusDB

Using gene expression data for mechanistic insight (2)



Control Rb2 Rg3 Combo

EDN1

Control Rb2 Rg3 Combo

CXCL8

Control Rb2 Rg3 Combo

SPARC

Control Rb2 Rg3 Combo

SMOC1

Control Rb2 Rg3 Combo

CIB1

Control Rb2 Rg3 Combo

TGFBR2

Control Rb2 Rg3 Combo

MMP2

Control Rb2 Rg3 Combo

CYR61

Control Rb2 Rg3 Combo

SERPINE1

Control Rb2 Rg3 Combo

FGF16

Control Rb2 Rg3 Combo

FGFRL1

Control Rb2 Rg3 Combo

TNFRSF12A

Control Rb2 Rg3 Combo

PDGFC PDGFA SLIT3 GDF3 PDGFRB ITGB1

Validation by RT-PCR – eg CXCL8 is synergistically 

upregulated (etc)



So what did we learn?

• Predicting targets, using disease networks, connects  
formulation, chemistry, protein targets and disease   
biology

• We can use network topology to generally             
understand and predict synergy, as demonstrated for 
SBP

• Experimental analysis provides hypothesis for         
mechanism of synergy



Summary

- Chemical and biological data tell us something 
different about the ‘mode of action’ of a molecule

- We can use target prediction, gene expression data 
to understand parts of the mode of action of a 
compound

- … but MoA is not uniquely defined, different data 
sources provide difference parts of the puzzle

- Gene expression data helps understand MoA, 
repurposing, help select synergistic compound 
combinations
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