Tangency and Discriminants

FPSAC 2019, Lubljana

Sandra Di Rocco,

Goal

Goal

- Discriminants: tangency and duality

Goal

- Discriminants: tangency and duality
- Discriminants: tangential intersections

Goal

- Discriminants: tangency and duality
- Discriminants: tangential intersections
- Generalized Schäfli decomposition

Natural concept

The discriminant is a concept occurring naturally in connection with the way we grasp 3D objects.

Figure: Boundary locally defined by $f(x, y, z)=0$. The Discriminant with respect to x is the "plane curve" defined by the equation obtained by eliminating x from $\left\{f=0, \frac{\partial f}{\partial x}=0\right\}$

The discriminants of univariate polynomials

The discriminants of univariate polynomials
The discriminant: gives information about the nature of the polynomial's roots.

The discriminants of univariate polynomials
The discriminant: gives information about the nature of the polynomial's roots.

- the discriminant of $c_{2} x^{2}+c_{1} x+c_{0}$ is $c_{1}^{2}-4 c_{2} c_{0}$.

The discriminants of univariate polynomials

The discriminant: gives information about the nature of the polynomial's roots.

- the discriminant of $c_{2} x^{2}+c_{1} x+c_{0}$ is $c_{1}^{2}-4 c_{2} c_{0}$.
- for higher degrees the discriminant D_{n} is a $(2 n-1) \times(2 n-1)$ determinant :

$$
D_{n}=\left(1 / c_{n}\right) \operatorname{det}\left[\begin{array}{ccccccc}
c_{n} & c_{n-1} & \cdots & c_{0} & 0 & \cdots & 0 \\
0 & c_{n} & c_{n-1} & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
n c_{n} & (n-1) c_{n-1} & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 \cdots & \cdots & 2 c_{2} & c_{1}
\end{array}\right]
$$

Algebra vs Geometry

5/28

Algebra vs Geometry

Algebra: $D_{n}=\operatorname{Res}\left(p(x), p^{\prime}(x)\right)$

Algebra vs Geometry

Algebra: $D_{n}=\operatorname{Res}\left(p(x), p^{\prime}(x)\right)$

Geometry: $\begin{array}{llllll}1 & x & x^{2} & x^{3} & \bullet & \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{d}\end{array}$
$J_{1}=\mathcal{O}_{\mathbb{P}^{1}}(d-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(d-1)$ and $\operatorname{deg}\left(c_{1}\left(J_{1}\right)\right)=2 d-2$

The definition of discriminant
Let $\mathcal{A} \subset \mathbb{Z}^{d}$ be a finite subset of lattice points:

$$
\mathcal{A}=\left\{m_{0}, m_{1}, \ldots, m_{n}\right\}
$$

The definition of discriminant
Let $\mathcal{A} \subset \mathbb{Z}^{d}$ be a finite subset of lattice points:

$$
\mathcal{A}=\left\{m_{0}, m_{1}, \ldots, m_{n}\right\}
$$

A polynomial p in d variables is supported on \mathcal{A} if

$$
p\left(x_{1}, \ldots, x_{d}\right)=\sum_{m_{i} \in \mathcal{A}} c_{i} x^{m_{i}}
$$

where $x^{m}=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{d}^{k_{d}}$ if $m=\left(k_{1}, \ldots, k_{d}\right) \in \mathcal{A} \in \mathbb{Z}^{d}$.

The definition of discriminant
Let $\mathcal{A} \subset \mathbb{Z}^{d}$ be a finite subset of lattice points:

$$
\mathcal{A}=\left\{m_{0}, m_{1}, \ldots, m_{n}\right\}
$$

A polynomial p in d variables is supported on \mathcal{A} if

$$
p\left(x_{1}, \ldots, x_{d}\right)=\sum_{m_{i} \in \mathcal{A}} c_{i} x^{m_{i}}
$$

where $x^{m}=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{d}^{k_{d}}$ if $m=\left(k_{1}, \ldots, k_{d}\right) \in \mathcal{A} \in \mathbb{Z}^{d}$.

Figure: Quadrics $c_{0}+c_{1} x+c_{2} y+c_{3} x y$

The definition of discriminant

Definition

Let $\mathcal{A}=\left\{m_{0}, m_{1}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$. The discriminant of \mathcal{A} is (if it exists!) a polynomial $D_{\mathcal{A}}\left(c_{0}, \ldots, c_{n}\right)$ in $n+1$ variables vanishing whenever the corresponding polynomial $p(x)=\sum_{m_{i} \in \mathcal{A}} c_{i} x^{m_{i}}$ has some multiple root in $\left(\mathbb{C}^{*}\right)^{d}$.

The definition of discriminant

Definition

Let $\mathcal{A}=\left\{m_{0}, m_{1}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$. The discriminant of \mathcal{A} is (if it exists!) a polynomial $D_{\mathcal{A}}\left(c_{0}, \ldots, c_{n}\right)$ in $n+1$ variables vanishing whenever the corresponding polynomial $p(x)=\sum_{m_{i} \in \mathcal{A}} c_{i} x^{m_{i}}$ has some multiple root in $\left(\mathbb{C}^{*}\right)^{d}$.

$$
\begin{gathered}
\text { there is } x \in\left(\mathbb{C}^{*}\right)^{d} \text { s.t. } \\
D_{\mathcal{A}}\left(c_{0}, \ldots, c_{n}\right)=0 \Leftrightarrow \quad p(x)=\ldots=\frac{\partial p}{\partial x_{j}}(x)=\ldots=0
\end{gathered}
$$

The definition of discriminant

Definition

Let $\mathcal{A}=\left\{m_{0}, m_{1}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$. The discriminant of \mathcal{A} is (if it exists!) a polynomial $D_{\mathcal{A}}\left(c_{0}, \ldots, c_{n}\right)$ in $n+1$ variables vanishing whenever the corresponding polynomial $p(x)=\sum_{m_{i} \in \mathcal{A}} c_{i} x^{m_{i}}$ has some multiple root in $\left(\mathbb{C}^{*}\right)^{d}$.

$$
\begin{gathered}
\text { there is } x \in\left(\mathbb{C}^{*}\right)^{d} \text { s.t. } \\
D_{\mathcal{A}}\left(c_{0}, \ldots, c_{n}\right)=0 \Leftrightarrow \quad p(x)=\ldots=\frac{\partial p}{\partial x_{j}}(x)=\ldots=0
\end{gathered}
$$

Otherwise $D_{\mathcal{A}}=1$.

The definition of discriminant

Definition

Let $\mathcal{A}=\left\{m_{0}, m_{1}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$. The discriminant of \mathcal{A} is (if it exists!) a polynomial $D_{\mathcal{A}}\left(c_{0}, \ldots, c_{n}\right)$ in $n+1$ variables vanishing whenever the corresponding polynomial $p(x)=\sum_{m_{i} \in \mathcal{A}} c_{i} x^{m_{i}}$ has some multiple root in $\left(\mathbb{C}^{*}\right)^{d}$.

$$
\begin{gathered}
\text { there is } x \in\left(\mathbb{C}^{*}\right)^{d} \text { s.t. } \\
D_{\mathcal{A}}\left(c_{0}, \ldots, c_{n}\right)=0 \Leftrightarrow \quad p(x)=\ldots=\frac{\partial p}{\partial x_{j}}(x)=\ldots=0
\end{gathered}
$$

Otherwise $D_{\mathcal{A}}=1$.
Existence does not mean an efficient algorithm and hence a formula!

Example 1

For the configuration $\mathcal{A}=\{(0,0),(1,0),(0,1),(1,1)\} \subset \mathbb{Z}^{2}$

The discriminant is given by an homogeneous polynomial $\Delta_{\mathcal{A}}\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$ vanishing whenever the corresponding quadric has a singular point in $\left(\mathbb{C}^{*}\right)^{2}$. I

$$
D_{\mathcal{A}}\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=\operatorname{det}(M)=c_{0} c_{3}-c_{1} c_{2}
$$

Geometry

9/28

Geometry

9／28

Geometry

Let $Q \subset \mathbb{C}^{2}$ and $p \in \mathbb{C}^{2}$

Geometry

Let $Q \subset \mathbb{C}^{2}$ and $p \in \mathbb{C}^{2}$

- general tangent lines to Q do not contain the point p

Geometry

Let $Q \subset \mathbb{C}^{2}$ and $p \in \mathbb{C}^{2}$

- general tangent lines to Q do not contain the point p
- exceptional locus: $\left\{x \in Q \mid p \in \mathbb{T}_{Q, x}\right\}$ has degree 2 .

Geometry

Let $Q \subset \mathbb{C}^{2}$ and $p \in \mathbb{C}^{2}$

- general tangent lines to Q do not contain the point p
- exceptional locus: $\left\{x \in Q \mid p \in \mathbb{T}_{Q, x}\right\}$ has degree 2 .
- It gives the degree of the discriminant.

Geometry

10／28

Geometry

- The polar classes P_{i} are codimension i cycles on $X \hookrightarrow \mathbb{P}^{N}$

Geometry

- The polar classes P_{i} are codimension i cycles on $X \hookrightarrow \mathbb{P}^{N}$
- P_{1} on Q is a zero-cycle of degree 2.

Projective duality

Projective duality

$X \hookrightarrow \mathbb{P}^{n}$ be a smooth embedding of dimension d.

Projective duality

$X \hookrightarrow \mathbb{P}^{n}$ be a smooth embedding of dimension d. The dual variety is defined as:

$$
X^{*}=\overline{\left\{H \in\left(\mathbb{P}^{n}\right)^{*} \text { tangent to } X \text { at some } x \in X\right\}}
$$

Projective duality

$X \hookrightarrow \mathbb{P}^{n}$ be a smooth embedding of dimension d.
The dual variety is defined as:

$$
X^{*}=\overline{\left\{H \in\left(\mathbb{P}^{n}\right)^{*} \text { tangent to } X \text { at some } x \in X\right\}}
$$

$$
x^{4}-2 x^{2} y^{2}+y^{4}-2 x^{2} w^{2}-2 y^{2} w^{2}-16 w^{2}+w^{4}=0
$$

$$
16 x^{2}-y^{4}+2 y^{2} z^{2}-8 x^{2} y^{2}-z^{4}-8 x^{2} z^{2}-16 x^{4}=0
$$

Projective duality

Projective duality

- $N(X)=\{(x, H): H$ tangent to X at $x \in X\} \subset X \times\left(\mathbb{P}^{n}\right)^{*}$ has dimension $n-1$

Projective duality

- $N(X)=\{(x, H): H$ tangent to X at $x \in X\} \subset X \times\left(\mathbb{P}^{n}\right)^{*}$ has dimension $n-1$
Bertini For general varieties, the restriction of the projection

$$
\pi: N(X) \rightarrow\left(\mathbb{P}^{n}\right)^{*}
$$

is generically 1-1.

Projective duality

- $N(X)=\{(x, H): H$ tangent to X at $x \in X\} \subset X \times\left(\mathbb{P}^{n}\right)^{*}$ has dimension $n-1$
Bertini For general varieties, the restriction of the projection

$$
\pi: N(X) \rightarrow\left(\mathbb{P}^{n}\right)^{*}
$$

is generically 1-1.

- $\operatorname{Im}(\pi)=X^{*}$, codimension-one irreducible subvariety (generically!)

Projective duality

- $N(X)=\{(x, H): H$ tangent to X at $x \in X\} \subset X \times\left(\mathbb{P}^{n}\right)^{*}$ has dimension $n-1$
Bertini For general varieties, the restriction of the projection

$$
\pi: N(X) \rightarrow\left(\mathbb{P}^{n}\right)^{*}
$$

is generically 1-1.

- $\operatorname{Im}(\pi)=X^{*}$, codimension-one irreducible subvariety (generically!)
- It is defined by an irreducible polynomial D_{X}, called the discriminant.

Polar geometry:the degree and dimension of the discriminant

Polar geometry:the degree and dimension of the discriminant

Let $P_{0}(X), \ldots, P_{d}(X)$ be the polar classes.

Polar geometry:the degree and dimension of the discriminant

Let $P_{0}(X), \ldots, P_{d}(X)$ be the polar classes.
Theorem
X projective variety of dimension d, then

Polar geometry:the degree and dimension of the discriminant

Let $P_{0}(X), \ldots, P_{d}(X)$ be the polar classes.

Theorem

X projective variety of dimension d, then
$-\operatorname{codim}\left(X^{*}\right)=1+d-\max \left\{j\right.$ s.t. $\left.P_{j}(X) \neq 0\right\}$

Polar geometry:the degree and dimension of the discriminant

Let $P_{0}(X), \ldots, P_{d}(X)$ be the polar classes.

Theorem

X projective variety of dimension d, then

- $\operatorname{codim}\left(X^{*}\right)=1+d-\max \left\{j\right.$ s.t. $\left.P_{j}(X) \neq 0\right\}$
- Let $\operatorname{codim}\left(X^{*}\right)=1+d-j$ then $\operatorname{deg}\left(X^{*}\right)=\operatorname{deg}\left(D_{X}\right)=\operatorname{deg}\left(P_{j}(X)\right)$.

Polar geometry:the degree and dimension of the discriminant

Let $P_{0}(X), \ldots, P_{d}(X)$ be the polar classes.

Theorem

X projective variety of dimension d, then

- $\operatorname{codim}\left(X^{*}\right)=1+d-\max \left\{j\right.$ s.t. $\left.P_{j}(X) \neq 0\right\}$
- Let $\operatorname{codim}\left(X^{*}\right)=1+d-j$ then $\operatorname{deg}\left(X^{*}\right)=\operatorname{deg}\left(D_{X}\right)=\operatorname{deg}\left(P_{j}(X)\right)$.

Figure: C^{*} is another conic, $\operatorname{deg}\left(P_{1}(X)\right)=2$

Toric projective duality= \mathcal{A}-discriminants

Toric projective duality $=\mathcal{A}$-discriminants

- $\mathcal{A}=\left\{m_{0}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$ Let $P_{\mathcal{A}}=\operatorname{Conv}(\mathcal{A})$

Toric projective duality $=\mathcal{A}$-discriminants

- $\mathcal{A}=\left\{m_{0}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$ Let $P_{\mathcal{A}}=\operatorname{Conv}(\mathcal{A})$
- $\varphi_{\mathcal{A}}:\left(\mathbb{C}^{*}\right)^{d} \rightarrow \mathbb{P}^{n}, \varphi(x)=\left(x^{m_{0}}, \ldots, x^{m_{n}}\right)$

Toric projective duality $=\mathcal{A}$-discriminants

- $\mathcal{A}=\left\{m_{0}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$ Let $P_{\mathcal{A}}=\operatorname{Conv}(\mathcal{A})$
- $\varphi_{\mathcal{A}}:\left(\mathbb{C}^{*}\right)^{d} \rightarrow \mathbb{P}^{n}, \varphi(x)=\left(x^{m_{0}}, \ldots, x^{m_{n}}\right)$
- $X_{\mathcal{A}}=\overline{\operatorname{Im}\left(\varphi_{\mathcal{A}}\right)}$ is a toric embedding

Toric projective duality $=\mathcal{A}$-discriminants

- $\mathcal{A}=\left\{m_{0}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$ Let $P_{\mathcal{A}}=\operatorname{Conv}(\mathcal{A})$
- $\varphi_{\mathcal{A}}:\left(\mathbb{C}^{*}\right)^{d} \rightarrow \mathbb{P}^{n}, \varphi(x)=\left(x^{m_{0}}, \ldots, x^{m_{n}}\right)$
- $X_{\mathcal{A}}=\overline{\operatorname{Im}\left(\varphi_{\mathcal{A}}\right)}$ is a toric embedding
- $X_{\mathcal{A}}^{*}$ has codimension 1 unless $X_{\mathcal{A}}$ is a linear fibration ($P_{\mathcal{A}}$ certain Cayley polytope).

Toric projective duality $=\mathcal{A}$-discriminants

- $\mathcal{A}=\left\{m_{0}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$ Let $P_{\mathcal{A}}=\operatorname{Conv}(\mathcal{A})$
- $\varphi_{\mathcal{A}}:\left(\mathbb{C}^{*}\right)^{d} \rightarrow \mathbb{P}^{n}, \varphi(x)=\left(x^{m_{0}}, \ldots, x^{m_{n}}\right)$
- $X_{\mathcal{A}}=\overline{\operatorname{Im}\left(\varphi_{\mathcal{A}}\right)}$ is a toric embedding
- $X_{\mathcal{A}}^{*}$ has codimension 1 unless $X_{\mathcal{A}}$ is a linear fibration ($P_{\mathcal{A}}$ certain Cayley polytope).
- Smooth: codimension 1 if $P_{d}\left(X_{\mathcal{A}}\right)=\operatorname{deg}\left(D_{\mathcal{A}}\right)=$ $\sum_{F \preceq P_{\mathcal{A}}}(-1)^{\operatorname{codim}(F)}(\operatorname{dim}(F)+1)!\operatorname{Vol}_{\mathbb{Z}}(F) \neq 0$

Toric projective duality $=\mathcal{A}$-discriminants

- $\mathcal{A}=\left\{m_{0}, \ldots, m_{n}\right\} \subset \mathbb{Z}^{d}$ Let $P_{\mathcal{A}}=\operatorname{Conv}(\mathcal{A})$
- $\varphi_{\mathcal{A}}:\left(\mathbb{C}^{*}\right)^{d} \rightarrow \mathbb{P}^{n}, \varphi(x)=\left(x^{m_{0}}, \ldots, x^{m_{n}}\right)$
- $X_{\mathcal{A}}=\overline{\operatorname{Im}\left(\varphi_{\mathcal{A}}\right)}$ is a toric embedding
- $X_{\mathcal{A}}^{*}$ has codimension 1 unless $X_{\mathcal{A}}$ is a linear fibration ($P_{\mathcal{A}}$ certain Cayley polytope).
- Smooth: codimension 1 if $P_{d}\left(X_{\mathcal{A}}\right)=\operatorname{deg}\left(D_{\mathcal{A}}\right)=$ $\sum_{F \preceq P_{\mathcal{A}}}(-1)^{\operatorname{codim}(F)}(\operatorname{dim}(F)+1)!\operatorname{Vol}_{\mathbb{Z}}(F) \neq 0$

$$
\begin{aligned}
& (x, y) \rightarrow(1, x, y, x y) \\
& 3!\cdot \text { Area }-2!(\text { perimeter })+4= \\
& 6-8+4=2
\end{aligned}
$$

Can a discriminant govern multiple roots of systems of polynomials?

Can a discriminant govern multiple roots of systems of polynomials?
As before: Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{d}$ be (finite) in \mathbb{Z}^{d} and let f_{1}, \ldots, f_{d} be Laurent polynomials with these support sets and coefficients in an alg. cl. field K, e.g. \mathbb{C} :

$$
p_{\mathcal{A}_{i}}(x)=\sum_{a \in \mathcal{A}_{i}} c_{i, a} x^{a} .
$$

Can a discriminant govern multiple roots of systems of polynomials?

As before: Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{d}$ be (finite) in \mathbb{Z}^{d} and let f_{1}, \ldots, f_{d} be Laurent polynomials with these support sets and coefficients in an alg. cl. field K, e.g. \mathbb{C} :

$$
p_{\mathcal{A}_{i}}(x)=\sum_{a \in \mathcal{A}_{i}} c_{i, a} x^{a}
$$

If the coefficients $c_{i, a}$ are generic then, by Bernstein's
Theorem, the number of common solutions in the algebraic torus $\left(\mathbb{C}^{*}\right)^{d}$ equals the mixed volume $M V\left(Q_{1}, Q_{2}, \ldots, Q_{d}\right)$ of the Newton polytopes $Q_{i}=\operatorname{conv}\left(A_{i}\right)$ in \mathbb{R}^{d}.

Example

Let $n=2$ and $\mathcal{A}_{1}=\mathcal{A}_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ be the unit square, $f_{1}=a_{00}+a_{10} x_{1}+a_{01} x_{2}+a_{11} x_{1} x_{2}, f_{2}=b_{00}+b_{10} x_{1}+b_{01} x_{2}+b_{11} x_{1} x_{2}$.

Example

Let $n=2$ and $\mathcal{A}_{1}=\mathcal{A}_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ be the unit square, $f_{1}=a_{00}+a_{10} x_{1}+a_{01} x_{2}+a_{11} x_{1} x_{2}, f_{2}=b_{00}+b_{10} x_{1}+b_{01} x_{2}+b_{11} x_{1} x_{2}$.

$1+x-2 y x^{2} y$
$3+x-y^{7} y-z^{2} x y$

$1+x-2 y-x^{2} y$
$1+x-5 y-x^{2} y$

tangential intersections

tangential intersections

tangential intersections

$\square\left[\begin{array}{l}\square \\ \left.\begin{array}{l}1+x-z y-x^{2} y \\ 1+x-3 y-z x \\ y\end{array} \right\rvert\,\end{array}\right.$
Given $p_{A_{1}}, p_{A_{2}}$, we say that x is a tangential solution of the system
$p_{A_{1}}(u)=p_{A_{2}}(u)=0$ if x is a regular point of the hypersurfaces $p_{A_{i}}=0$ and their normal lines are dependent.

tangential intersections

Given $p_{A_{1}}, p_{A_{2}}$, we say that x is a tangential solution of the system
$p_{A_{1}}(u)=p_{A_{2}}(u)=0$ if x is a regular point of the hypersurfaces $p_{A_{i}}=0$ and their normal lines are dependent.

Definition

Given a system of type $\left(A_{0}, \ldots, A_{r}\right)$. We call an isolated solution $u \in\left(\mathbb{C}^{*}\right)^{n}$ a non-degenerate multiple root if the $r+1$ gradient vectors $\nabla_{x} p_{A_{i}}(u), i=0, \ldots, r$ are linearly dependent.

The mixed discriminant

18/28

The mixed discriminant
Given $\mathcal{A}_{0}, \ldots, \mathcal{A}_{r} \subset \mathbb{Z}^{d}$

Definition

The mixed discriminant is a (the!) polynomial $M D_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{r}}(c)$ on the $c_{i, a}$ which vanishes whenever the polynomials have tangential roots.

The mixed discriminant
Given $\mathcal{A}_{0}, \ldots, \mathcal{A}_{r} \subset \mathbb{Z}^{d}$

Definition

The mixed discriminant is a (the!) polynomial $M D_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{r}}(c)$ on the $c_{i, a}$ which vanishes whenever the polynomials have tangential roots.
$M D_{\mathcal{A}_{0}, \cdots, \mathcal{A}_{r}}(c)$ is a polynomial in $\left|\mathcal{A}_{0}\right|+\cdots+\left|\mathcal{A}_{r}\right|$ variables

The mixed discriminant

Given $\mathcal{A}_{0}, \ldots, \mathcal{A}_{r} \subset \mathbb{Z}^{d}$

Definition

The mixed discriminant is a (the!) polynomial $M D_{\mathcal{A}_{0}, \ldots, \mathcal{A}_{r}}(c)$ on the $c_{i, a}$ which vanishes whenever the polynomials have tangential roots.
$M D_{\mathcal{A}_{0}, \cdots, \mathcal{A}_{r}}(c)$ is a polynomial in $\left|\mathcal{A}_{0}\right|+\cdots+\left|\mathcal{A}_{r}\right|$ variables When $\mathcal{A}_{0}=\cdots=\mathcal{A}_{r}=\mathcal{A}$ we denote it by $M(r, \mathcal{A})$.

Example

Let $n=2$ and $\mathcal{A}_{1}=\mathcal{A}_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ be the unit square, $f_{1}=a_{00}+a_{10} x_{1}+a_{01} x_{2}+a_{11} x_{1} x_{2}, f_{2}=b_{00}+b_{10} x_{1}+b_{01} x_{2}+b_{11} x_{1} x_{2}$.

$1+x-2 y-x^{2} y$
$1+x-2 y-x^{y} y$
$3+x-3 y-2 x y$

$1+x-2 y-x^{2} y$
$1+x-3 y-2 x^{2} y$

Example

Let $n=2$ and $\mathcal{A}_{1}=\mathcal{A}_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ be the unit square, $f_{1}=a_{00}+a_{10} x_{1}+a_{01} x_{2}+a_{11} x_{1} x_{2}, f_{2}=b_{00}+b_{10} x_{1}+b_{01} x_{2}+b_{11} x_{1} x_{2}$.

$\Delta_{\mathcal{A}_{1}, \mathcal{A}_{2}}$ is the hyperdeterminant of format $2 \times 2 \times 2$:
$a_{00}^{2} b_{11}^{2}-2 a_{00} a_{01} b_{10} b_{11}-2 a_{00} a_{10} b_{01} b_{11}-2 a_{00} a_{11} b_{00} b_{11}+4 a_{00} a_{11} b_{01} b_{10}+a_{01}^{2} b_{10}^{2}+$ $4 a_{01} a_{10} b_{00} b_{11}-2 a_{01} a_{10} b_{01} b_{10}-2 a_{01} a_{11} b_{00} b_{10}+a_{10}^{2} b_{01}^{2}-2 a_{10} a_{11} b_{00} b_{01}+a_{11}^{2} b_{00}^{2}$

Example

Let $n=2$ and $\mathcal{A}_{1}=\mathcal{A}_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ be the unit square, $f_{1}=a_{00}+a_{10} x_{1}+a_{01} x_{2}+a_{11} x_{1} x_{2}, f_{2}=b_{00}+b_{10} x_{1}+b_{01} x_{2}+b_{11} x_{1} x_{2}$.

$\Delta_{\mathcal{A}_{1}, \mathcal{A}_{2}}$ is the hyperdeterminant of format $2 \times 2 \times 2$:
$a_{00}^{2} b_{11}^{2}-2 a_{00} a_{01} b_{10} b_{11}-2 a_{00} a_{10} b_{01} b_{11}-2 a_{00} a_{11} b_{00} b_{11}+4 a_{00} a_{11} b_{01} b_{10}+a_{01}^{2} b_{10}^{2}+$ $4 a_{01} a_{10} b_{00} b_{11}-2 a_{01} a_{10} b_{01} b_{10}-2 a_{01} a_{11} b_{00} b_{10}+a_{10}^{2} b_{01}^{2}-2 a_{10} a_{11} b_{00} b_{01}+a_{11}^{2} b_{00}^{2}$
bidegree $=(2,2)$

One more example: The distance to a variety

One more example: The distance to a variety
 Consider $X \subset \mathbb{R}^{n}$. The Euclidian Distance Degree, $E D D(X)$,

One more example: The distance to a variety
 Consider $X \subset \mathbb{R}^{n}$. The Euclidian Distance Degree, $E D D(X)$,

number of critical points of the algebraic function:
$u \mapsto d_{u}^{2}(X)$ whered $_{X}(u)=\min _{x \in X}\left(d_{u}(x)\right)$ for $u \in \mathbb{R}^{n}$ generic.

One more example: The distance to a variety
Consider $X \subset \mathbb{R}^{n}$. The Euclidian Distance Degree, $E D D(X)$,

number of critical points of the algebraic function:
$u \mapsto d_{u}^{2}(X)$ whered $_{x}(u)=\min _{x \in X}\left(d_{u}(x)\right)$ for $u \in \mathbb{R}^{n}$ generic.

Consider now a plane curve. Equivalently one looks at the circles admitting tangent solutions with the curve.

Consider now a plane curve. Equivalently one looks at the circles admitting tangent solutions with the curve.

C is a conic: $3 x 3$ matrix $M\left(c_{i j}\right)$ and the circle by the the $3 x 3$ symmetric matrix $M(u, r)$.
The Mixed Discriminant is given by the $2 x 3 x 3$ hyperderminant: $H\left(c_{i j}, u, r\right)$.

This proves:
Theorem (Cayley)
Let C be an irreducible conic, then

- $E D D($ Circle $)=2$
- EDD(Parabola) $=3$
- $E D D=4$ otherwise

This proves:
Theorem (Cayley)
Let C be an irreducible conic, then

- EDD (Circle) $=2$
- EDD(Parabola) $=3$
- $E D D=4$ otherwise

The key tool is the use of Schläfli decomposition
$M D\left(A_{1}, A_{2}\right)=\operatorname{Hyperdet}\left(\left[M_{1}, M_{2}\right]\right)=\operatorname{Disc}_{t}\left(\operatorname{det}\left(M_{1}+t M_{2}\right)\right)$.

Singular intersection of Quadric Surfaces

Singular intersection of Quadric Surfaces

- Brownic[1906],
- Salmon [1911]
- Farouki [1989]

Singular intersection of Quadric Surfaces

- Brownic[1906],
- Salmon [1911]
- Farouki [1989]

Completely classified singular intersections of quadric surfaces.

Singular intersection of Quadric Surfaces

- Brownic[1906],
- Salmon [1911]
- Farouki [1989]

Completely classified singular intersections of quadric surfaces.
Key tools:

- Classified by the Hyperdeterminant, i.e. discriminant of Segre embeddings
- The hyperdeterminant can be computed by iteration

Two Main Questions:

- Question 1 Can the mixed discriminant be computed via iteration?
- Question 2 What about singular intersection of higher dimensional quadrics?

Towards an answer to question 1

Towards an answer to question 1
Theorem (Dickenstein-DR-Morrison 2019)

$$
M D_{r, A}=\operatorname{Delta}_{\text {Cayley }(r, \mathcal{A})}
$$

Towards an answer to question 1
Theorem (Dickenstein-DR-Morrison 2019)

$$
M D_{r, A}=\text { Delta }_{\text {Cayley }(r, \mathcal{A})}
$$

Definition

Let $\mathcal{A} \subset \mathbb{Z}^{d}$, such that $D_{\mathcal{A}} \neq 1, \operatorname{deg}\left(D_{\mathcal{A}}\right)=\delta$, and let $\left(\lambda_{0}, \ldots, \lambda_{r}\right) \in \mathbb{C}^{r+1}$. Define the iterated discriminant as:

$$
I D_{r, \mathcal{A}}=D_{\delta \Delta_{r}}\left(D_{\mathcal{A}}\left(\lambda_{0} f_{0}+\ldots+\lambda_{r} f_{r}\right)\right)
$$

Abuse of notation: $f_{i}=\left(c_{0}^{i}, \ldots, c_{N}^{i}\right)$ $\operatorname{deg}\left(I_{r, \mathcal{A}}\right)=\delta(\delta-1)(r+1)$

Answer to question 1

Theorem (Dickenstein-DR-Morrison)

Answer to question 1

Theorem (Dickenstein-DR-Morrison)
$\mathcal{A} \subset \mathbb{Z}^{d}, D_{\mathcal{A}} \neq 1$ and $0 \leqslant r \leqslant d$. Then, the mixed discriminant $M D_{r, \mathcal{A}} \neq 1$ divides the iterated discriminant $I D_{r, \mathcal{A}}$. Moreover,

Answer to question 1

Theorem (Dickenstein-DR-Morrison)
$\mathcal{A} \subset \mathbb{Z}^{d}, D_{\mathcal{A}} \neq 1$ and $0 \leqslant r \leqslant d$. Then, the mixed discriminant $M D_{r, \mathcal{A}} \neq 1$ divides the iterated discriminant $I D_{r, \mathcal{A}}$. Moreover,

1. If $\operatorname{codim}_{X_{\mathcal{A}}^{*}}\left(\operatorname{sing}\left(X_{\mathcal{A}}^{*}\right)\right)>r, I D_{r, \mathcal{A}}=M D_{r, \mathcal{A}}$.

Answer to question 1

Theorem (Dickenstein-DR-Morrison)
$\mathcal{A} \subset \mathbb{Z}^{d}, D_{\mathcal{A}} \neq 1$ and $0 \leqslant r \leqslant d$. Then, the mixed discriminant $M D_{r, \mathcal{A}} \neq 1$ divides the iterated discriminant $I D_{r, \mathcal{A}}$. Moreover,

1. If $\operatorname{codim}_{X_{\mathcal{A}}^{*}}\left(\operatorname{sing}\left(X_{\mathcal{A}}^{*}\right)\right)>r, I D_{r, \mathcal{A}}=M D_{r, \mathcal{A}}$.
2. If codim $X_{\mathcal{A}}^{*}\left(\operatorname{sing}\left(X_{\mathcal{A}}^{*}\right)\right)=r, I D_{r, \mathcal{A}}=M D_{r, \mathcal{A}} \prod_{i=1}^{\ell} C h_{Y_{i}}^{\mu_{i}}$, where Y_{1}, \ldots, Y_{ℓ} are the irreducible components of $\operatorname{sing}\left(X_{\mathcal{A}}^{*}\right)$ of maximal dimension r, with respective multiplicities μ_{i}.

Answer to question 1

Theorem (Dickenstein-DR-Morrison)

$\mathcal{A} \subset \mathbb{Z}^{d}, D_{\mathcal{A}} \neq 1$ and $0 \leqslant r \leqslant d$. Then, the mixed discriminant $M D_{r, \mathcal{A}} \neq 1$ divides the iterated discriminant $I D_{r, \mathcal{A}}$. Moreover,

1. If $\operatorname{codim}_{X_{\mathcal{A}}^{*}}\left(\operatorname{sing}\left(X_{\mathcal{A}}^{*}\right)\right)>r, I D_{r, \mathcal{A}}=M D_{r, \mathcal{A}}$.
2. If codim $X_{\mathcal{A}}^{*}\left(\operatorname{sing}\left(X_{\mathcal{A}}^{*}\right)\right)=r, I D_{r, \mathcal{A}}=M D_{r, \mathcal{A}} \prod_{i=1}^{\ell} C h_{Y_{i}}^{\mu_{i}}$, where Y_{1}, \ldots, Y_{ℓ} are the irreducible components of $\operatorname{sing}\left(X_{\mathcal{A}}^{*}\right)$ of maximal dimension r, with respective multiplicities μ_{i}.
3. If $\operatorname{codim}_{X_{\mathcal{A}}^{*}}\left(\operatorname{sing}\left(X_{\mathcal{A}}^{*}\right)\right)<r, I D_{r, \mathcal{A}}=0$.

Answer to question 2

27/28

Answer to question 2

Theorem (Dickenstein-DR-Morrison)
Let Q_{1}, Q_{2} be two d-dimensional quadric hypersurfaces then:
$Q_{1} \cap Q_{2}$ singular if and only if $l_{1,2 \Delta_{d}}=M D_{1,2 \Delta_{d}}$

(THANK YOU) ${ }^{n}$

$$
n \gg 1
$$

