Chip-Firing and Algebraic Combinatorics

Caroline J. Klivans

Brown University

Chip-Firing - Basic Dynamics

Chip-Firing - Basic Dynamics

- Does the process stop?
- Order of firings?

Chip-Firing - Basic Dynamics

- Does the process stop?

Three Regimes Theorem

(Björner, Lovász, Shor '91)
$N=$ Number of chips.

- N Large - infinite
- N Small - finite
- $a \leq N \leq b$ can always achieve both.

Chip-Firing - Basic Dynamics

- Local confluence
- Order of firings?
(Diamond lemma)
(Church-Rosser Property)

- Local + Finite $=$ Global
(Newman Lemma)

Chip-Firing - Basic Dynamics

- Order of firings?

From a fixed initial configuration: If the process is finite then it terminates at a unique final configuration.

Let's look at some larger examples. How can we visualize them?

Color	Number of chips
\square	0
\square	1
\square	2
\square	3

2	3	3	2
3	2	2	3
3	2	2	3
2	3	3	2

Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid. $N=10$

Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid. $N=100$

Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid. $N=1,000$

Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid. $N=10,000$

Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid. $N=100,000$

Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid. $N=1,000,000$

Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid. $N=10,000,000$

(Bak, Tang, Wiesenfeld '88, Dhar '06, Creutz '04, Pstojic '03, Caracciolo, Paoletti, Sportiello '08, Paoletti '14, Levine, Pegden, Smart '13, '16, '17)

Pattern Formation

Suppose we drop N chips at the origin of the F-Lattice. With checkerboard background $0 / 1$.

Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid. With background height 2.

Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid. With checkerboard background $1 / 3$.

The pulse in three dimensions

N chips at the center of a large grid.
Video \rightarrow

Finite Graphs with a Sink

All initial configurations terminate.

Finite Graphs with a Sink

All initial configurations terminate.

- Stable - No possible firings

Finite Graphs with a Sink

All initial configurations terminate.

- Stable - No possible firings
- Critical - Stable + Reachable (results from a generic initial)

Finite Graphs with a Sink

All initial configurations terminate.

- Stable - No possible firings
- Critical - Stable + Reachable (results from a generic initial)
- Superstable - No possible group firings

Criticals and Superstables

```
# Criticals = # Superstables = # Spanning Trees
```

- Duality. Critical \longleftrightarrow Superstable (Dhar '90) Criticals $=$ Recurrent states of Abelian Sandpile Model
- Tutte polynomials. (Merino '01)

Stanley's O-conjecture for h-vectors of cographic matroids

- Bijections. Extended burning algorithm (Cori, Le Borgne '03) \# Criticals with t chips $=$ \# Spanning trees with external activity t
- Superstables of $K_{n}=$ Parking Functions (Superstables of $G=G$-parking functions) (Postnikov, Shapiro '03) (Dhar, Majumdar '92, Biggs, Winkler '97, Chebikin, Pylyavskyy '04)

Criticals and Superstables

Discrete Diffusion. Graph Laplacian Δ. Firing site i :

$$
\mathbf{c}-\Delta e_{i}=\mathbf{c}^{\prime}
$$

- Laplacian potential functions. (Baker, Shokrieh '11) Superstables $=$ Energy minimizers
- Extensions of chip-firing. Laplacian \rightarrow M-matrix. (Guzman, K. '15, '16) Superstables $=$ Integer points inside fundamental parallelepipeds.
- Coxeter groups. Cartan matrices (Benkhart, K., Reiner '18)

Superstables $=$ Miniscule dominant weights

Sandpile Group $\mathcal{S}(G)$

- Group of critical configurations under sandpile addition:

$$
a \oplus b=\text { stabilization of }(a+b)
$$

- Chip configurations under firing equivalence:

$$
\mathcal{S}(G) \cong \operatorname{coker}\left(\Delta_{q}\right)=\mathbb{Z}^{n-1} / \mathrm{im} \Delta_{q}
$$

Sandpile Group $\mathcal{S}(G)$

Graph invariant in the form of a finite abelian group,

$$
|\mathcal{S}(G)|=\# \text { spanning trees of } G
$$

Group structure for various graph classes. Invariant factors. Smith Normal Form. (Lorenzini '91, Merris '92, Biggs '99, Wagner '00, Cori, Rossin '00, Reiner+ '02 '03 '12, Levine '09, Norine, Whalen '11)

Structure of random graphs. (A type of) Cohen-Lenstra heuristic for the p-sylow subgroups of Sandpile groups. (Clancy, Leake, Payne '15; Wood '17)

Sandpile Torsors. (Wagner '00, Gioan '07, Bernardi '08, Holroyd, Levine, Meszaros, Peres, Propp, Wilson '08, Chan, Church, Grochow '15, Baker, Wang '17, Backman, Baker, Yuen '17, McDonough '18)

Sandpile Group Identity

$\mathcal{S}(G)$ identity element? All 0s configuration is not critical.
$G=$ grid with sink along the boundary.

2	3	3	2
3	2	2	3
3	2	2	3
2	3	3	2

Sandpile Group Identity

$\mathcal{S}(G)$ identity element? All 0s configuration is not critical.
$G=$ grid with sink along the boundary.

Identity elements for $3 \times 3,4 \times 4$, and 5×5 grids.

Sandpile Group Identity

$G=1000 \times 1000$ grid with sink along the boundary

(Dhar '95, Le Borgne, Rossin '02)

Sandpile Group and Divisors on Curves

- Divisors on Curves (Graph as a Riemann surface)
(Bacher, de la Harpe, Nagnibeda '97, Kotani, Sunada '00, Lorenzini '89)

Curves	Graphs
Divisor D	Chip configuration \mathbf{c}
$\operatorname{deg}(D)$	$\mathrm{wt}(\mathbf{c})$
Canonical K	$\mathbf{c}_{\text {max }}-\mathbf{1}$
Effective D	$\mathbf{c} \geq 0$
Linearly equivalent	Firing equivalent
Divisor class	Firing class
q-reduced	Superstable
Picard group / Jacobian	Sandpile group

Riemann-Roch Theorem

The rank of a divisor $r(D)$:

- If D is not equivalent to any effective divisor then

$$
r(D)=-1
$$

- $r(D) \geq k$ if and only if for any removal of k chips from D, the resulting divisor is still equivalent to an effective divisor.

Theorem: (Baker, Norine '07) Let G be a finite graph, D a divisor on G and K the canonical divisor on G, then

$$
r(D)-r(K-D)=\operatorname{deg}(D)+1-g .
$$

Divisors on Curves

- Abel-Jacobi Theory
- Riemann-Roch Theorem
- Clifford's Theorem
- Torelli's Theorem
- Max Rank Conjecture
- Tropical Geometry

Decomposition of Picard torus by break divisors. (An, Baker, Kuperberg, Shokrieh '14)

Chip-Firing in Higher Dimensions

- Algebraic (Duval, K., Martin '11, '14)

Combinatorial Laplacian (Hodge Laplacian)

Higher dimensional spanning trees (simplicial matroids)

Sandpile group $\mathcal{S}(G)$ (family of group invariants)

Flow on edges
Reroute across incident faces

Chip-Firing in Higher Dimensions

- Dynamic (Felzenszwalb, K. '19)

Does the process stop?
Order of firings?

Pattern Formation?

(Hopkins, McConville, Propp '17)

- Root system chip-firing
(Galashin, Hopkins, McConville, Postnikov '18)

Chip-Firing in Higher Dimensions

- A non-terminating example:

Chip-Firing in Higher Dimensions

- Conservative flows (circulations) terminate:

Chip-Firing in Higher Dimensions

- Order matters!

Chip-Firing in Higher Dimensions

- Remove a face from the grid:
(Topological Constraint)

Chip-Firing in Higher Dimensions

