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Chip-Firing – Basic Dynamics
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Chip-Firing – Basic Dynamics

• Does the process stop?

• Order of firings?
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Chip-Firing – Basic Dynamics

• Does the process stop?

Order of firings?

0 2 1

1 2 2

1 1 2

Three Regimes Theorem

ab (Björner, Lovász, Shor ’91)

N = Number of chips.

• N Large – infinite

• N Small – finite

• a ≤ N ≤ b –

can always achieve both.
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Chip-Firing – Basic Dynamics

• Order of firings?

Order of firings?
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• Local confluence

ab (Diamond lemma)

ab (Church–Rosser Property)

c

c1 c2

d

• Local + Finite = Global

ab (Newman Lemma)
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Chip-Firing – Basic Dynamics

• Order of firings?

O

From a fixed initial configuration:

If the process is finite then it

terminates at a unique final

configuration.
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Let’s look at some larger examples. How can we visualize them?
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Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid.

N = 10 ,
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Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid.

N = 100 ,
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Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid.

N = 1, 000
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Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid.

N = 10, 000
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Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid.

N = 100, 000
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Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid.

N = 1, 000, 000
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Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid.

N = 10, 000, 000
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(Bak, Tang, Wiesenfeld ’88, Dhar ’06, Creutz ’04, Pstojic ’03, Caracciolo,

Paoletti, Sportiello ’08, Paoletti ’14, Levine, Pegden, Smart ’13, ’16, ’17)
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Pattern Formation

Suppose we drop N chips at the origin of the F-Lattice.

With checkerboard background 0 / 1.
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Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid.

With background height 2.
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Pattern Formation

Suppose we drop N chips at the origin of the two-dimensional grid.

With checkerboard background 1 / 3.
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The pulse in three dimensions

N chips at the center of a large grid.

Video →
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Finite Graphs with a Sink

All initial configurations terminate.
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• Stable – No possible firings

• Critical – Stable + Reachable (results from a generic initial)

• Superstable – No possible group firings
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Finite Graphs with a Sink

All initial configurations terminate.
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Finite Graphs with a Sink

All initial configurations terminate.
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Criticals and Superstables

# Criticals = # Superstables = # Spanning Trees

• Duality. Critical ←→ Superstable (Dhar ’90)

Criticals = Recurrent states of Abelian Sandpile Model

• Tutte polynomials. (Merino ’01)

Stanley’s O-conjecture for h-vectors of cographic matroids

• Bijections. Extended burning algorithm (Cori, Le Borgne ’03)

# Criticals with t chips = # Spanning trees with external activity t

• Superstables of Kn = Parking Functions

(Superstables of G = G-parking functions) (Postnikov, Shapiro ’03)

(Dhar, Majumdar ’92, Biggs, Winkler ’97, Chebikin, Pylyavskyy ’04)
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Criticals and Superstables

Discrete Diffusion. Graph Laplacian ∆. Firing site i:

c−∆ei = c′

• Laplacian potential functions. (Baker, Shokrieh ’11)

Superstables = Energy minimizers

• Extensions of chip-firing. Laplacian → M-matrix. (Guzman, K. ’15, ’16)

Superstables = Integer points inside fundamental parallelepipeds.

• Coxeter groups. Cartan matrices (Benkhart, K., Reiner ’18)

Superstables = Miniscule dominant weights
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Sandpile Group S(G)

• Group of critical configurations under sandpile addition:

a⊕ b = stabilization of (a + b)

⊕ =

• Chip configurations under firing equivalence:

S(G) ∼= coker(∆q) = Zn−1/im∆q
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Sandpile Group S(G)

Graph invariant in the form of a finite abelian group,

|S(G)| = # spanning trees of G

Group structure for various graph classes. Invariant factors.

Smith Normal Form. (Lorenzini ’91, Merris ’92, Biggs ’99, Wagner ’00, Cori,

Rossin ’00, Reiner+ ’02 ’03 ’12, Levine ’09, Norine, Whalen ’11)

Structure of random graphs. (A type of) Cohen-Lenstra heuristic for the

p-sylow subgroups of Sandpile groups. (Clancy, Leake, Payne ’15; Wood ’17)

Sandpile Torsors. (Wagner ’00, Gioan ’07, Bernardi ’08, Holroyd, Levine,

Meszaros, Peres, Propp, Wilson ’08, Chan, Church, Grochow ’15, Baker,

Wang ’17, Backman, Baker, Yuen ’17, McDonough ’18)
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Sandpile Group Identity

S(G) identity element? All 0s configuration is not critical.

G = grid with sink along the boundary. ;

2 3 3 2

3 2 2 3

3 2 2 3

2 3 3 2

2 3 3 2

3 2 2 3

3 2 2 3

2 3 3 2
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Sandpile Group Identity

S(G) identity element? All 0s configuration is not critical.

G = grid with sink along the boundary.

Identity elements for 3× 3, 4× 4, and 5× 5 grids.
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Sandpile Group Identity

G = 1000× 1000 grid with sink along the boundary

(Dhar ’95, Le Borgne, Rossin ’02)
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Sandpile Group and Divisors on Curves

• Divisors on Curves (Graph as a Riemann surface)

ab (Bacher, de la Harpe, Nagnibeda ’97, Kotani, Sunada ’00, Lorenzini ’89)

Curves Graphs

Divisor D Chip configuration cspace

deg(D) wt(c)

Canonical K cmax−1

Effective D c ≥ 0

Linearly equivalent Firing equivalent

Divisor class Firing class

q-reduced Superstable

Picard group / Jacobian Sandpile group
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Riemann–Roch Theorem

The rank of a divisor r(D):

• If D is not equivalent to any effective divisor then

r(D) = −1.

• r(D) ≥ k if and only if for any removal of k chips from D, the resulting

divisor is still equivalent to an effective divisor.

Theorem: (Baker, Norine ’07) Let G be a finite graph, D a divisor on G

and K the canonical divisor on G, then

r(D)− r(K −D) = deg(D) + 1− g.
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Divisors on Curves

• Abel–Jacobi Theory

• Riemann–Roch Theorem

• Clifford’s Theorem

• Torelli’s Theorem

• Max Rank Conjecture

• Tropical Geometry
2

2

Decomposition of Picard torus by break divisors.

(An, Baker, Kuperberg, Shokrieh ’14)
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Chip-Firing in Higher Dimensions

• Algebraic (Duval, K., Martin ’11, ’14)

Combinatorial Laplacian

(Hodge Laplacian)

Higher dimensional spanning trees

(simplicial matroids)

Sandpile group S(G)

(family of group invariants)

Cut and Flow Lattices

2
1

3

4

5

Flow on edges

Reroute across incident faces
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Chip-Firing in Higher Dimensions

• Dynamic (Felzenszwalb, K. ’19)

Does the process stop?

Order of firings?

Pattern Formation?

ab

• Labeled chip-firing

(Hopkins, McConville, Propp ’17)

2

↓

a • Root system chip-firing

abci(Galashin, Hopkins, McConville, Postnikov ’18)
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Chip-Firing in Higher Dimensions

• A non-terminating example:

4

2 →
2

2

2

→
2

2 · · ·
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Chip-Firing in Higher Dimensions

• Conservative flows (circulations) terminate:

4

4

4

4

↙ ↓ ↘

· · · · · ·
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Chip-Firing in Higher Dimensions

• Order matters! Conservative flows (circulations) terminate:

4

4

4

4

↙ ↓ ↘

· · · · · ·
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Chip-Firing in Higher Dimensions

• Remove a face from the grid:

• (Topological Constraint)

4

4

4

4
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Chip-Firing in Higher Dimensions
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