Chip-Firing and Algebraic Combinatorics

Caroline J. Klivans Brown University

- Does the process stop?
- Order of firings?

• Does the process stop?

Three Regimes Theorem (Björner, Lovász, Shor '91)

- N = Number of chips.
 - N Large infinite
 - N Small finite
 - $a \le N \le b -$ <u>can</u> always achieve both.

• Order of firings?

• Local confluence (Diamond lemma) (Church–Rosser Property)

• Local + Finite = Global (Newman Lemma)

• Order of firings?

From a fixed initial configuration: If the process is finite then it terminates at a <u>unique</u> final configuration.

Let's look at some larger examples. How can we visualize them?

Color	Number of chips
	0
	1
	2
	3

2	3	3	2
3	2	2	3
3	2	2	3
2	3	3	2

Suppose we drop N chips at the origin of the two-dimensional grid. N = 10

Suppose we drop N chips at the origin of the two-dimensional grid. N = 100

Suppose we drop N chips at the origin of the two-dimensional grid. N=1,000

Suppose we drop N chips at the origin of the two-dimensional grid. N = 10,000

Suppose we drop N chips at the origin of the two-dimensional grid. N = 100,000

Suppose we drop N chips at the origin of the two-dimensional grid. N = 1,000,000

Suppose we drop N chips at the origin of the two-dimensional grid. N = 10,000,000

(Bak, Tang, Wiesenfeld '88, Dhar '06, Creutz '04, Pstojic '03, Caracciolo, Paoletti, Sportiello '08, Paoletti '14, Levine, Pegden, Smart '13, '16, '17)

Suppose we drop N chips at the origin of the F-Lattice. With checkerboard background 0 / 1.

Suppose we drop N chips at the origin of the two-dimensional grid. With background height 2.

Suppose we drop N chips at the origin of the two-dimensional grid. With checkerboard background 1 / 3.

The pulse in three dimensions

N chips at the center of a large grid. Video \rightarrow

All initial configurations terminate.

All initial configurations terminate.

• Stable – No possible firings

All initial configurations terminate.

- Stable No possible firings
- Critical Stable + Reachable (results from a generic initial)

All initial configurations terminate.

- Stable No possible firings
- Critical Stable + Reachable (results from a generic initial)
- Superstable No possible group firings

Criticals and Superstables

Criticals = # Superstables = # Spanning Trees

- Duality. Critical \leftrightarrow Superstable (Dhar '90) Criticals = Recurrent states of Abelian Sandpile Model
- Tutte polynomials. (Merino '01) Stanley's O-conjecture for h-vectors of cographic matroids
- Bijections. Extended burning algorithm (Cori, Le Borgne '03)
 # Criticals with t chips = # Spanning trees with external activity t
- Superstables of K_n = Parking Functions
 (Superstables of G = G-parking functions) (Postnikov, Shapiro '03)
 (Dhar, Majumdar '92, Biggs, Winkler '97, Chebikin, Pylyavskyy '04)

Criticals and Superstables

Discrete Diffusion. Graph Laplacian Δ . Firing site *i*:

$$\mathbf{c} - \Delta e_i = \mathbf{c}'$$

- Laplacian potential functions. (Baker, Shokrieh '11) Superstables = Energy minimizers
- Extensions of chip-firing. Laplacian \rightarrow M-matrix. (Guzman, K. '15, '16) Superstables = Integer points inside fundamental parallelepipeds.
- Coxeter groups. Cartan matrices (Benkhart, K., Reiner '18) Superstables = Miniscule dominant weights

Sandpile Group $\mathcal{S}(G)$

• Group of critical configurations under sandpile addition:

 $a \oplus b = \text{stabilization of } (a+b)$

• Chip configurations under firing equivalence:

$$\mathcal{S}(G) \cong \operatorname{coker}(\Delta_q) = \mathbb{Z}^{n-1} / \operatorname{im} \Delta_q$$

Sandpile Group $\mathcal{S}(G)$

Graph invariant in the form of a finite abelian group,

 $|\mathcal{S}(G)| = \#$ spanning trees of G

Group structure for various graph classes. Invariant factors. Smith Normal Form. (Lorenzini '91, Merris '92, Biggs '99, Wagner '00, Cori, Rossin '00, Reiner+ '02 '03 '12, Levine '09, Norine, Whalen '11)

Structure of random graphs. (A type of) Cohen-Lenstra heuristic for the *p*-sylow subgroups of Sandpile groups. (Clancy, Leake, Payne '15; Wood '17)

Sandpile Torsors. (Wagner '00, Gioan '07, Bernardi '08, Holroyd, Levine, Meszaros, Peres, Propp, Wilson '08, Chan, Church, Grochow '15, Baker, Wang '17, Backman, Baker, Yuen '17, McDonough '18)

Sandpile Group Identity

 $\mathcal{S}(G)$ identity element? All 0s configuration is not critical.

G =grid with sink along the boundary.

2	3	3	2
3	2	2	3
3	2	2	3
2	3	3	2

Sandpile Group Identity

 $\mathcal{S}(G)$ identity element? All 0s configuration is not critical.

G =grid with sink along the boundary.

Identity elements for 3×3 , 4×4 , and 5×5 grids.

Sandpile Group Identity

 $G = 1000 \times 1000$ grid with sink along the boundary

(Dhar '95, Le Borgne, Rossin '02)

Sandpile Group and Divisors on Curves

Divisors on Curves (Graph as a Riemann surface) (Bacher, de la Harpe, Nagnibeda '97, Kotani, Sunada '00, Lorenzini '89)

Curves	Graphs	
Divisor D	Chip configuration \mathbf{c}	
$\deg(D)$	$\operatorname{wt}(\mathbf{c})$	
Canonical K	$c_{\max} - 1$	
Effective D	$\mathbf{c} \ge 0$	
Linearly equivalent	Firing equivalent	
Divisor class	Firing class	
q-reduced	Superstable	
Picard group / Jacobian	Sandpile group	

Riemann–Roch Theorem

The rank of a divisor r(D):

• If D is not equivalent to any effective divisor then

$$r(D) = -1.$$

• $r(D) \ge k$ if and only if for any removal of k chips from D, the resulting divisor is still equivalent to an effective divisor.

Theorem: (Baker, Norine '07) Let G be a finite graph, D a divisor on G and K the canonical divisor on G, then

$$r(D) - r(K - D) = \deg(D) + 1 - g.$$

Divisors on Curves

- Abel–Jacobi Theory
- Riemann–Roch Theorem
- Clifford's Theorem
- Torelli's Theorem
- Max Rank Conjecture
- Tropical Geometry

Decomposition of Picard torus by break divisors. (An, Baker, Kuperberg, Shokrieh '14)

• Algebraic (Duval, K., Martin '11, '14)

Combinatorial Laplacian (Hodge Laplacian)

Higher dimensional spanning trees (simplicial matroids)

Sandpile group $\mathcal{S}(G)$ (family of group invariants)

Flow on edges Reroute across incident faces

- Dynamic (Felzenszwalb, K. '19)
 - Does the process stop? Order of firings? Pattern Formation?

• Root system chip-firing (Galashin, Hopkins, McConville, Postnikov '18)

• A non-terminating example:

 \rightarrow

• • •

• Conservative flows (circulations) terminate:

• Order matters!

• Remove a face from the grid: (Topological Constraint)

