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Online Resources

All source code and slides are available online

This talk available from my home page (see talks link on left hand
side).

MATLAB examples in the ‘dimred’ toolbox (vrs 0.1)

I http://www.cs.man.ac.uk/~neill/dimred/.

MATLAB commands used for examples given in typewriter font.
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High Dimensional Data

USPS Data Set Handwritten Digit

3648 Dimensions

64 rows by 57 columns

Space contains more than
just this digit.

Even if we sample every
nanosecond from now
until the end of the
universe, you won’t see
the original six!
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Simple Model of Digit

Rotate a ’Prototype’
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’sixnine’)
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Low Dimensional Manifolds

Pure Rotation is too Simple

In practice the data may undergo several distortions.

I e.g. digits undergo ’thinning’, translation and rotation.

For data with ’structure’:

we expect fewer distortions than dimensions;

we therefore expect the data to live on a lower dimensional manifold.

Conclusion: deal with high dimensional data by looking for lower
dimensional non-linear embedding.

Neil Lawrence () Dimensionality Reduction Data Modelling School 8 / 70



Outline

1 Motivation

2 Background

3 Distance Matching

4 Distances along the Manifold

5 Model Selection

6 Conclusions

Neil Lawrence () Dimensionality Reduction Data Modelling School 9 / 70



Notation

q— dimension of latent/embedded space
D— dimension of data space
N— number of data points

data matrix, Y = [y1,:, . . . , yN,:]
T = [y:,1, . . . , y:,D ] ∈ <N×D

latent variables, X = [x1,:, . . . , xN,:]
T = [x:,1, . . . , x:,q] ∈ <N×q

mapping matrix, W ∈ <D×q

centering matrix, H = I− N−111T ∈ <N×N
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Reading Notation

ai ,: is a vector from the ith row of a given matrix A.

a:,j is a vector from the jth row of a given matrix A.

X and Y are design matrices.

Centred data matrix given by Ŷ = HY. Background

Sample covariance given by S = N−1ŶTŶ.

Centred inner product matrix given by K = ŶŶT.
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Data Representation

Classical statistical approach: represent via proximities. [Mardia, 1972]

Proximity data: similarities or dissimilarities.

Example of a dissimilarity matrix: a distance matrix.

di ,j = ‖yi ,: − yj ,:‖2 =

√
(yi ,: − yj ,:)

T (yi ,: − yj ,:)

For a data set can display as a matrix.
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Interpoint Distances for Rotated Sixes
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Figure: Interpoint distances for the rotated digits data.
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Multidimensional Scaling

Find a configuration of points, X, such that each

δi ,j = ‖xi ,: − xj ,:‖2

closely matches the corresponding di ,j in the distance matrix.

Need an objective function for matching ∆ = (δi ,j )i ,j to D = (di ,j )i ,j .
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Feature Selection

An entrywise L1 norm on difference between squared distances

E (X) =
N∑

i=1

N∑
j=1

∣∣d2
ij − δ2

ij

∣∣ .
Reduce dimension by selecting features from data set.

Select for X, in turn, the column from Y that most reduces this error
until we have the desired q.

To minimise E (Y) we compose X by extracting the columns of Y
which have the largest variance. Derive Algorithm
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Reconstruction from Latent Space
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Left: distances reconstructed with two dimensions. Right: distances recon-
structed with 10 dimensions.
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Left: distances reconstructed with 100 dimensions. Right: distances recon-
structed with 1000 dimensions.
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Feature Selection
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Figure: demRotationDist. Feature selection via distance preservation.
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Feature Extraction
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Figure: demRotationDist. Rotation preserves interpoint distances. .
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Feature Extraction
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Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are
much reduced.
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Which Rotation?

We need the rotation that will minimise residual error.

We already derived an algorithm for discarding directions.

Discard direction with maximum variance.

Error is then given by the sum of residual variances.

E (X) = 2N2
D∑

k=q+1

σ2
k .

Rotations of data matrix do not effect this analysis.
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Rotation Reconstruction from Latent Space
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Left: distances reconstructed with two dimensions. Right: distances recon-
structed with 10 dimensions.
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Left: distances reconstructed with 100 dimensions. Right: distances recon-
structed with 360 dimensions.
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Reminder: Principal Component Analysis

How do we find these directions?

Find directions in data with maximal variance.

I That’s what PCA does!

PCA: rotate data to extract these directions.

PCA: work on the sample covariance matrix S = N−1ŶTŶ.
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Principal Component Analysis

Find a direction in the data, x:,1 = Ŷr1, for which variance is
maximised.

r1 = argmaxr1
var
(

Ŷr1

)
subject to : rT1 r1 = 1

Can rewrite in terms of sample covariance

var (x:,1) = N−1
(

Ŷr1

)T
Ŷr1 = rT1

(
N−1ŶTŶ

)
︸ ︷︷ ︸

sample covariance

r1 = rT1 Sr1
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Lagrangian

Solution via constrained optimisation:

L (r1, λ1) = rT1 Sr1 + λ1

(
1− rT1 r1

)
Gradient with respect to r1

dL (r1, λ1)

dr1
= 2Sr1 − 2λ1r1

rearrange to form
Sr1 = λ1r1.

Which is recognised as an eigenvalue problem.
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Lagrange Multiplier

Recall the gradient,

dL (r1, λ1)

dr1
= 2Sr1 − 2λ1r1 (1)

to find λ1 premultiply (1) by rT1 and rearrange giving

λ1 = rT1 Sr1.

Maximum variance is therefore necessarily the maximum eigenvalue of
S.

This is the first principal component.
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Further Directions

Find orthogonal directions to earlier extracted directions with maximal
variance.

Orthogonality constraints, for j < k we have

rTj rk = 0 rTk rk = 1

Lagrangian

L (rk , λk ,γ) = rTk Srk + λk

(
1− rTk rk

)
+

k−1∑
j=1

γj r
T
j rk

dL (rk , λk )

drk
= 2Srk − 2λkrk +

k−1∑
j=1

γj rj
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Further Eigenvectors

Gradient of Lagrangian:

dL (rk , λk )

drk
= 2Srk − 2λkrk +

k−1∑
j=1

γj rj (2)

Premultipling (2) by ri with i < k implies

γi = 0

which allows us to write
Srk = λkrk .

Premultiplying (2) by rk implies

λk = rTk Srk .

This is the kth principal component.
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Principal Coordinates Analysis

The rotation which finds directions of maximum variance is the
eigenvectors of the covariance matrix.

The variance in each direction is given by the eigenvalues.

Problem: working directly with the sample covariance, S, may be
impossible.

For example: perhaps we are given distances between data points, but
not absolute locations.

I No access to absolute positions: cannot compute original sample
covariance.
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An Alternative Formalism

Matrix representation of eigenvalue problem for first q eigenvectors.

ŶTŶRq = RqΛq Rq ∈ <D×q (3)

Premultiply by Ŷ:
ŶŶTŶRq = ŶRqΛq

Postmultiply by Λ
− 1

2
q

ŶŶTŶRqΛ
− 1

2
q = ŶRqΛqΛ

− 1
2

q
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Uq Diagonalizes the Inner Product Matrix

Need to prove that Uq are eigenvectors of inner product matrix.

UT
q ŶŶTUq = Λ

− 1
2

q RT
q ŶTŶŶTŶRqΛ

− 1
2

q

Full eigendecomposition of sample covariance

ŶTŶ = RΛRT

Implies that (
ŶTŶ

)2
= RΛRTRΛRT = RΛ2RT.
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Uq Diagonalizes the Inner Product Matrix

Need to prove that Uq are eigenvectors of inner product matrix.

UT
q ŶŶTUq = Λ

− 1
2

q RT
q RΛ2RTRqΛ

− 1
2

q

Product of the first q eigenvectors with the rest,

RTRq =

[
Iq

0

]
∈ <D×q

where we have used Iq to denote a q × q identity matrix.

Premultiplying by eigenvalues gives,

ΛRTRq =

[
Λq

0

]
Multiplying by self transpose gives
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Equivalent Eigenvalue Problems

Two eigenvalue problems are equivalent. One solves for the rotation,
the other solves for the location of the rotated points.

When D < N it is easier to solve for the rotation, Rq. But when
D > N we solve for the embedding (principal coordinate analysis).

In MDS we may not know Y, cannot compute ŶTŶ from distance
matrix.

Can we compute ŶŶT instead?
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The Covariance Interpretation

N−1ŶTŶ is the data covariance.

ŶŶT is a centred inner product matrix.

I Also has an interpretation as a covariance matrix (Gaussian processes).
I It expresses correlation and anti correlation between data points.
I Standard covariance expresses correlation and anti correlation between

data dimensions.
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Distance to Similarity: A Gaussian Covariance
Interpretation

Translate between covariance and distance.

I Consider a vector sampled from a zero mean Gaussian distribution,

z ∼ N (0,K) .

I Expected square distance between two elements of this vector is

d2
i,j =

〈
(zi − zj )

2
〉

d2
i,j =

〈
z2

i

〉
+
〈
z2

j

〉
− 2 〈zi zj〉

under a zero mean Gaussian with covariance given by K this is

d2
i,j = ki,i + kj,j − 2ki,j .

Take the distance to be square root of this,

di,j = (ki,i + kj,j − 2ki,j )
1
2 .
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Standard Transformation

This transformation is known as the standard transformation between
a similarity and a distance [Mardia et al., 1979, pg 402].

If the covariance is of the form K = ŶŶT then ki ,j = yT
i ,:yj ,: and

di ,j =
(
yT

i ,:yi ,: + yT
j ,:yj ,: − 2yT

i ,:yj ,:

) 1
2 = ‖yi ,: − yj ,:‖2 .

For other distance matrices this gives us an approach to covert to a
similarity matrix or kernel matrix so we can perform classical MDS.
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Example: Road Distances with Classical MDS

Classical example: redraw a map from road distances (see e.g. Mardia
et al. 1979).

Here we use distances across Europe.

I Between each city we have road distance.
I Enter these in a distance matrix.
I Convert to a similarity matrix using the covariance interpretation.
I Perform eigendecomposition.

See http://www.cs.man.ac.uk/~neill/dimred for the data we
used.
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Distance Matrix

Convert distances to similarities using “covariance interpretation”.
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Figure: Left: road distances between European cities visualised as a matrix.
Right: similarity matrix derived from these distances. If this matrix is a covariance
matrix, then expected distance between samples from this covariance is given on
the left.
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Example: Road Distances with Classical MDS
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Figure: demCmdsRoadData. Reconstructed locations projected onto true map
using Procrustes rotations.
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Beware Negative Eigenvalues
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Figure: Eigenvalues of the similarity matrix are negative in this case.
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European Cities Distance Matrices
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Figure: Left: the original distance matrix. Right: the reconstructed distance
matrix.
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Other Distance Similarity Measures

Can use similarity/distance of your choice.

Beware though!

I The similarity must be positive semi definite for the distance to be
Euclidean.

I Why? Can immediately see positive definite is sufficient from the
“covariance intepretation”.

I For more details see [Mardia et al., 1979, Theorem 14.2.2].
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A Class of Similarities for Vector Data

All Mercer kernels are positive semi definite.

Example, squared exponential (also known as RBF or Gaussian)

ki ,j = exp

(
−
‖yi ,: − yj ,:‖2

2l2

)
.

This leads to a kernel eigenvalue problem.

This is known as Kernel PCA Schölkopf et al. 1998.
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Implied Distance Matrix

What is the equivalent distance di ,j ?

di ,j =
√

ki ,i + kj ,j − 2ki ,j

If point separation is large, ki ,j → 0. ki ,i = 1 and kj ,j = 1.

di ,j =
√

2

Kernel with RBF kernel projects along axes PCA can produce poor
results.

Uses many dimensions to keep dissimilar objects a constant amount
apart.

Neil Lawrence () Dimensionality Reduction Data Modelling School 43 / 70



Implied Distances on Rotated Sixes
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Figure: Left: similarity matrix for RBF kernel on rotated sixes. Right: implied
distance matrix for kernel on rotated sixes. Note that most of the distances are
set to

√
2 ≈ 1.41.

Neil Lawrence () Dimensionality Reduction Data Modelling School 44 / 70



Kernel PCA on Rotated Sixes
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Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space
for kernel PCA. Points spread out along axes so that dissimilar points are always√

2 apart.
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MDS Conclusions

Multidimensional scaling: preserve a distance matrix.

Classical MDS

I a particular objective function
I for Classical MDS distance matching is equivalent to maximum variance
I spectral decomposition of the similarity matrix

For Euclidean distances in Y space classical MDS is equivalent to
PCA.

I known as principal coordinate analysis (PCO)

Haven’t discussed choice of distance matrix.
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Data
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Figure: Illustrative data sets for the talk. Each data set is generated by calling
generateManifoldData(dataType). The dataType argument is given below
each plot.
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Isomap

Tenenbaum et al. 2000

MDS finds geometric configuration preserving distances

MDS applied to Manifold distance

Geodesic Distance = Manifold Distance

Cannot compute geodesic distance without knowing manifold
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Isomap

Isomap: define neighbours and compute distances between
neighbours.

Geodesic Distance approximated by shortest path through adjacency
matrix.

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2321
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Isomap Examples1
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Isomap Examples1
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Isomap: Summary

MDS on shortest path approximation of manifold distance

+ Simple

+ Intrinsic dimension from eigen spectra

- Solves a very large eigenvalue problem

- Cannot handle holes or non-convex manifold

- Sensitive to “short circuit”
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Inverse Covariance

From the “covariance interpretation” we think of the similarity matrix
as a covariance.

Each element of the covariance is a function of two data points.

Another option is to specify the inverse covariance.
If the inverse covariance between two points is zero. Those points are
independent given all other points.

I This is a conditional independence.
I Describes how points are connected.

Laplacian Eigenmaps and LLE can both be seen as specifiying the
inverse covariance.
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LLE Examples2
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LLE Examples2
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Generative

Observed data have been sampled from manifold

Spectral methods start in the “wrong” end

“It’s a lot easier to make a mess than to clean it up!”

I Things break or disapear

How to model observation “generation”?
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Outline

1 Motivation

2 Background

3 Distance Matching

4 Distances along the Manifold

5 Model Selection

6 Conclusions
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Model Selection

Observed data have been sampled from low dimensional manifold

y = f (x)

Idea: Model f rank embedding according to

1 Data fit of f
2 Complexity of f

How to model f ?

1 Making as few assumtpions about f as possible?
2 Allowing f from as “rich” class as possible?

Neil Lawrence () Dimensionality Reduction Data Modelling School 57 / 70



Gaussian Processes

Generalisation of Gaussian Distribution over infinite index sets

Can be used specify distributions over functions

Regression

y = f (x) + ε

p(Y|X,Φ) =

∫
p(Y|f ,X,Φ)p(f |X,Φ)df

p(f |X,Φ) = N (0,K)

Φ̂ = argmaxΦp(Y|X,Φ)
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Gaussian Processes3
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Gaussian Process Latent Variable Models

GP-LVM models sampling process

y = f (x) + ε

p(Y|X,Φ) =

∫
p(Y|f ,X,Φ)p(f |X,Φ)df

p(f |X,Φ) = N (0,K){
X̂, Φ̂

}
= argmaxX,Φp(Y|X,Φ)

Linear: Closed form solution

Non-Linear: Gradient based solution
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Model Selection

Lawrence - 2003 suggested the use of Spectral algorithms to initialise
the latent space Y

Harmeling - 2007 evaluated the use of GP-LVM objective for model
selection

I Comparisons between Procrustes score to ground truth and GP-LVM
objective
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Model Selection: Results4
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Conclusion

Assume “local” structure contains enough “characteristics” to unravel
global structure

+ Intuative

- Hard to set parameters without knowing manifold

- Learns embeddings not mappings i.e. Visualisations

- Models problem “wrong” way around

- Sensitive to noise

+ Currently best strategy to initialise generative models
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Material

Acknowledgement: Carl Henrik Ek for GP log likelihood examples.

My examples given here
http://www.cs.man.ac.uk/~neill/dimred/

This talk
http://www.cs.man.ac.uk/~neill/
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Outline

Distance Matching
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Centering Matrix

If Ŷ is a version of Y with the mean removed then:

Ŷ = HY

Ŷ =
(
I− N−111T

)
Y

= Y − 1
(
N−11TY

)
= Y − 1

(
1

N

N∑
i=1

yi ,:

)T

= Y −


ȳ·,:
ȳ·,:
...

ȳ·,:


Return
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Feature Selection Derivation

Squared distance can be re-expressed as

d2
ij =

D∑
k=1

(yi ,k − yj ,k)2 .

Can re-order the columns of Y without affecting the distances.

I Choose ordering: first q columns of Y are the those that will best
represent the distance matrix.

I Substitution x:,k = y:,k for k = 1 . . . q.

Distance in latent space is given by:

δ2
ij =

q∑
k=1

(xi ,k − xj ,k)2 =

q∑
k=1

(yi ,k − yj ,k)2
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Feature Selection Derivation II

Can rewrite

E (X) =
N∑

i=1

N∑
j=1

∣∣d2
ij − δ2

ij

∣∣ .
as

E (X) =
N∑

i=1

N∑
j=1

D∑
k=q+1

(yi ,k − yj ,k)2 .

Introduce mean of each dimension, ȳk = 1
N

∑N
i=1 yi ,k ,

E (X) =
N∑

i=1

N∑
j=1

D∑
k=q+1

((yi ,k − ȳk)− (yj ,k − ȳk))2

Expand brackets

E (X) =
N∑

i=1

N∑
j=1

D∑
k=q+1

(yi,k − ȳk )2 + (yj,k − ȳk )2 − 2 (yj,k − ȳk ) (yi,k − ȳk )
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Feature Selection Derivation III

Expand brackets

E (X) =
N∑

i=1

N∑
j=1

D∑
k=q+1

(yi,k − ȳk )2 + (yj,k − ȳk )2 − 2 (yj,k − ȳk ) (yi,k − ȳk )

Bring sums in

E (X) =
DX

k=q+1

0@N
NX

i=1

`
yi,k − ȳk

´2
+ N

NX
j=1

`
yj,k − ȳk

´2 − 2
NX

j=1

`
yj,k − ȳk

´ NX
i=1

`
yi,k − ȳk

´1A
Recognise as the sum of the variances discarded columns of Y,

E (X) = 2N2
D∑

k=q+1

σ2
k .

We should compose X by extracting the columns of Y which have the
largest variance. Return Selection Return Rotation
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