Dimensionality Reduction

Neil D. Lawrence neill@cs.man.ac.uk

Mathematics for Data Modelling
University of Sheffield
January 23rd 2008

Outline

(1) Motivation
(2) Background
(3) Distance Matching
(4) Distances along the Manifold
(5) Model Selection

6 Conclusions

Online Resources

- All source code and slides are available online
- This talk available from my home page (see talks link on left hand side).
- MATLAB examples in the 'dimred' toolbox (vrs 0.1)
- http://www.cs.man.ac.uk/~neill/dimred/.
- MATLAB commands used for examples given in typewriter font.

Outline

(1) Motivation

(2) Background
(3) Distance Matching

4 Distances along the Manifold
(5) Model Selection
(6) Conclusions

High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the
universe, you won't see the original six!

High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now
until the end of the
universe, you won't see
the original six!

High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

High Dimensional Data

USPS Data Set Handwritten Digit

- 3648 Dimensions
- 64 rows by 57 columns
- Space contains more than just this digit.
- Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

Simple Model of Digit

- Rotate a 'Prototype'

MATLAB Demo

demDigitsManifold([1 2], 'all')

MATLAB Demo

demDigitsManifold([1 2], 'all')

MATLAB Demo

demDigitsManifold([1 2], 'sixnine')

Low Dimensional Manifolds

Pure Rotation is too Simple

- In practice the data may undergo several distortions.
- e.g. digits undergo 'thinning', translation and rotation.
- For data with 'structure':
- we expect fewer distortions than dimensions;
- we therefore expect the data to live on a lower dimensional manifold.
- Conclusion: deal with high dimensional data by looking for lower dimensional non-linear embedding.

Outline

(1) Motivation

(2) Background

(3) Distance Matching

4 Distances along the Manifold
(5) Model Selection
(6) Conclusions

Notation

q - dimension of latent/embedded space D - dimension of data space
N - number of data points
data matrix, $\mathbf{Y}=\left[\mathbf{y}_{1,:}, \ldots, \mathbf{y}_{N,:}\right]^{\mathrm{T}}=\left[\mathbf{y}_{:, 1}, \ldots, \mathbf{y}_{:, D}\right] \in \Re^{N \times D}$ latent variables, $\mathbf{X}=\left[\mathbf{x}_{1,:}, \ldots, \mathbf{x}_{N,:}\right]^{\mathrm{T}}=\left[\mathbf{x}_{:, 1}, \ldots, \mathbf{x}_{:, q}\right] \in \Re^{N \times q}$ mapping matrix, $\mathbf{W} \in \Re^{D \times q}$
centering matrix, $\mathbf{H}=\mathbf{I}-N^{-1} \mathbf{1 1}^{\mathrm{T}} \in \Re^{N \times N}$

Reading Notation

- $\mathbf{a}_{i, \text { : }}$ is a vector from the i th row of a given matrix \mathbf{A}.
- $\mathbf{a}_{:, j}$ is a vector from the j th row of a given matrix \mathbf{A}.
- \mathbf{X} and \mathbf{Y} are design matrices.
- Centred data matrix given by $\hat{\mathbf{Y}}=\mathbf{H Y}$. © Background
- Sample covariance given by $\mathbf{S}=N^{-1} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}$.
- Centred inner product matrix given by $\mathbf{K}=\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}}$.

Outline

(1) Motivation

(2) Background
(3) Distance Matching

4 Distances along the Manifold
(5) Model Selection
(6) Conclusions

Data Representation

- Classical statistical approach: represent via proximities. [Mardia, 1972]
- Proximity data: similarities or dissimilarities.
- Example of a dissimilarity matrix: a distance matrix.

$$
d_{i, j}=\left\|\mathbf{y}_{i,:}-\mathbf{y}_{j,:}\right\|_{2}=\sqrt{\left(\mathbf{y}_{i,:}-\mathbf{y}_{j,:}\right)^{\mathrm{T}}\left(\mathbf{y}_{i,:}-\mathbf{y}_{j,:}\right)}
$$

- For a data set can display as a matrix.

Interpoint Distances for Rotated Sixes

Figure: Interpoint distances for the rotated digits data.

Multidimensional Scaling

- Find a configuration of points, \mathbf{X}, such that each

$$
\delta_{i, j}=\left\|\mathbf{x}_{i,:}-\mathbf{x}_{j,:}\right\|_{2}
$$

closely matches the corresponding $d_{i, j}$ in the distance matrix.

- Need an objective function for matching $\boldsymbol{\Delta}=\left(\delta_{i, j}\right)_{i, j}$ to $\mathbf{D}=\left(d_{i, j}\right)_{i, j}$.

Feature Selection

- An entrywise L_{1} norm on difference between squared distances

$$
E(\mathbf{X})=\sum_{i=1}^{N} \sum_{j=1}^{N}\left|d_{i j}^{2}-\delta_{i j}^{2}\right|
$$

- Reduce dimension by selecting features from data set.
- Select for \mathbf{X}, in turn, the column from \mathbf{Y} that most reduces this error until we have the desired q.
- To minimise $E(\mathbf{Y})$ we compose \mathbf{X} by extracting the columns of \mathbf{Y} which have the largest variance.

Reconstruction from Latent Space

Left: distances reconstructed with two dimensions. Right: distances reconstructed with 10 dimensions.

Reconstruction from Latent Space

Left: distances reconstructed with 100 dimensions. Right: distances reconstructed with 1000 dimensions.

Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.

Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.

Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. .

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. .

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. .

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. .

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. .

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are much reduced.

Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are much reduced.

Which Rotation?

- We need the rotation that will minimise residual error.
- We already derived an algorithm for discarding directions.
- Discard direction with maximum variance.
- Error is then given by the sum of residual variances.

$$
E(\mathbf{X})=2 N^{2} \sum_{k=q+1}^{D} \sigma_{k}^{2}
$$

- Rotations of data matrix do not effect this analysis.

Rotation Reconstruction from Latent Space

Rotation Reconstruction from Latent Space

Left: distances reconstructed with 100 dimensions. Right: distances reconstructed with 360 dimensions.

Reminder: Principal Component Analysis

- How do we find these directions?
- Find directions in data with maximal variance.
- That's what PCA does!
- PCA: rotate data to extract these directions.
- PCA: work on the sample covariance matrix $\mathbf{S}=N^{-1} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}$.

Principal Component Analysis

- Find a direction in the data, $\mathbf{x}_{:, 1}=\hat{\mathbf{Y}} \mathbf{r}_{1}$, for which variance is maximised.

$$
\begin{aligned}
\mathbf{r}_{1}= & \operatorname{argmax}_{\mathbf{r}_{1}} \operatorname{var}\left(\hat{\mathbf{Y}} \mathbf{r}_{\mathbf{1}}\right) \\
\text { subject to : } \quad & \mathbf{r}_{1}^{\mathrm{T}} \mathbf{r}_{1}=1
\end{aligned}
$$

- Can rewrite in terms of sample covariance

$$
\operatorname{var}\left(\mathbf{x}_{:, 1}\right)=N^{-1}\left(\hat{\mathbf{Y}}_{\mathbf{r}_{1}}\right)^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{r}_{1}=\mathbf{r}_{1}^{\mathrm{T}} \underbrace{\left(N^{-1} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}\right)}_{\text {sample covariance }} \mathbf{r}_{1}=\mathbf{r}_{1}^{\mathrm{T}} \mathbf{S r}_{1}
$$

Lagrangian

- Solution via constrained optimisation:

$$
L\left(\mathbf{r}_{1}, \lambda_{1}\right)=\mathbf{r}_{1}^{\mathrm{T}} \mathbf{S} \mathbf{r}_{1}+\lambda_{1}\left(1-\mathbf{r}_{1}^{\mathrm{T}} \mathbf{r}_{1}\right)
$$

- Gradient with respect to \mathbf{r}_{1}

$$
\frac{\mathrm{d} L\left(\mathbf{r}_{1}, \lambda_{1}\right)}{\mathrm{d} \mathbf{r}_{1}}=2 \mathbf{S r}_{1}-2 \lambda_{1} \mathbf{r}_{1}
$$

rearrange to form

$$
\mathbf{S} \mathbf{r}_{1}=\lambda_{1} \mathbf{r}_{1}
$$

Which is recognised as an eigenvalue problem.

Lagrange Multiplier

- Recall the gradient,

$$
\begin{equation*}
\frac{\mathrm{d} L\left(\mathbf{r}_{1}, \lambda_{1}\right)}{\mathrm{d} \mathbf{r}_{1}}=2 \mathbf{S r}_{1}-2 \lambda_{1} \mathbf{r}_{1} \tag{1}
\end{equation*}
$$

to find λ_{1} premultiply (1) by $\mathbf{r}_{1}^{\mathrm{T}}$ and rearrange giving

$$
\lambda_{1}=\mathbf{r}_{1}^{\mathrm{T}} \mathbf{S r}_{1}
$$

- Maximum variance is therefore necessarily the maximum eigenvalue of S.
- This is the first principal component.

Further Directions

- Find orthogonal directions to earlier extracted directions with maximal variance.
- Orthogonality constraints, for $j<k$ we have

$$
\mathbf{r}_{j}^{\mathrm{T}} \mathbf{r}_{k}=\mathbf{0} \quad \mathbf{r}_{k}^{\mathrm{T}} \mathbf{r}_{k}=1
$$

- Lagrangian

$$
\begin{gathered}
L\left(\mathbf{r}_{k}, \lambda_{k}, \gamma\right)=\mathbf{r}_{k}^{\mathrm{T}} \mathbf{S} \mathbf{r}_{k}+\lambda_{k}\left(1-\mathbf{r}_{k}^{\mathrm{T}} \mathbf{r}_{k}\right)+\sum_{j=1}^{k-1} \gamma_{j} \mathbf{r}_{j}^{\mathrm{T}} \mathbf{r}_{k} \\
\frac{\mathrm{~d} L\left(\mathbf{r}_{k}, \lambda_{k}\right)}{\mathrm{d} \mathbf{r}_{k}}=2 \mathbf{S} \mathbf{r}_{k}-2 \lambda_{k} \mathbf{r}_{k}+\sum_{j=1}^{k-1} \gamma_{j} \mathbf{r}_{j}
\end{gathered}
$$

Further Eigenvectors

- Gradient of Lagrangian:

$$
\begin{equation*}
\frac{\mathrm{d} L\left(\mathbf{r}_{k}, \lambda_{k}\right)}{\mathrm{d} \mathbf{r}_{k}}=2 \mathbf{S} \mathbf{r}_{k}-2 \lambda_{k} \mathbf{r}_{k}+\sum_{j=1}^{k-1} \gamma_{j} \mathbf{r}_{j} \tag{2}
\end{equation*}
$$

- Premultipling (2) by \mathbf{r}_{i} with $i<k$ implies

$$
\gamma_{i}=0
$$

which allows us to write

$$
\mathbf{S} \mathbf{r}_{k}=\lambda_{k} \mathbf{r}_{k}
$$

- Premultiplying (2) by \mathbf{r}_{k} implies

$$
\lambda_{k}=\mathbf{r}_{k}^{\mathrm{T}} \mathbf{S} \mathbf{r}_{k}
$$

- This is the kth principal component.

Principal Coordinates Analysis

- The rotation which finds directions of maximum variance is the eigenvectors of the covariance matrix.
- The variance in each direction is given by the eigenvalues.
- Problem: working directly with the sample covariance, S, may be impossible.
- For example: perhaps we are given distances between data points, but not absolute locations.
- No access to absolute positions: cannot compute original sample covariance.

An Alternative Formalism

- Matrix representation of eigenvalue problem for first q eigenvectors.

$$
\begin{equation*}
\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{R}_{q}=\mathbf{R}_{q} \boldsymbol{\Lambda}_{q} \quad \mathbf{R}_{q} \in \Re^{D \times q} \tag{3}
\end{equation*}
$$

- Premultiply by $\hat{\mathbf{Y}}$:

$$
\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{R}_{q}=\hat{\mathbf{Y}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}
$$

- Postmultiply by $\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}$

$$
\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{R}_{q} \mathbf{\Lambda}_{q}^{-\frac{1}{2}}=\hat{\mathbf{Y}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q} \mathbf{\Lambda}_{q}^{-\frac{1}{2}}
$$

An Alternative Formalism

- Matrix representation of eigenvalue problem for first q eigenvectors.

$$
\begin{equation*}
\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{R}_{q}=\mathbf{R}_{q} \boldsymbol{\Lambda}_{q} \quad \mathbf{R}_{q} \in \Re^{D \times q} \tag{3}
\end{equation*}
$$

- Premultiply by $\hat{\mathbf{Y}}$:

$$
\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{R}_{q}=\hat{\mathbf{Y}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}
$$

- Postmultiply by $\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}$

$$
\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}=\hat{\mathbf{Y}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \boldsymbol{\Lambda}_{q}
$$

An Alternative Formalism

- Matrix representation of eigenvalue problem for first q eigenvectors.

$$
\begin{equation*}
\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{R}_{q}=\mathbf{R}_{q} \boldsymbol{\Lambda}_{q} \quad \mathbf{R}_{q} \in \Re^{D \times q} \tag{3}
\end{equation*}
$$

- Premultiply by $\hat{\mathbf{Y}}$:

$$
\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{R}_{q}=\hat{\mathbf{Y}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}
$$

- Postmultiply by $\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}$

$$
\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\mathbf{U}_{q} \boldsymbol{\Lambda}_{q} \quad \mathbf{U}_{q}=\hat{\mathbf{Y}} \mathbf{R}_{q} \mathbf{\Lambda}_{q}^{-\frac{1}{2}}
$$

U_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \mathbf{R}_{q}^{\mathrm{T}} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Full eigendecomposition of sample covariance

$$
\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}=\mathbf{R} \boldsymbol{\wedge} \mathbf{R}^{\mathrm{T}}
$$

- Implies that

U_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \mathbf{R}_{q}^{\mathrm{T}}\left(\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}\right)^{2} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Full eigendecomposition of sample covariance

$$
\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}=\mathbf{R} \boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}}
$$

- Implies that

U_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \mathbf{R}_{q}^{\mathrm{T}}\left(\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}\right)^{2} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Full eigendecomposition of sample covariance

$$
\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}=\mathbf{R} \boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}}
$$

- Implies that

U_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \mathbf{R}_{q}^{\mathrm{T}}\left(\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}\right)^{2} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Full eigendecomposition of sample covariance

$$
\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}=\mathbf{R} \boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}}
$$

- Implies that

$$
\left(\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}\right)^{2}=\mathbf{R} \boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}}=\mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}}
$$

U_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Full eigendecomposition of sample covariance

$$
\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}=\mathbf{R} \boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}}
$$

- Implies that

$$
\left(\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}\right)^{2}=\mathbf{R} \boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}}=\mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}}
$$

U_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Product of the first q eigenvectors with the rest,

$$
\mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\mathbf{I}_{q} \\
\mathbf{0}
\end{array}\right] \in \Re^{D \times q}
$$

where we have used \mathbf{I}_{q} to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

- Multiplying by self transpose gives

\mathbf{U}_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Product of the first q eigenvectors with the rest,

$$
\mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\mathbf{I}_{q} \\
\mathbf{0}
\end{array}\right] \in \Re^{D \times q}
$$

where we have used \mathbf{I}_{q} to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$
\mathbf{\Lambda} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\boldsymbol{\Lambda}_{q} \\
\mathbf{0}
\end{array}\right]
$$

- Multiplying by self transpose gives

\mathbf{U}_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Product of the first q eigenvectors with the rest,

$$
\mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\mathbf{I}_{q} \\
\mathbf{0}
\end{array}\right] \in \Re^{D \times q}
$$

where we have used \mathbf{I}_{q} to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$
\mathbf{\Lambda} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\mathbf{\Lambda}_{q} \\
\mathbf{0}
\end{array}\right]
$$

- Multiplying by self transpose gives

$$
\mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\boldsymbol{\Lambda}_{q}^{2}
$$

\mathbf{U}_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}\left[\mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}\right] \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Product of the first q eigenvectors with the rest,

$$
\mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\mathbf{I}_{q} \\
\mathbf{0}
\end{array}\right] \in \Re^{D \times q}
$$

where we have used \mathbf{I}_{q} to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$
\boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\boldsymbol{\Lambda}_{q} \\
\mathbf{0}
\end{array}\right]
$$

- Multiplying by self transpose gives

$$
\mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\boldsymbol{\Lambda}_{q}^{2}
$$

\mathbf{U}_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}\left[\mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}\right] \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Product of the first q eigenvectors with the rest,

$$
\mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\mathbf{I}_{q} \\
\mathbf{0}
\end{array}\right] \in \Re^{D \times q}
$$

where we have used \mathbf{I}_{q} to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$
\boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\boldsymbol{\Lambda}_{q} \\
\mathbf{0}
\end{array}\right]
$$

- Multiplying by self transpose gives

$$
\mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\boldsymbol{\Lambda}_{q}^{2}
$$

\mathbf{U}_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}^{-\frac{1}{2}} \boldsymbol{\Lambda}_{q}^{2} \boldsymbol{\Lambda}_{q}^{-\frac{1}{2}}
$$

- Product of the first q eigenvectors with the rest,

$$
\mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\mathbf{I}_{q} \\
\mathbf{0}
\end{array}\right] \in \Re^{D \times q}
$$

where we have used \mathbf{I}_{q} to denote a $q \times q$ identity matrix.

- Premultiplying by eigenvalues gives,

$$
\boldsymbol{\Lambda} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\left[\begin{array}{c}
\boldsymbol{\Lambda}_{q} \\
\mathbf{0}
\end{array}\right]
$$

- Multiplying by self transpose gives

$$
\mathbf{R}_{q}^{\mathrm{T}} \mathbf{R} \boldsymbol{\Lambda}^{2} \mathbf{R}^{\mathrm{T}} \mathbf{R}_{q}=\boldsymbol{\Lambda}_{q}^{2}
$$

U_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\mathbf{U}_{q}^{\mathrm{T}} \hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\boldsymbol{\Lambda}_{q}
$$

- Product of the first q eigenvectors with the rest,

where we have used \mathbf{I}_{q} to denote a $q \times q$ identity matrix.
- Premultiplying by eigenvalues gives,

- Multiplying by self transpose gives

$$
\mathrm{R}_{q}^{\mathrm{T}} \mathrm{R} \Lambda^{2} \mathrm{R}^{\mathrm{T}} \mathrm{R}_{q}=\Lambda_{q}^{2}
$$

U_{q} Diagonalizes the Inner Product Matrix

- Need to prove that \mathbf{U}_{q} are eigenvectors of inner product matrix.

$$
\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}} \mathbf{U}_{q}=\mathbf{U}_{q} \boldsymbol{\Lambda}_{q}
$$

- Product of the first q eigenvectors with the rest,

where we have used \mathbf{I}_{q} to denote a $q \times q$ identity matrix.
- Premultiplying by eigenvalues gives,

- Multiplying by self transpose gives

$$
\mathrm{R}_{q}^{\mathrm{T}} \mathrm{R} \Lambda^{2} \mathrm{R}^{\mathrm{T}} \mathrm{R}_{q}=\Lambda_{q}^{2}
$$

Equivalent Eigenvalue Problems

- Two eigenvalue problems are equivalent. One solves for the rotation, the other solves for the location of the rotated points.
- When $D<N$ it is easier to solve for the rotation, \mathbf{R}_{q}. But when $D>N$ we solve for the embedding (principal coordinate analysis).
- In MDS we may not know \mathbf{Y}, cannot compute $\hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}$ from distance matrix.
- Can we compute $\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}}$ instead?

The Covariance Interpretation

- $N^{-1} \hat{\mathbf{Y}}^{\mathrm{T}} \hat{\mathbf{Y}}$ is the data covariance.
- $\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}}$ is a centred inner product matrix.
- Also has an interpretation as a covariance matrix (Gaussian processes).
- It expresses correlation and anti correlation between data points.
- Standard covariance expresses correlation and anti correlation between data dimensions.

Distance to Similarity: A Gaussian Covariance Interpretation

- Translate between covariance and distance.
- Consider a vector sampled from a zero mean Gaussian distribution,

$$
\mathbf{z} \sim N(\mathbf{0}, \mathbf{K}) .
$$

- Expected square distance between two elements of this vector is

$$
\begin{gathered}
d_{i, j}^{2}=\left\langle\left(z_{i}-z_{j}\right)^{2}\right\rangle \\
d_{i, j}^{2}=\left\langle z_{i}^{2}\right\rangle+\left\langle z_{j}^{2}\right\rangle-2\left\langle z_{i} z_{j}\right\rangle
\end{gathered}
$$

under a zero mean Gaussian with covariance given by \mathbf{K} this is

$$
d_{i, j}^{2}=k_{i, i}+k_{j, j}-2 k_{i, j} .
$$

Take the distance to be square root of this,

$$
d_{i, j}=\left(k_{i, i}+k_{j, j}-2 k_{i, j}\right)^{\frac{1}{2}} .
$$

Standard Transformation

- This transformation is known as the standard transformation between a similarity and a distance [Mardia et al., 1979, pg 402].
- If the covariance is of the form $\mathbf{K}=\hat{\mathbf{Y}} \hat{\mathbf{Y}}^{\mathrm{T}}$ then $k_{i, j}=\mathbf{y}_{i,:}^{\mathrm{T}}, \mathbf{y}_{j,:}$ and

$$
d_{i, j}=\left(\mathbf{y}_{i,:}^{\mathrm{T}} \mathbf{y}_{i,:}+\mathbf{y}_{j,:}^{\mathrm{T}} \mathbf{y}_{j,:}-2 \mathbf{y}_{i,:}^{\mathrm{T}} \mathbf{y}_{j,:}\right)^{\frac{1}{2}}=\left\|\mathbf{y}_{i,:}-\mathbf{y}_{j,:}\right\|_{2}
$$

- For other distance matrices this gives us an approach to covert to a similarity matrix or kernel matrix so we can perform classical MDS.

Example: Road Distances with Classical MDS

- Classical example: redraw a map from road distances (see e.g. Mardia et al. 1979).
- Here we use distances across Europe.
- Between each city we have road distance.
- Enter these in a distance matrix.
- Convert to a similarity matrix using the covariance interpretation.
- Perform eigendecomposition.
- See http://www.cs.man.ac.uk/~neill/dimred for the data we used.

Distance Matrix

Convert distances to similarities using "covariance interpretation".

Figure: Left: road distances between European cities visualised as a matrix. Right: similarity matrix derived from these distances. If this matrix is a covariance matrix, then expected distance between samples from this covariance is given on the left.

Example: Road Distances with Classical MDS

Figure: demCmdsRoadData. Reconstructed locations projected onto true map using Procrustes rotations.

Beware Negative Eigenvalues

Figure: Eigenvalues of the similarity matrix are negative in this case.

European Cities Distance Matrices

Figure: Left: the original distance matrix. Right: the reconstructed distance matrix.

Other Distance Similarity Measures

- Can use similarity/distance of your choice.
- Beware though!
- The similarity must be positive semi definite for the distance to be Euclidean.
- Why? Can immediately see positive definite is sufficient from the "covariance intepretation".
- For more details see [Mardia et al., 1979, Theorem 14.2.2].

A Class of Similarities for Vector Data

- All Mercer kernels are positive semi definite.
- Example, squared exponential (also known as RBF or Gaussian)

$$
k_{i, j}=\exp \left(-\frac{\left\|\boldsymbol{y}_{i,:}-\mathbf{y}_{j,:,}\right\|^{2}}{2 l^{2}}\right) .
$$

This leads to a kernel eigenvalue problem.

- This is known as Kernel PCA Schölkopf et al. 1998.

Implied Distance Matrix

- What is the equivalent distance $d_{i, j}$?

$$
d_{i, j}=\sqrt{k_{i, i}+k_{j, j}-2 k_{i, j}}
$$

- If point separation is large, $k_{i, j} \rightarrow 0 . k_{i, i}=1$ and $k_{j, j}=1$.

$$
d_{i, j}=\sqrt{2}
$$

- Kernel with RBF kernel projects along axes PCA can produce poor results.
- Uses many dimensions to keep dissimilar objects a constant amount apart.

Implied Distances on Rotated Sixes

Figure: Left: similarity matrix for RBF kernel on rotated sixes. Right: implied distance matrix for kernel on rotated sixes. Note that most of the distances are set to $\sqrt{2} \approx 1.41$.

Kernel PCA on Rotated Sixes

Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

Kernel PCA on Rotated Sixes

Figure: demSixKpca. The fifth, sixth and seventh dimensions of the latent space for kernel PCA. Points spread out along axes so that dissimilar points are always $\sqrt{2}$ apart.

MDS Conclusions

- Multidimensional scaling: preserve a distance matrix.
- Classical MDS
- a particular objective function
- for Classical MDS distance matching is equivalent to maximum variance
- spectral decomposition of the similarity matrix
- For Euclidean distances in \mathbf{Y} space classical MDS is equivalent to PCA.
- known as principal coordinate analysis (PCO)
- Haven't discussed choice of distance matrix.

Outline

(1) Motivation

(2) Background
(3) Distance Matching
(4) Distances along the Manifold
(5) Model Selection
(6) Conclusions

Data

Figure: Illustrative data sets for the talk. Each data set is generated by calling generateManifoldData(dataType). The dataType argument is given below each plot.

Isomap

- Tenenbaum et al. 2000
- MDS finds geometric configuration preserving distances
- MDS applied to Manifold distance
- Geodesic Distance $=$ Manifold Distance
- Cannot compute geodesic distance without knowing manifold

Isomap

- Isomap: define neighbours and compute distances between neighbours.
- Geodesic Distance approximated by shortest path through adjacency matrix.

B

Isomap Examples ${ }^{1}$

demIsomap

${ }^{1}$ Data generation Carl Henrik Ek

Isomap Examples ${ }^{1}$

[^0]
Isomap Examples ${ }^{1}$

${ }^{1}$ Data generation Carl Henrik Ek

Isomap: Summary

- MDS on shortest path approximation of manifold distance
+ Simple
+ Intrinsic dimension from eigen spectra
- Solves a very large eigenvalue problem
- Cannot handle holes or non-convex manifold
- Sensitive to "short circuit"

Inverse Covariance

- From the "covariance interpretation" we think of the similarity matrix as a covariance.
- Each element of the covariance is a function of two data points.
- Another option is to specify the inverse covariance.

If the inverse covariance between two points is zero. Those points are independent given all other points.

- This is a conditional independence.
- Describes how points are connected.
- Laplacian Eigenmaps and LLE can both be seen as specifiying the inverse covariance.

LLE Examples²

demLle
${ }^{2} 7$ neighbours used. No playing with settings.

LLE Examples²

${ }^{2} 7$ neighbours used. No playing with settings.

LLE Examples²

demLle

${ }^{2} 7$ neighbours used. No playing with settings.

Generative

- Observed data have been sampled from manifold
- Spectral methods start in the "wrong" end
- "It's a lot easier to make a mess than to clean it up!"
- Things break or disapear
- How to model observation "generation"?

Generative

- Observed data have been sampled from manifold
- Spectral methods start in the "wrong" end
- "It's a lot easier to make a mess than to clean it up!"
- Things break or disapear
- How to model observation "generation"?

Generative

- Observed data have been sampled from manifold
- Spectral methods start in the "wrong" end
- "It's a lot easier to make a mess than to clean it up!"
- Things break or disapear
- How to model observation "generation"?

Generative

- Observed data have been sampled from manifold
- Spectral methods start in the "wrong" end
- "It's a lot easier to make a mess than to clean it up!"
- Things break or disapear
- How to model observation "generation"?

Outline

(1) Motivation

(2) Background
(3) Distance Matching

4 Distances along the Manifold

(5) Model Selection

(6) Conclusions

Model Selection

- Observed data have been sampled from low dimensional manifold
- $\mathbf{y}=f(\mathbf{x})$
- Idea: Model f rank embedding according to
(1) Data fit of f
(2) Complexity of f
- How to model f ?
(1) Making as few assumtpions about f as possible?
(2) Allowing f from as "rich" class as possible?

Gaussian Processes

- Generalisation of Gaussian Distribution over infinite index sets
- Can be used specify distributions over functions
- Regression

$$
\begin{aligned}
\mathbf{y} & =f(\mathbf{x})+\boldsymbol{\epsilon} \\
p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\Phi}) & =\int p(\mathbf{Y} \mid f, \mathbf{X}, \boldsymbol{\Phi}) p(f \mid \mathbf{X}, \boldsymbol{\Phi}) d f \\
p(f \mid \mathbf{X}, \boldsymbol{\Phi}) & =\mathcal{N}(\mathbf{0}, \mathbf{K}) \\
\hat{\boldsymbol{\Phi}} & =\operatorname{argmax}_{\boldsymbol{\Phi}} p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\Phi})
\end{aligned}
$$

Gaussian Processes ${ }^{3}$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=\underbrace{-\frac{1}{2} \mathbf{Y}^{\mathrm{T}}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)^{-1} \mathbf{Y}}_{\text {data-fit }}-
$$

$$
\underbrace{\frac{1}{2} \log \operatorname{det}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)}_{\text {complexity }}-\frac{N}{2} \log 2 \pi
$$

Gaussian Processes ${ }^{3}$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=\underbrace{-\frac{1}{2} \mathbf{Y}^{\mathrm{T}}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)^{-1} \mathbf{Y}}_{\text {data-fit }}-
$$

$$
\underbrace{\frac{1}{2} \log \operatorname{det}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)}_{\text {complexity }}-\frac{N}{2} \log 2 \pi
$$

Gaussian Processes ${ }^{3}$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=\underbrace{-\frac{1}{2} \mathbf{Y}^{\mathrm{T}}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)^{-1} \mathbf{Y}}_{\text {data-fit }}-
$$

$$
\underbrace{\frac{1}{2} \log \operatorname{det}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)}_{\text {complexity }}-\frac{N}{2} \log 2 \pi
$$

Gaussian Processes ${ }^{3}$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=\underbrace{-\frac{1}{2} \mathbf{Y}^{\mathrm{T}}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)^{-1} \mathbf{Y}}_{\text {data-fit }}-
$$

$$
\underbrace{\frac{1}{2} \log \operatorname{det}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)}_{\text {complexity }}-\frac{N}{2} \log 2 \pi
$$

Gaussian Processes ${ }^{3}$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=\underbrace{-\frac{1}{2} \mathbf{Y}^{\mathrm{T}}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)^{-1} \mathbf{Y}}_{\text {data-fit }}-
$$

$$
\underbrace{\frac{1}{2} \log \operatorname{det}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)}_{\text {complexity }}-\frac{N}{2} \log 2 \pi
$$

Gaussian Processes ${ }^{3}$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=\underbrace{-\frac{1}{2} \mathbf{Y}^{\mathrm{T}}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)^{-1} \mathbf{Y}}_{\text {data-fit }}-
$$

$$
\underbrace{\frac{1}{2} \log \operatorname{det}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)}_{\text {complexity }}-\frac{N}{2} \log 2 \pi
$$

Gaussian Processes ${ }^{3}$

$$
\begin{aligned}
\log p(\mathbf{Y} \mid \mathbf{X})= & \underbrace{-\frac{1}{2} \mathbf{Y}^{\mathrm{T}}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)^{-1} \mathbf{Y}}_{\text {data-fit }}- \\
& \underbrace{\frac{1}{2} \log \operatorname{det}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)}_{\text {complexity }}-\frac{N}{2} \log 2 \pi
\end{aligned}
$$

Gaussian Processes ${ }^{3}$

$$
\begin{aligned}
\log p(\mathbf{Y} \mid \mathbf{X})= & \underbrace{-\frac{1}{2} \mathbf{Y}^{\mathrm{T}}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)^{-1} \mathbf{Y}}_{\text {data-fit }}- \\
& \underbrace{\frac{1}{2} \log \operatorname{det}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)}_{\text {complexity }}-\frac{N}{2} \log 2 \pi
\end{aligned}
$$

Gaussian Processes ${ }^{3}$

$$
\log p(\mathbf{Y} \mid \mathbf{X})=\underbrace{-\frac{1}{2} \mathbf{Y}^{\mathrm{T}}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)^{-1} \mathbf{Y}}_{\text {data-fit }}-
$$

$$
\underbrace{\frac{1}{2} \log \operatorname{det}\left(\mathbf{K}+\beta^{-1} \mathbf{I}\right)}_{\text {complexity }}-\frac{N}{2} \log 2 \pi
$$

Gaussian Process Latent Variable Models

- GP-LVM models sampling process

$$
\begin{aligned}
\mathbf{y} & =f(\mathbf{x})+\boldsymbol{\epsilon} \\
p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\Phi}) & =\int p(\mathbf{Y} \mid f, \mathbf{X}, \boldsymbol{\Phi}) p(f \mid \mathbf{X}, \boldsymbol{\Phi}) d f \\
p(f \mid \mathbf{X}, \boldsymbol{\Phi}) & =\mathcal{N}(\mathbf{0}, \mathbf{K}) \\
\{\hat{\mathbf{X}}, \hat{\boldsymbol{\Phi}}\} & =\operatorname{argmax}_{\mathbf{X}, \boldsymbol{\Phi}} p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\Phi})
\end{aligned}
$$

- Linear: Closed form solution
- Non-Linear: Gradient based solution

Model Selection

- Lawrence - 2003 suggested the use of Spectral algorithms to initialise the latent space \mathbf{Y}
- Harmeling - 2007 evaluated the use of GP-LVM objective for model selection
- Comparisons between Procrustes score to ground truth and GP-LVM objective

Model Selection: Results ${ }^{4}$

${ }^{4}$ Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results ${ }^{4}$

${ }^{4}$ Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results ${ }^{4}$

${ }^{4}$ Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results ${ }^{4}$

${ }^{4}$ Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results ${ }^{4}$

${ }^{4}$ Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results ${ }^{4}$

LIE

${ }^{4}$ Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results ${ }^{4}$

${ }^{4}$ Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results ${ }^{4}$

${ }^{4}$ Model selection results kindly provided by Carl Henrik Ek.

Model Selection: Results ${ }^{4}$

${ }^{4}$ Model selection results kindly provided by Carl Henrik Ek.

Conclusion

- Assume "local" structure contains enough "characteristics" to unravel global structure
+ Intuative
- Hard to set parameters without knowing manifold
- Learns embeddings not mappings i.e. Visualisations
- Models problem "wrong" way around
- Sensitive to noise
+ Currently best strategy to initialise generative models

References I

K. V. Mardia. Statistics of Directional Data. Academic Press, London, 1972.
K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate analysis. Academic Press, London, 1979.
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000. doi: $10.1126 /$ science.290.5500.2319.

Material

- Acknowledgement: Carl Henrik Ek for GP log likelihood examples.
- My examples given here http://www.cs.man.ac.uk/~neill/dimred/
- This talk
http://www.cs.man.ac.uk/~neill/

Outline

- Distance Matching

Centering Matrix

If $\hat{\mathbf{Y}}$ is a version of \mathbf{Y} with the mean removed then:

$$
\hat{\mathbf{Y}}=\mathbf{H Y}
$$

$$
\begin{aligned}
\hat{\mathbf{Y}} & =\left(\mathbf{I}-N^{-1} \mathbf{1 1}^{\mathrm{T}}\right) \mathbf{Y} \\
& =\mathbf{Y}-\mathbf{1}\left(N^{-1} \mathbf{1}^{\mathrm{T}} \mathbf{Y}\right) \\
& =\mathbf{Y}-\mathbf{1}\left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i,:}\right)^{\mathrm{T}} \\
& =\mathbf{Y}-\left[\begin{array}{c}
\overline{\mathbf{y}}_{\cdot,:} \\
\overline{\mathbf{y}}_{\cdot,:} \\
\vdots \\
\overline{\mathbf{y}}_{,::}
\end{array}\right]
\end{aligned}
$$

Feature Selection Derivation

- Squared distance can be re-expressed as

$$
d_{i j}^{2}=\sum_{k=1}^{D}\left(y_{i, k}-y_{j, k}\right)^{2}
$$

- Can re-order the columns of \mathbf{Y} without affecting the distances.
- Choose ordering: first q columns of \mathbf{Y} are the those that will best represent the distance matrix.
- Substitution $\mathbf{x}_{:, k}=\mathbf{y}_{:, k}$ for $k=1 \ldots q$.
- Distance in latent space is given by:

$$
\delta_{i j}^{2}=\sum_{k=1}^{q}\left(x_{i, k}-x_{j, k}\right)^{2}=\sum_{k=1}^{q}\left(y_{i, k}-y_{j, k}\right)^{2}
$$

Feature Selection Derivation II

- Can rewrite

$$
E(\mathbf{X})=\sum_{i=1}^{N} \sum_{j=1}^{N}\left|d_{i j}^{2}-\delta_{i j}^{2}\right|
$$

as

$$
E(\mathbf{X})=\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=q+1}^{D}\left(y_{i, k}-y_{j, k}\right)^{2}
$$

- Introduce mean of each dimension, $\bar{y}_{k}=\frac{1}{N} \sum_{i=1}^{N} y_{i, k}$,

$$
E(\mathbf{X})=\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=q+1}^{D}\left(\left(y_{i, k}-\bar{y}_{k}\right)-\left(y_{j, k}-\bar{y}_{k}\right)\right)^{2}
$$

- Expand brackets

$$
E(\mathbf{X})=\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=q+1}^{D}\left(y_{i, k}-\bar{y}_{k}\right)^{2}+\left(y_{j, k}-\bar{y}_{k}\right)^{2}-2\left(y_{j, k}-\bar{y}_{k}\right)\left(y_{i, k}-\bar{y}_{k}\right)
$$

Feature Selection Derivation III

- Expand brackets

$$
E(\mathbf{X})=\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=q+1}^{D}\left(y_{i, k}-\bar{y}_{k}\right)^{2}+\left(y_{j, k}-\bar{y}_{k}\right)^{2}-2\left(y_{j, k}-\bar{y}_{k}\right)\left(y_{i, k}-\bar{y}_{k}\right)
$$

Bring sums in

$$
E(\mathbf{X})=\sum_{k=q+1}^{D}\left(N \sum_{i=1}^{N}\left(y_{i, k}-\bar{y}_{k}\right)^{2}+N \sum_{j=1}^{N}\left(y_{j, k}-\bar{y}_{k}\right)^{2}-2 \sum_{j=1}^{N}\left(y_{j, k}-\bar{y}_{k}\right) \sum_{i=1}^{N}\left(y_{i, k}-\bar{y}_{k}\right)\right)
$$

- Recognise as the sum of the variances discarded columns of \mathbf{Y},

$$
E(\mathbf{X})=2 N^{2} \sum_{k=q+1}^{D} \sigma_{k}^{2}
$$

- We should compose \mathbf{X} by extracting the columns of \mathbf{Y} which have the largest variance.

[^0]: ${ }^{1}$ Data generation Carl Henrik Ek

