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“Ockham’s Razor”

In the fourteenth century, William of Ockham proposed:

“Pluralitas non est ponenda sine neccesitate”

which literally translates as:

“Entities should not be multiplied unnecessarily”

In a data modelling context, of all potential solutions to a given
problem, we would ideally choose the simplest

Bayesian statistical inference automatically manages the trade-off
between simplicity and solution accuracy
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Bayesian Preference for Appropriate Simplicity

Consider that we have a binary (n/q) communication system

We have a fixed dictionary of symbols (strings of bit-1):
qqqqqqqq

qqqq

qq

q

Messages are constructed by OR-ing an arbitrary number of bit-1
symbols in arbitrary positions within a field of bit-0’s

There may be transmission errors (independent inversion of bits)

We receive a binary sequence: t = nnqqqqnnqq

What is the “best” decoding?
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Decoding

Some possible decodings:

Decoding ModelM Error ε

1 nnqqqqnnqq 6 × q -
2 nnqqqqnnqq 3 × qq -
3 nnqqqqnnqq qqqq + qq -
4 nnqqqqqqqq qqqqqqqq 2

Models 1–3 predict the sequence perfectly

Model 4 is simplest, but requires introduction of bit errors

Without any further assumptions, we can show that Decoding 3 is
most probable . . .
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Decoding

For each decoding, we calculate p(t|M), the probability assigned
to the sequence by the model with reference to all the other sequences
that the model could potentially have decoded

Giving:

Decoding ModelM ε # Sequences p(t|M)

1 nnqqqqnnqq 6 × q - 6! of 106 0.0007
2 nnqqqqnnqq 3 × qq - 3! of 93 0.0082
3 nnqqqqnnqq qqqq + qq - 1 of 7× 9 0.0159
4 nnqqqqqqqq qqqqqqqq 2 1 of 3× (10

2 ) 0.0074

This simple example is “Bayesian inference in disguise”, and is
exactly analogous to the way that Bayesian methods perform in
more complex machine learning and data modelling tasks
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An Example Modelling Problem

We have a set of ‘mystery’ data:

0 1 2 3 4 5 6
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x

t

Truth: N = 15 samples synthesised from the function y = sin(x)
with added Gaussian noise of standard deviation 0.2

The ‘input’ variables are denoted xn, n = 1 . . . N

For each xn, there is an associated real-valued observation tn
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Linear (in-the-parameter) Models

Model choice: parametric function y(x; w)

A linearly-weighted sum of M fixed basis functions φm(x):

y(x; w) =
M

∑
m=1

wmφm(x)

Example: Gaussian data-centred basis functions:

φm(x) = exp
{
−(x− xm)2/r2

}
a “radial basis function” (RBF) model
M = N = 15 in this example
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“Least-squares” Approximation

Goal: find w such that y(x; w) is a ‘good’ model

Start with a classic approach: least-squares, minimising:

ELS(w) =
1
2

N

∑
n=1

[
tn −

M

∑
m=1

wmφm(xn)

]2

If Φ is the ‘design matrix’ such that Φnm = φm(xn), and
t = (t1, . . . , tN)T then:

wLS = (ΦTΦ)−1ΦTt
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Model Complexity?

With M = 15 basis functions and only N = 15 examples,
minimisation of squared-error leads to “over-fitting”:
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Ideal fit Least−squares RBF fit

How do we judge which model is “better”?

To estimate complexity, we must introduce some prior knowledge,
preference, expectation, prejudice . . .
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Complexity Control: Regularisation

We typically prefer smoother functions, which typically have
smaller weights w

Augment the error function with a weight penalty term:

EPLS(w) = ELS(w) + λEW(w)

A conventional choice is the squared-weight penalty:

EW(w) =
1
2

M

∑
m=1

w2
m

This conveniently gives the “penalised least-squares” estimate:

wPLS = (ΦTΦ + λI)−1ΦTt
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The Regularisation Hyperparameter

The hyperparameter λ controls the trade-off between quality of fit,
ELS(w), and smoothness, EW(w)
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Training data (15 samples) RBF model:  λ=1000

RBF model:  λ=0.001 RBF model:  λ=1e−015
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Estimating λ via Validation (1)

Assess candidate values of λ according to validation set data error
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All data Validation error: E = 2.11

Validation error: E = 0.52 Validation error: E = 0.70
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Estimating λ via Validation (2)
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Bayesian Inference: Basic Principles

Define prior probability distributions over all model variables:
Inherently stochastic quantities (e.g. the observations t)
All parameters (e.g. w, σ, λ)
The modelM itself (e.g. its type, structure, basis choice etc)

Update these distributions in light of the data (Bayes’ rule!)

Integrate out variables which are not directly of interest
Most required integrations are analytically intractable 8

Key features of the Bayesian approach:
A consistent way to deal with all sources of uncertainty 4
An explicit framework for encoding prior knowledge 4
Automatic implementation of “Ockham’s Razor” 4
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Bayesian Inference: Likelihood Model

Data is a noisy sample from the underlying function:

tn = y(xn; w) + εn

Gaussian zero-mean noise model with variance σ2:

p(εn|σ2) = N(0, σ2)

Assuming independence, the likelihood p(t|w, σ2) of the data is:

N

∏
n=1

p(tn|w, σ2) =
N

∏
n=1

(2πσ2)−1/2 exp

[
−{tn − y(xn; w)}2

2σ2

]

So “maximum-likelihood” ≡ “least-squares” here
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Bayesian Inference: Prior Distributions

Model complexity is controlled by specifying a prior distribution
which expresses a “degree of belief” regarding appropriate values
for w before observing the data

A conventional choice is a zero-mean Gaussian:

p(w|α) =
( α

2π

)M/2 M

∏
m=1

exp
{
−α

2
w2

m

}
This expresses a preference for smoother models by declaring
smaller weights to be a priori more probable

The strength of this preference is controlled by the shared
inverse-variance hyperparameter α
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Bayesian Inference: Bayes’ Rule!

Given the likelihood and the prior, we compute the posterior
distribution over w via Bayes’ rule:

p(w|t, α, σ2) =
p(t|w, σ2) p(w|α)

p(t|α, σ2)
=

likelihood× prior
normalising factor

Here, the posterior is Gaussian: p(w|t, α, σ2) = N(µ, Σ) with

µ = (ΦTΦ + σ2αI)−1ΦTt

Σ = σ2(ΦTΦ + σ2αI)−1

Rules of probability å
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MAP Estimation: a ‘Bayesian’ Short-cut

The “maximum a posteriori” (MAP) estimate for w is the single
most probable value under the posterior distribution p(w|t, α, σ2)

For a Gaussian posterior, the maximum is equal to the mean:

wMAP = µ = (ΦTΦ + σ2αI)−1ΦTt

Recall: wPLS = (ΦTΦ + λI)−1ΦTt

The MAP estimate is therefore identical to the penalised
least-squares estimate re-parameterised with λ = σ2α
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Demo: Bayesian Posterior Inference

Over to Matlab . . .
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Marginalisation

The MAP/PLS equivalence does not mean that the Bayesian
framework is simply a re-interpretation of classical methods!

The key element of Bayesian inference is marginalisation, where we
seek to integrate out all ‘nuisance’ variables, including w

This integration procedure automatically implements “Ockham’s
Razor”: the intrinsic assignment of higher probability to
“appropriately complex” models

We’ll exploit this to:
robustly estimate the hyperparameter α/λ (next)
selection of the model itself (later)
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The True Bayesian Path

We should define priors over all variables, not just the weights w

Having defined priors p(α) and p(σ2), we apply Bayes’ rule:

p(w, α, σ2|t) =
p(t|w, σ2) p(w|α) p(α) p(σ2)

p(t)

Not computable in closed form since the integral:

p(t) =
∫

p(t|w, σ2) p(w|α) p(α) p(σ2) dw dα dσ2

is not analytically tractable
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A Pragmatic Deviation from the Path

We can’t compute p(w, α, σ2|t) analytically, so we desire a
workable approximation

We decompose the joint posterior as:

p(w, α, σ2|t) ≡ p(w|t, α, σ2) p(α, σ2|t)

The ‘weight posterior’ distribution p(w|t, α, σ2) is tractable

The ‘hyperparameter posterior’ p(α, σ2|t) must be approximated
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Type-II Maximum Likelihood

Find the single ‘most probable’ values αMP and σ2
MP under the

posterior distribution:

p(α, σ2|t) =
p(t|α, σ2) p(α) p(σ2)

p(t)

Assume log-uniform hyperpriors over p(α) and p(σ2)

Maximise p(t|α, σ2), the marginal likelihood of the training data:

p(t|α, σ2) =
∫

p(t|w, σ2) p(w|α) dw

= (2π)−N/2|σ2I + α−1ΦΦT|−1/2 exp
{
−1

2
tT(σ2I + α−1ΦΦT)−1t

}
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Estimating α via Validation
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Estimating α via Marginal Likelihood
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Ockham’s Razor revisited

Marginalisation over w implements “Ockham’s Razor” by
rejecting models that are both too simple and too complex
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End of Part One . . .

Don’t go away, we’ll be right back
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Rules of Probability

Product rule:

p(a, b) = p(a|b) p(b) = p(b|a) p(a)

More generally:

p(a, b|c) = p(a|b, c) p(b|c) = p(b|a, c) p(a|c)

Rearranging gives Bayes’ rule:

p(a|b, c) =
p(b|a, c) p(a|c)

p(b|c)

Sum (integral) rule:

p(b|c) =
∫ ∞

−∞
p(a, b|c) da

Return å
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