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Why model this data?

Artifact corruption, leading to false alarms

Our aim is to determine the baby’s state of health despite
these problems
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Autoregressive (AR) Processes

x x x x1 2 3 4

Scalar AR(1) process

xt = αxt−1 + wt , wt ∼ N (0, γ)

Vector AR(1) process

xt = Axt−1 + wt , wt ∼ N (0, Γ)

A scalar AR(p) process can be written as a vector AR(1)
process one stores xt and the previous p − 1 values in xt
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Kalman Filter
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Dynamical model
xt = Axt−1 + wt

where wt ∼ N(0, Γ) is Gaussian noise, i.e.

p(xt |xt−1) ∼ N(Axt−1, Γ)

A Kalman filter is a HMM with continuous state-space and
observations (and Gaussian densities)
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Observation model
yt = Cxt + vt

where vt ∼ N(0,Σ) is Gaussian noise, i.e.

p(yt |xt) ∼ N(Cxt ,Σ)

Initialization
p(x0) ∼ N(µ0,Σ0)
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Inference Problem – filtering

As whole model is Gaussian, only need to compute means and
variances

p(xt |y1, . . . , yt) ∼ N(µt ,Vt)

µt = E [xt |y1, . . . , yt ]

Vt = E [(xt − µt)(xt − µt)
T |y1, . . . , yt ]

Recursive update split into two parts

Time update

p(xt |y1, . . . , yt) → p(xt+1|y1, . . . , yt)

Measurement update

p(xt+1|y1, . . . , yt) → p(xt+1|y1, . . . , yt , yt+1)
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Time update
xt+1 = Axt + wt

thus
E[xt+1|y1, . . . yt ] = Aµt

cov(xt+1|y1, . . . yt)
def
=Pt = AVtA

T + Γ

Measurement update (like posterior in Factor Analysis)

µt+1 = Aµt + Kt+1(yt+1 − CAµt)

Vt+1 = (I − Kt+1C )Pt

where
Kt+1 = PtC

T (CPtC
T + Σ)−1

Kt+1 is known as the Kalman gain matrix
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Simple example

xt+1 = xt + wt

wt ∼ N(0, 1)
yt = zt + vt

vt ∼ N(0, 1)
p(z1) ∼ N(0, σ2)

In the limit σ2 →∞ we find

µ2 =
5y2 + 2y1 + y0

8

Notice how later data has more weight

Compare yt+1 = yt (so that wt has zero variance); then

µ3 =
y2 + y1 + y0

3
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Applications

Much as a coffee filter serves to keep undesirable grounds
out of your morning mug, the Kalman filter is designed
to strip unwanted noise out of a stream of data.

Barry Cipra, SIAM News 26(5) 1993

Navigational and guidance systems

Radar tracking

Sonar ranging

Satellite orbit determination
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Probes

1. ECG, 2. arterial line, 3. pulse oximeter 4. core temperature, 5.
peripheral temperature, 6. transcutaneous probe.
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Factors affecting measurements

The physiological observations are affected by different
factors.
Factors can be artifactual or physiological.
An arterial blood sample (artifact):
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Common factor examples

Transcutaneous probe recalibration (artifact)
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Common factor examples

Bradycardia (physiological)
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Factorial Switching Kalman Filter

Artifactual state

Physiological state

Observations

Physiological factors 

Artifactual factors
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FSKF notation

st is the switch variable, which indexes factor settings, e.g.
‘blood sample occurring and first stage of TCP recalibration’.

xt is the hidden continuous state at time t. This contains
information on the true physiology of the baby, and on the
levels of artifactual processes.

y1:t are the observations.
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Factor interactions
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Factor interactions
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Factor interactions
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Factor interactions
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Factor interactions
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Related work

Switching linear dynamical models have been studied by many
authors, e.g. Alspach and Sorenson (1972), Ghahramani and
Hinton (1996).

Applications include fault detection in mobile robots (de
Freitas et al., 2004), speech recognition (Droppo and Acero,
2004), industrial monitoring (Morales-Menedez et al., 2002).

A two-factor FSKF was used for speech recognition by Ma
and Deng (2004). Factorised SKF also used for musical
transcription (Cemgil et al., 2006).

There has been previous work on condition monitoring in the
ICU, though we are unaware of any studies that use a FSKF.
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Kalman filtering

Continuous hidden state affects some observations:

xt ∼ N (Axt−1,Q)

yt ∼ N (Cxt ,R)

Kalman filter equations can be used to work compute
p(x1:t |y1:t)

Done iteratively by predicting and updating
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Switching dynamics

The switch variable st selects the dynamics for a particular
combination of factor settings:

xt ∼ N (A(st)xt−1,Q
(st))

yt ∼ N (C(st)xt ,R
(st))

For each setting of st , the Kalman filter equations give a
predictive distribution for xt .
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Inference

For this application, we are interested in filtering, inferring
p(st , xt |y1:t).

Exact inference is intractable.

Using two inference methods:

Gaussian Sum (Alspach and Sorenson, 1972), analytical
approximation
Rao-Blackwellised particle filtering.
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Gaussian Sum approximation

st−1= n

st−1= 1
. .

 .
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Gaussian Sum approximation

st−1= n

st−1= 1
. .

 .
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Gaussian Sum approximation

st−1= n

st−1= 1
. .

 .
st = 1
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Parameter estimation

We need to estimate a dynamical model for each continuous
state variable for each setting of the factors

We use AR/ARMA/ARIMA modelling, e.g. an AR(p) process

xi (t) =

p∑
j=1

αijxi (t − j) + εt

Fortunately, annotated training data is available
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The hidden continuous state in this application is
interpretable, and domain knowledge can be used to help
parameterize the dynamical models for each factor.
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Parameter estimation example
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For example, we know that the falling temperature
measurements caused by a probe disconnection will follow an
exponential decay

Therefore we can model these dynamics as an AR(1) process,
and set parameters by solving the Yule-Walker equations.

Chris Williams Known Unknowns: Novelty Detection in Condition Monitoring



Premature Baby Monitoring Unknown conditions

Learning stable physiological dynamics

Each observation channel has different dynamics when the
baby is ‘stable’ (self regulating) and no artifactual factors are
active

By analysing examples of stable data, dynamical models can
be found for each channel with the Box-Jenkins approach and
EM.

For example, a hidden ARIMA(2,1,0) model is a good fit to
baseline heart rate data.
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Known factor classification demo
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Inference results

Inference of bradycardia and incubator open factors. Note
that heart rate variation while incubator is open is attributed
to handling of the baby (BR factor suppressed)
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Inference results

Can examine variance variance of estimates of true physiology
x̂t , e.g. for blood sample (left) and temperature probe
disconnection (right):
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Quantitative Evaluation

3-fold cross validation on 360 hours of monitoring data from
15 babies.

FHMM has the same factor structure as the FSKF, with no
hidden continuous state.

Inference type Incu. open Core temp. Blood sample Bradycardia
auc 0.87 0.77 0.96 0.88

GS
eer 0.17 0.34 0.14 0.25
auc 0.77 0.74 0.86 0.77

RBPF
eer 0.23 0.32 0.15 0.28
auc 0.78 0.74 0.82 0.66

FHMM
eer 0.25 0.32 0.20 0.37
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Comparison with FHMM model

FSKF can handle drift in baseline levels:
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Novel dynamics

There are many other factors influencing the data: drugs,
sepsis, neurological problems...
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Known Unknowns

Add a factor to represent abnormal dynamics
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Known Unknowns

Add a factor to represent abnormal dynamics
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X-factor for static 1-D data

For static data, we can use a model M∗ representing
‘abnormal’ data points.
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The high-variance model wins when the data is not well
explained by the original model
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X-factor with known factors

The X-factor can be applied to the static data in conjunction
with known factors (green):
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X-factor for dynamic data

xt ∼ N (Axt−1,Q)

yt ∼ N (Cxt ,R)

Can construct an ‘abnormal’ dynamic regime analogously:

Normal dynamics: {A,Q,C,R}

X-factor dynamics: {A,ξQ,C,R}, ξ > 1.
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Spectral view of the X-factor

f
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Plot shows the spectrum of a hidden AR(5) process, and
accompanying X-factor

More power at every frequency

Dynamical analogue of the static 1-D case
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X-factor demo
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More inference results

Classification of periods of clinically significant cardiovascular
disturbance:
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EM for novel regimes
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Conclusions

FSKF successfully applied to complex physiological monitoring
data

FSKF can be applied more generally to condition monitoring
problems

Interpretable structure

Knowledge engineering used to parameterize dynamic models

Allows monitoring of known and novel dynamics (supervised
and unsupervised learning)
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Models for stable physiology

A fitted model can be verified by comparing real physiological
data against a sample from that model, e.g. for heart rate:
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