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Supervised Learning: The Prediction Problem

Ubiquitous questions:

• Model fitting
• how do I fit the parameters?
• what about overfitting?

• Model Selection
• how to I find out which model to use?
• how sure can I be?

• Interpretation
• what is the accuracy of the predictions?
• can I trust the predictions, even if

• . . . I am not sure about the parameters?
• . . . I am not sure of the model structure?

Gaussian processes solve some of the above, and provide a practical framework
to address the remaining issues.
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Outline

Part I: foundations
• What is a Gaussian process

• from distribution to process
• distribution over functions
• the marginalization property

• Inference
• Bayesian inference
• posterior over functions
• predictive distribution
• marginal likelihood
• Occam’s Razor
• automatic complexity penalty

Part II: advanced topics
• Example

• priors over functions
• hierarchical priors using

hyperparameters
• learning the covariance

function
• Approximate methods for

classification
• Gaussian Process latent variable

models
• Sparse methods
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The Gaussian Distribution

The Gaussian distribution is given by

p(x|µ, Σ) = N(µ, Σ) = (2π)−D/2|Σ|−1/2 exp
(

− 1
2 (x − µ)>Σ−1(x − µ)

)
where µ is the mean vector and Σ the covariance matrix.
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Conditionals and Marginals of a Gaussian
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Both the conditionals and the marginals of a joint Gaussian are again Gaussian.
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What is a Gaussian Process?

A Gaussian process is a generalization of a multivariate Gaussian distribution to
infinitely many variables.

Informally: infinitely long vector ' function

Definition: a Gaussian process is a collection of random variables, any
finite number of which have (consistent) Gaussian distributions. �

A Gaussian distribution is fully specified by a mean vector, µ, and covariance
matrix Σ:

f = (f1, . . . , fn)
> ∼ N(µ, Σ), indexes i = 1, . . . , n

A Gaussian process is fully specified by a mean function m(x) and covariance
function k(x, x ′):

f (x) ∼ GP
(
m(x), k(x, x ′)

)
, indexes: x
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The marginalization property

Thinking of a GP as a Gaussian distribution with an infinitely long mean vector
and an infinite by infinite covariance matrix may seem impractical. . .

. . . luckily we are saved by the marginalization property:

Recall:

p(x) =

∫
p(x, y)dy.

For Gaussians:

p(x, y) = N
([ a

b

]
,

[ A B
B> C

])
=⇒ p(x) = N(a, A)
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Random functions from a Gaussian Process

Example one dimensional Gaussian process:

p(f (x)) ∼ GP
(
m(x) = 0, k(x, x ′) = exp(− 1

2 (x − x ′)2)
)
.

To get an indication of what this distribution over functions looks like, focus on a
finite subset of function values f = (f (x1), f (x2), . . . , f (xn))

>, for which

f ∼ N(0, Σ),

where Σij = k(xi, xj).

Then plot the coordinates of f as a function of the corresponding x values.
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Some values of the random function
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Sequential Generation

Factorize the joint distribution

p(f1, . . . , fn|x1, . . . xn) =

n∏
i=1

p(fi|fi−1, . . . , f1, xi, . . . , x1),

and generate function values sequentially.

What do the individual terms look like? For Gaussians:

p(x, y) = N
([ a

b

]
,

[ A B
B> C

])
=⇒ p(x|y) = N(a+BC−1(y−b), A−BC−1B>)

Do try this at home!
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Function drawn at random from a Gaussian Process with Gaussian covariance
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Maximum likelihood, parametric model

Supervised parametric learning:

• data: x, y
• model: y = fw(x) + ε

Gaussian likelihood:

p(y|x, w, Mi) ∝
∏

c

exp(− 1
2 (yc − fw(xc))

2/σ2
noise).

Maximize the likelihood:

wML = argmax
w

p(y|x, w, Mi).

Make predictions, by plugging in the ML estimate:

p(y∗|x∗, wML, Mi)

Rasmussen (Engineering, Cambridge) Learning with Gaussian Processes January 21-25, 2008 12 / 52



Bayesian Inference, parametric model

Supervised parametric learning:

• data: x, y
• model: y = fw(x) + ε

Gaussian likelihood:

p(y|x, w, Mi) ∝
∏

c

exp(− 1
2 (yc − fw(xc))

2/σ2
noise).

Parameter prior:
p(w|Mi)

Posterior parameter distribution by Bayes rule p(a|b) = p(b|a)p(a)/p(b):

p(w|x, y, Mi) =
p(w|Mi)p(y|x, w, Mi)

p(y|x, Mi)
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Bayesian Inference, parametric model, cont.

Making predictions:

p(y∗|x∗, x, y, Mi) =

∫
p(y∗|w, x∗, Mi)p(w|x, y, Mi)dw

Marginal likelihood:

p(y|x, Mi) =

∫
p(w|Mi)p(y|x, w, Mi)dw.

Model probability:

p(Mi|x, y) =
p(Mi)p(y|x, Mi)

p(y|x)

Problem: integrals are intractable for most interesting models!
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Non-parametric Gaussian process models

In our non-parametric model, the “parameters” is the function itself!

Gaussian likelihood:
y|x, f (x), Mi ∼ N(f, σ2

noiseI)

(Zero mean) Gaussian process prior:

f (x)|Mi ∼ GP
(
m(x) ≡ 0, k(x, x ′)

)
Leads to a Gaussian process posterior

f (x)|x, y, Mi ∼ GP
(
mpost(x) = k(x, x)[K(x, x) + σ2

noiseI]
−1y,

kpost(x, x ′) = k(x, x ′) − k(x, x)[K(x, x) + σ2
noiseI]

−1k(x, x ′)
)
.

And a Gaussian predictive distribution:

y∗|x∗, x, y, Mi ∼ N
(
k(x∗, x)>[K + σ2

noiseI]
−1y,

k(x∗, x∗) + σ2
noise − k(x∗, x)>[K + σ2

noiseI]
−1k(x∗, x)

)
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Prior and Posterior

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

Predictive distribution:

p(y∗|x∗, x, y) ∼ N
(
k(x∗, x)>[K + σ2

noiseI]
−1y,

k(x∗, x∗) + σ2
noise − k(x∗, x)>[K + σ2

noiseI]
−1k(x∗, x)

)
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Graphical model for Gaussian Process
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Square nodes are observed (clamped),
round nodes stochastic (free).

All pairs of latent variables are con-
nected.

Predictions y∗ depend only on the corre-
sponding single latent f ∗.

Notice, that adding a triplet x∗m, f ∗m, y∗m
does not influence the distribution. This
is guaranteed by the marginalization
property of the GP.

This explains why we can make inference using a finite amount of computation!
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Some interpretation

Recall our main result:

f∗|X∗, X, y ∼ N
(
K(X∗, X)[K(X, X) + σ2

nI]−1y,

K(X∗, X∗) − K(X∗, X)[K(X, X) + σ2
nI]−1K(X, X∗)

)
.

The mean is linear in two ways:

µ(x∗) = k(x∗, X)[K(X, X) + σ2
n]

−1y =

n∑
c=1

βcy(c) =

n∑
c=1

αck(x∗, x(c)).

The last form is most commonly encountered in the kernel literature.

The variance is the difference between two terms:

V(x∗) = k(x∗, x∗) − k(x∗, X)[K(X, X) + σ2
nI]−1k(X, x∗),

the first term is the prior variance, from which we subtract a (positive) term,
telling how much the data X has explained. Note, that the variance is
independent of the observed outputs y.
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The marginal likelihood

Log marginal likelihood:

log p(y|x, Mi) = −
1
2

y>K−1y −
1
2

log |K| −
n
2

log(2π)

is the combination of a data fit term and complexity penalty. Occam’s Razor is
automatic.

Learning in Gaussian process models involves finding

• the form of the covariance function, and
• any unknown (hyper-) parameters θ.

This can be done by optimizing the marginal likelihood:

∂ log p(y|x, θ, Mi)

∂θj
=

1
2

y>K−1 ∂K
∂θj

K−1y −
1
2

trace(K−1 ∂K
∂θj

)

Rasmussen (Engineering, Cambridge) Learning with Gaussian Processes January 21-25, 2008 19 / 52



Example: Fitting the length scale parameter

Parameterized covariance function: k(x, x ′) = v2 exp
(

−
(x − x ′)2

2`2

)
+ σ2

nδxx′ .

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

1.5
observations
too short
good length scale
too long

The mean posterior predictive function is plotted for 3 different length scales (the
green curve corresponds to optimizing the marginal likelihood). Notice, that an
almost exact fit to the data can be achieved by reducing the length scale – but the
marginal likelihood does not favour this!
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Why, in principle, does Bayesian Inference work?
Occam’s Razor

too simple

too complex

"just right"

All possible data sets

P
(Y

|M
i)

Y
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An illustrative analogous example

Imagine the simple task of fitting the variance, σ2, of a zero-mean Gaussian to a
set of n scalar observations.

The log likelihood is log p(y|µ, σ2) = − 1
2

∑
(yi − µ)2/σ2− n

2 log(σ2) − n
2 log(2π)
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From random functions to covariance functions

Consider the class of linear functions:

f (x) = ax + b, where a ∼ N(0, α), and b ∼ N(0, β).

We can compute the mean function:

µ(x) = E[f (x)] =

∫∫
f (x)p(a)p(b)dadb =

∫
axp(a)da +

∫
bp(b)db = 0,

and covariance function:

k(x, x ′) = E[(f (x) − 0)(f (x ′) − 0)] =

∫∫
(ax + b)(ax ′ + b)p(a)p(b)dadb

=

∫
a2xx ′p(a)da +

∫
b2p(b)db + (x + x ′)

∫
abp(a)p(b)dadb = αxx ′ + β.
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From random functions to covariance functions II

Consider the class of functions (sums of squared exponentials):

f (x) = lim
n→∞ 1

n

∑
i

γi exp(−(x − i/n)2), where γi ∼ N(0, 1), ∀i

=

∫∞
−∞γ(u) exp(−(x − u)2)du, where γ(u) ∼ N(0, 1), ∀u.

The mean function is:

µ(x) = E[f (x)] =

∫∞
−∞ exp(−(x − u)2)

∫∞
−∞γp(γ)dγdu = 0,

and the covariance function:

E[f (x)f (x ′)] =

∫
exp

(
− (x − u)2 − (x ′ − u)2)du

=

∫
exp

(
− 2(u −

x + x ′

2
)2 +

(x + x ′)2

2
− x2 − x ′2

)
)du ∝ exp

(
−

(x − x ′)2

2

)
.

Thus, the squared exponential covariance function is equivalent to regression
using infinitely many Gaussian shaped basis functions placed everywhere, not just
at your training points!
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Using finitely many basis functions may be dangerous!
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Model Selection in Practise; Hyperparameters

There are two types of task: form and parameters of the covariance function.

Typically, our prior is too weak to quantify aspects of the covariance function.
We use a hierarchical model using hyperparameters. Eg, in ARD:

k(x, x ′) = v2
0 exp

(
−

D∑
d=1

(xd − x ′d)
2

2v2
d

)
, hyperparameters θ = (v0, v1, . . . , vd, σ2

n).
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Rational quadratic covariance function

The rational quadratic (RQ) covariance function:

kRQ(r) =
(

1 +
r2

2α`2

)−α

with α, ` > 0 can be seen as a scale mixture (an infinite sum) of squared
exponential (SE) covariance functions with different characteristic length-scales.

Using τ = `−2 and p(τ|α, β) ∝ τα−1 exp(−ατ/β):

kRQ(r) =

∫
p(τ|α, β)kSE(r|τ)dτ

∝
∫

τα−1 exp
(
−

ατ

β

)
exp

(
−

τr2

2

)
dτ ∝

(
1 +

r2

2α`2

)−α

,
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Rational quadratic covariance function II
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The limit α → ∞ of the RQ covariance function is the SE.
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Matérn covariance functions

Stationary covariance functions can be based on the Matérn form:

k(x, x ′) =
1

Γ(ν)2ν−1

[√2ν

`
|x − x ′|

]ν

Kν

(√2ν

`
|x − x ′|

)
,

where Kν is the modified Bessel function of second kind of order ν, and ` is the
characteristic length scale.

Sample functions from Matérn forms are bν − 1c times differentiable. Thus, the
hyperparameter ν can control the degree of smoothness

Special cases:

• kν=1/2(r) = exp(− r
` ): Laplacian covariance function, Browninan motion

(Ornstein-Uhlenbeck)

• kν=3/2(r) =
(
1 +

√
3r
`

)
exp

(
−

√
3r
`

)
(once differentiable)

• kν=5/2(r) =
(
1 +

√
5r
` + 5r2

3`2

)
exp

(
−

√
5r
`

)
(twice differentiable)

• kν→∞ = exp(− r2

2`2 ): smooth (infinitely differentiable)
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Matérn covariance functions II

Univariate Matérn covariance function with unit characteristic length scale and
unit variance:
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Periodic, smooth functions

To create a distribution over periodic functions of x, we can first map the inputs
to u = (sin(x), cos(x))>, and then measure distances in the u space. Combined
with the SE covariance function, which characteristic length scale `, we get:

kperiodic(x, x ′) = exp(−2 sin2(π(x − x ′))/`2)
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Three functions drawn at random; left ` > 1, and right ` < 1.
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The Prediction Problem
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Covariance Function

The covariance function consists of several terms, parameterized by a total of 11
hyperparameters:

• long-term smooth trend (squared exponential)
k1(x, x ′) = θ2

1 exp(−(x − x ′)2/θ2
2),

• seasonal trend (quasi-periodic smooth)

k2(x, x ′) = θ2
3 exp

(
− 2 sin2(π(x − x ′))/θ2

5

)
× exp

(
− 1

2 (x − x ′)2/θ2
4

)
,

• short- and medium-term anomaly (rational quadratic)

k3(x, x ′) = θ2
6

(
1 +

(x−x′)2

2θ8θ2
7

)−θ8

• noise (independent Gaussian, and dependent)

k4(x, x ′) = θ2
9 exp

(
−

(x−x′)2

2θ2
10

)
+ θ2

11δxx′ .

k(x, x ′) = k1(x, x ′) + k2(x, x ′) + k3(x, x ′) + k4(x, x ′)

Let’s try this with the gpml software (http://www.gaussianprocess.org/gpml).
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Carbon Dioxide Predictions
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Long- and medium-term mean predictions
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Mean Seasonal Component

J F M A M J J A S O N D
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Seasonal component: magnitude θ3 = 2.4 ppm, decay-time θ4 = 90 years.

Dependent noise, magnitude θ9 = 0.18 ppm, decay θ10 = 1.6 months.
Independent noise, magnitude θ11 = 0.19 ppm.

Optimize or integrate out? See MacKay [5].
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Binary Gaussian Process Classification
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The class probability is related to the latent function, f , through:

p(y = 1|f (x)) = π(x) = Φ
(
f (x)

)
,

where Φ is a sigmoid function, such as the logistic or cumulative Gaussian.
Observations are independent given f , so the likelihood is

p(y|f) =

n∏
i=1

p(yi|fi) =

n∏
i=1

Φ(yifi).
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Prior and Posterior for Classification

We use a Gaussian process prior for the latent function:

f|X, θ ∼ N(0, K)

The posterior becomes:

p(f|D, θ) =
p(y|f) p(f|X, θ)

p(D|θ)
=

N(f|0, K)

p(D|θ)

m∏
i=1

Φ(yifi),

which is non-Gaussian.

The latent value at the test point, f (x∗) is

p(f∗|D, θ, x∗) =

∫
p(f∗|f, X, θ, x∗)p(f|D, θ)df,

and the predictive class probability becomes

p(y∗|D, θ, x∗) =

∫
p(y∗|f∗)p(f∗|D, θ, x∗)df∗,

both of which are intractable to compute.
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Gaussian Approximation to the Posterior

We approximate the non-Gaussian posterior by a Gaussian:

p(f|D, θ) ' q(f|D, θ) = N(m, A)

then q(f∗|D, θ, x∗) = N(f∗|µ∗, σ2
∗), where

µ∗ = k>∗ K−1m

σ2
∗ = k(x∗, x∗)−k>∗ (K−1 − K−1AK−1)k∗.

Using this approximation with the cumulative Gaussian likelihood

q(y∗ = 1|D, θ, x∗) =

∫
Φ(f∗) N(f∗|µ∗, σ2

∗)df∗ = Φ
( µ∗√

1 + σ2
∗

)
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Laplace’s method and Expectation Propagation

How do we find a good Gaussian approximation N(m, A) to the posterior?

Laplace’s method: Find the Maximum A Posteriori (MAP) lantent values fMAP,
and use a local expansion (Gaussian) around this point as suggested by Williams
and Barber [10].

Variational bounds: bound the likelihood by some tractable expression
A local variational bound for each likelihood term was given by Gibbs and
MacKay [1]. A lower bound based on Jensen’s inequality by Opper and Seeger
[7].

Expectation Propagation: use an approximation of the likelihood, such that the
moments of the marginals of the approximate posterior match the (approximate)
moment of the posterior, Minka [6].

Laplace’s method and EP were compared by Kuss and Rasmussen [3].
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Gaussian process latent variable models

GP’s can be used for non-linear dimensionality reduction (unsupervised learning).

Observed (high-dimensional) data Ydc, where 1 6 d 6 D indexes dimensions and
1 6 c 6 n indexes dimensions.

Assume that each visible coordinate, yd, is modeled by a separate GP using some
latent (low dimensional) inputs x.

Find the best latent inputs by maximizing the marginal likelihood under the
constraint that all visible variables must share the same latent values.

Computationally, this isn’t too expensive, as all dimensions are modeled using the
same covariance matrix K.

This is the GPLVM model proposed by Lawrence [4].
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Gaussian process latent variable models

Motion capture example, representing
102-D data in 2-D, borrowed from Neil
Lawrence.

Finding the latent variables is a high-
dimensional, non-linear, optimization
problem with local optima.

GPLVM defines a map from latent to
observed space, not a generative model.

Mapping new latent coordinates to
(distributions over) observations is easy.

Finding the latent coordinates (pre-
image) for new cases is difficult.
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Sparse Approximations

Recall the graphical model for a Gaussian process. Inference is expensive because
the latent variables are fully connected.

fn

f3

f2

f1 f∗
1

f∗
2

f∗
3

xnyn

x3

y3

x2

y2

x1

y1

y∗

1

x
∗

1

y∗

2

x
∗

2

y∗

3

x
∗

3

Exact inference: O(n3).

Sparse approximations: solve a smaller,
sparse, approximation of the original
problem.

Algorithm: Subset of data.

Are there better ways to sparsify?
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Inducing Variables

Because of the marginalization property, we can introduce more latent variables
without changing the distribution of the original variables.
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The u = (u1, u2, . . .)> are called inducing
variables.

The inducing variables have associated
inducing inputs, s, but no associated
output values.

The marginalization property ensures
that

p(f, f∗) =

∫
p(f, f∗, u)du
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The Central Approximations

In a unifying treatment, Candela and Rasmussen [2] assume that training and test
sets are conditionally independent given u.
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Assume: p(f, f∗) ' q(f, f∗), where

q(f, f∗) =

∫
q(f∗|u)q(f|u)p(u)du.

The inducing variables induce the depen-
dencies between training and test cases.

Different sparse algorithms in the litera-
ture correspond to different

• choices of the inducing inputs
• further approximations
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Training and test conditionals

The exact training and test conditionals are:

p(f|u) = N(Kf,uK−1
f,f u, Kf,f − Qf,f)

p(f∗|u) = N(Kf∗,uK−1
f,f u, Kf∗,f∗ − Qf∗,f∗),

where Qa,b = Ka,uK−1
u,uKu,b.

These equations are easily recognized as the usual predictive equations for GPs.

The effective prior is:

q(f, f∗) = N
(

0,

[ Kf,f Q∗,f
Qf,∗ K∗,∗

])
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Example: Subset of Regressors

Replace both training and test conditionals by deterministic relations:

q(f|u) = N(Kf,uK−1
f,f u, 0)

q(f∗|u) = N(Kf∗,uK−1
f,f u, 0).

The effective prior becomes

qSOR(f, f∗) = N
(

0,

[ Qf,f Q∗,f
Qf,∗ Q∗,∗

])
,

showing that SOR is just a GP with (degenerate) covariance function Q.
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Example: Sparse parametric Gaussian processes

Snelson and Ghahramani [8] introduced the idea of sparse GP inference based on
a pseudo data set, integrating out the targets, and optimizing the inputs.

Equivalently, in the unifying scheme:

q(f|u) = N(Kf,uK−1
f,f u, diag[Kf,f − Qf,f])

q(f∗|u) = p(f∗|u).

The effective prior becomes

qFITC(f, f∗) = N
(

0,

[ Qf,f − diag[Qf,f − Kf,f] Q∗,f
Qf,∗ K∗,∗

])
,

which can be computed efficiently.

The Bayesian Committee Machine [9] uses block diag instead of diag, and the
inducing variables to be the test cases.

Rasmussen (Engineering, Cambridge) Learning with Gaussian Processes January 21-25, 2008 48 / 52



Sparse approximations

Most published sparse approximations can be understood in a single graphical
model framework.

The inducing inputs (or expansion points, or support vectors) may be a subset of
the training data, or completely free.

The approximations are understood as exact inference in a modified model
(rather than approximate inference for the exact model).
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Conclusions

Complex non-linear inference problems can be solved by manipulating plain old
Gaussian distributions

• Bayesian inference is tractable for GP regression and
• Approximations exist for classification
• predictions are probabilistic
• compare different models (via the marginal likelihood)

GPs are a simple and intuitive means of specifying prior information, and
explaining data, and equivalent to other models: RVM’s, splines, closely related
to SVMs.

Outlook:

• new interesting covariance functions
• application to structured data
• better understanding of sparse methods
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More on Gaussian Processes

Rasmussen and Williams
Gaussian Processes for Machine Learning,
MIT Press, 2006.
http://www.GaussianProcess.org/gpml

Gaussian process web (code, papers, etc): http://www.GaussianProcess.org
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