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Onboard Diagnostic RegulationOnboard Diagnostic Regulation

California Air Resources Board 
implemented OBD I 1988
OBD II implemented 1994 with several 
revisions to date (latest 2003)
European equivalent EURO III phased in 
from 2002
Next stage EURO IV
Other countries phasing in OBD include –
Korea, Mexico, China.



Diagnostic Monitoring Diagnostic Monitoring 
RequirementsRequirements

• Positive Crankcase 
Ventilation System

• Engine Cooling System
• Cold Start Emission 

Reduction System
• Air Conditioning System
• Variable Valve Timing
• Direct Ozone Reduction 

System
• Particulate Matter Trap
• Comprehensive 

Components

• Catalyst Systems
• Heated Catalyst Systems
• Misfire 
• Misfire for Diesel Engines
• Evaporative System 
• Secondary Air Systems
• Fuel System
• Oxygen Sensor
• Exhaust Gas 

Recirculation
• Other Emission Control 

or Source Systems



Types of FaultsTypes of Faults

Sensor Faults
• Open or closed circuit, value out of range

Actuator Faults
• Variable Valve Timing actuator 

seized/inactive
Process Faults

• Catalyst
Control Loop or Controller Faults

• Fuel injection control



Current TechnologyCurrent Technology

Fault detected by 
Malfunction Indictor 
Light (MIL)

Garage report 
Diagnostic Trouble 
Codes (DTC’s)

Mechanic corrects fault



Current TechnologyCurrent Technology

ODB legislation:

• “Any fault which causes the tailpipe 
emissions to rise must be brought to the 
attention of the driver”

• Fault must be specifically identified
• Detection must be accurate
• Strict thresholds - major challenge to the 

automotive industry
• As emissions limits are progressively 

reduced, the OBD challenge increases

M.I.L.



FinesFines

20th Feb 2002 - The CARB announced today 
that Toyota has agreed to a $7.9 million 
settlement from a 1998 recall order for 
potential defects in evaporative emission 
system monitors. 

“Toyota sold vehicles in California with 
diagnostic systems that were unable to 
routinely detect fuel system vapour leaks”.



Fault MonitorsFault Monitors

Currently two common approaches:

• Individual component monitors
eg cold start strategy:
• spark timing (commanded)
• variable valve timing setting
• high idle speed

• Overall system monitor
eg cold start strategy:
• Verify exhaust temperature 



Fault MonitorsFault Monitors

Both approaches are required:

• Individual component monitors
• allow faulty components to be readily identified
• required by OBD legislation
• but, don’t verify operation of overall system

• System monitor
• confirms correct operation of overall system 
• but, more complex to implement
• requires a system model



Engine MonitoringEngine Monitoring

Process Model
f(x1,t, x2,t …)

Residuals
et = yt – f(xt,..)

Residual 
Analysis 

(Statistical)

Engine ‘System’
Inputs–x1,t, x2,t …

(speed, pedal position…)

Outputs–y1,t, y2,t …

(MAF, MAP …)

Decision
Illuminate MIL?



Engine MonitoringEngine Monitoring

• Most model-based fault detection systems use 
physical models e.g. of air flow through intake manifold.
• Trade-off between model accuracy and complexity
• Complexity of aftertreatment systems increasing
• Transient engine operation
• OBD systems require >50% of ECU processing time
• Data modelling offers a possible alternative

– high accuracy possible
– once trained, final model is easy to implement
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ProjectProject StructureStructure

Multidisciplinary project involving two departments:

IC Engines 
Research Group
Mech. & Aero. 
Engineering

Control 
Research Group
Elect. Engineering

Virtual Engineering 
Centre

Engine Fault Detection Project



FaultsFaults

Sensor

• Inlet Pressure Sensor
• Mass Flow Meter
• Throttle Position Sensor
• Coolant Temperature

Process

•• Air LeakAir Leak
• Catalyst Performance
• Lambda sensor deterioration
• EGR valve



Data CollectionData Collection



Data CollectionData Collection

Transient Dyno:
145kW AC

Wiring:
Standard ECU.
Standard 
harness.

Engine:
Nissan 1.8L. SI.
4 cylinder.
~87kW.



Data CollectionData Collection

catalyst

Inlet Air 
Temperarture

Ambient Air 
Pressure

Mass Air Flow 
Sensor

Throttle Position 
Sensor

Manifold 
Pressure

Manifold 
Temperature

EGR Valve

Fuel Injection

Variable Valve 
TimingSpark Ignition

Oil Pressure

Coolant Temperature

O2 Sensor #1

O2 Sensor #2

Detonation sensor

Inlet Swirl Plates

Engine RPM Fault induced: air leak



Data CollectionData Collection

Variables measured:

• Available on production engine
• Fault-free data used to build model of intake 

system
• Inputs identical during fault and fault-free tests

Inputs
Engine speed  (rpm)
Pedal Position (%)

Outputs
Manifold Air Pressure (bar)
Mass Air Flow (g/sec)
Manifold Air Temp (oC)
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Principal Component AnalysisPrincipal Component Analysis

Why PCA?Why PCA?
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Principal Component AnalysisPrincipal Component Analysis
Detectable by T2 statistic

First Component
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Model Structure (Nonlinear PCA)Model Structure (Nonlinear PCA)

Input data 
(measured)

Input
layer

5

mapping
layer
15

bottleneck
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3 De-mapping
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Output data
(predicted)
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Weights



Model StructureModel Structure

Final model equations

0.0264bW6aWx1 −⋅+⋅= 4ˆ

b3)b(W3a +⋅= ϕ

xW5cW2b ⋅+⋅=
b1)x(W1c +⋅= ϕ

1
))2(exp(1
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Engine Control UnitEngine Control Unit

Current Production Technology
• 32 bit Processor
• Speed – 40 to 75 MHz, 200MHz in development, 

1-2 GHz next generation
• On Board Memory – up to 512 kB
• Flash Memory – up to 2 MB
• Typical Microprocessors - Motorola MPC533 or 

Philips ARM7TDMIS
50% ECU software dedicated to on-

board diagnostics (OBD)
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Training DataTraining Data

• Careful training is crucial to the success of a neural 
network model.

• Weights are adjusted by training with ‘fault-free’ data.
Aim: predicted variables = measured variables

• Ideally, the training data should cover the whole operating 
range.

• Options:
– Steady state (Matrix of speed / load points)?
– Transient – Government Drive Cycle?



TrainingTraining DataData

New European Drive Cycle (NEDC) initially considered 
(10Hz sampling)
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Training DataTraining Data
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Training DataTraining Data

0

10

20

30

40

50

60

70

80

90

100

500 1000 1500 2000 2500 3000 3500 4000
Engine Speed (rpm)

Th
ro

ttl
e 

Po
si

tio
n 

(%
)

NEDC covers relatively small area of operating map



Training DataTraining Data

• Alternative cycle proposed by Kimmich, Schwarte, 
Isermann (2005)

‘Fault detection for modern diesel engines using signal- and 
model-based methods’, Control Engineering Practice, Vol.13, 
pp189-203

• Dynamic - stimulates low frequencies 

• Evenly distributes data points over the complete input 
space



Training DataTraining Data
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Training DataTraining Data
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Air Leak FaultAir Leak Fault

catalyst

Inlet Air 
Temperarture

Ambient Air 
Pressure

Mass Air Flow 
Sensor

Throttle Position 
Sensor

Manifold 
Pressure

Manifold 
Temperature

EGR Valve

Fuel Injection

Variable Valve 
TimingSpark Ignition

Oil Pressure

Coolant Temperature

O2 Sensor #1

O2 Sensor #2

Detonation sensor

Inlet Swirl Plates

Engine RPM Fault induced: air leak



Results 1 Results 1 –– Mass Air FlowMass Air Flow
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Results 1 Results 1 –– Manifold PressureManifold Pressure
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Residual AnalysisResidual Analysis

• Once trained, the model can be tested with ‘faulty’
data.

• The fault will appear in the form of residuals.
• These residuals are analyzed using the ‘Q 

statistic’
• This is defined as a sum of the differences 

between the measured and predicted variables 
squared. 
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Results 1 Results 1 –– Q StatisticQ Statistic
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ConclusionsConclusions

• Nonlinear PCA (AANN) is capable of accurately 
simulating an engine intake system.

• Can simulate dynamic operation.
• Design of training cycle is crucial.
• Provided the model is accurate, residual analysis 

can increase the accuracy of the subsequent fault 
detection.
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