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Onboard Diagnostic Regulation

California Air Resources Board
Implemented OBD | 1988

OBD Il implemented 1994 with several
revisions to date (latest 2003)

European equivalent EURO Ill phased in
from 2002

Next stage EURO |V

Other countries phasing in OBD include —
Korea, Mexico, China.



Diagnostic Monitoring

Reguirements

e Positive Crankcase « Catalyst Systems
Ventilation System

. Engine Cooling System  Heated Catalyst Systems

e Cold Start Emission ) M!sf!re _ _
Reduction System « Misfire for Diesel Engines

« Air Conditioning System e Evaporative System

« Variable Valve Timing « Secondary Air Systems

e Direct Ozone Reduction  Fuel System

System
« Particulate Matter Trap

« Comprehensive
Components

e Other Emission Control
or Source Systems

e Oxygen Sensor
 Exhaust Gas



Types of Faults

Sensor Faults
* Open or closed circuit, value out of range

Actuator Faults

« Variable Valve Timing actuator
seized/inactive

Process Faults
e Catalyst

Control Loop or Controller Faults
* Fuel injection control



Current Technology

Fault detected by
Malfunction Indictor
Light (MIL)

Garage report
Diagnostic Trouble
Codes (DTC’s)

Mechanic corrects fault




Current Technology

ODB legislation:

M.I.L.

“Any fault which causes the tailpipe
emissions to rise must be brought to the
attention of the driver”

Fault must be specifically identified
Detection must be accurate

Strict thresholds - major challenge to the
automotive industry

As emissions limits are progressively
reduced, the OBD challenge increases




Fines

20" Feb 2002 - The CARB announced tod
that Toyota has agreed to a $7.9 million
settlement from a 1998 recall order for
potential defects in evaporative emission
system monitors.

“Toyota sold vehicles in California with
diagnostic systems that were unable to
routinely detect fuel system vapour leaks”.

\




Fault Monitors

Currently two common approaches:

* Individual component monitors
eg cold start strategy:
 spark timing (commanded)
« variable valve timing setting
 high idle speed

e QOverall system monitor
eg cold start strategy:
 Verify exhaust temperature



Fault Monitors

Both approaches are required:

 Individual component monitors
o allow faulty components to be readily identified
 required by OBD legislation
 but, don’t verify operation of overall system

e System monitor
« confirms correct operation of overall system

* but, momnan&M%m
< _requires a system model




Engine Monitoring

Engine ‘System’

INpuUts—x,; X, ... Outputs—y,; Y, .-

(speed, pedal position...) (MAF, MAP ...)

Process Model
f(Xy 0 Xo g -20)

Residuals

e =Yy, —f(X...)
!

Residual Decision R
Analysis llluminate MIL?

(Statistical)




Engine Monitoring

 Most model-based fault detection systems use
physical models e.g. of air flow through intake manifold. '

 Trade-off between model accuracy and complexity
 Complexity of aftertreatment systems increasing
e Transient engine operation
e OBD systems require >50% of ECU processing time
« Data modelling offers a possible alternative

— high accuracy possible

— once trained, final model is easy to implement



« Data Collection — SI Automotive Engine



Project Structure

Multidisciplinary project involving two departments:

Virtual Engineering !
Centre

IC Engines Control
Research Grou Research Group
Mech. & Aero. Elect. Engineering

Engineering

Engine Fault Detection Project



Faults

Process Sensor
e Air Leak e Inlet Pressure Sensor
o Catalyst Performance * Mass Flow Meter

e Lambda sensor deterioration e« Throttle Position Sensor
« EGR valve e Coolant Temperature



Data Collection
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Data Collection

Transient D \ ‘q

145kW AC

Wiring:
Standard ECU.
Standard

harness.

Engine:

Nissan 1.8L. SlI.
4 cylinder.
~87kW.
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Data Collection

Variables measured:

Inputs Outputs ,
Engine speed (rpm) Manifold Air Pressure (b )
Pedal Position (%) Mass Air Flow (g/sec)

Manifold Air Temp (°C)

« Available on production engine

 Fault-free data used to build model of intake
system

 |nputs identical during fault and fault-free tests




e Model Structure



Principal Component Analysis

Why PCA?
i
n k n n \
-k p'

m X = m { + m E
k < min(m,n)

) L J L 3

original important unimportant
data variation variation

X=tp +tp, +..+t.p, +E



Principal Component Analysis

by T2 statigti

Detectable by Q statistic ol
P " First Component
Q Statistic \B }
o 1 ﬁ
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3rd Vaniable
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First Component
Total Length of Screw

Hotelling's T2 Statistic

Second Component




Model Structure (Nonlinear PCA)

Weights

Input data Output data
(measured) bottlenec (predicted)
: layer
Input mapping 3 De-mapping Output
layer layer layer layer

5 15 15 5



Model Structure

Final model equations

X, =W4-a+W6-b-0.0264
a=p(W3-b+Db3)
b=W2.c+W5-X
¢ = p(W1-x+b1)

2 -1
1+ exp(-2(-))

o) =



Engine Control Unit

Current Production Technology
32 bit Processor

- Speed — 40 to 75 MHz, 200MHz in development,
1-2 GHz next generation

- On Board Memory — up to 512 kB
- Flash Memory — up to 2 MB

- Typical Microprocessors - Motorola MPC533 or
Philips ARM7TDMIS

50% ECU software dedicated to on-
board diagnostics (OBD)




 Model Training



Training Data

o Careful training is crucial to the success of a neural
network model.

« Weights are adjusted by training with ‘fault-free’ data.

Aim: predicted variables = measured variables

 l|deally, the training data should cover the whole operating
range. |

e Options:
— Steady state (Matrix of speed / load points)?
— Transient — Government Drive Cycle?



Training Data

2 \\
New European Drive Cycle (NEDC) initially consic “
(10Hz sampling)
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Training Data

Engine speed (rpm)
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Training Data
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NEDC covers relatively small area of operating map



Training Data

« Alternative cycle proposed by Kimmich, Schwarte
Isermann (2005) A\

‘Fault detection for modern diesel engines using signal- and:

model-based methods’, Control Engineering Practice, Vol.
pPp189-203 |

\
\

« Dynamic - stimulates low frequencies '\

« Evenly distributes data points over the complete inp
space



Training Data
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Training Data
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e Results 1 - Fault Detection



Ailr Leak Fault
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Results 1 — Mass Air Flow
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Results 1 — Manifold Pressure

Measured — 4mm air leak
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Residual Analysis

Once trained, the model can be tested with ‘fau \
data.

The fault will appear in the form of residuals.

These residuals are analyzed using the ‘Q
statistic’

This is defined as a sum of the differences
between the measured and predicted variables
squared. 5




Results 1 — Q Statistic
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Conclusions

 Nonlinear PCA (AANN) is capable of accurately
simulating an engine intake system. A\

e Can simulate dynamic operation.
* Design of training cycle is crucial.

« Provided the model is accurate, residual analysis
can increase the accuracy of the subsequent fault
detection. |
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