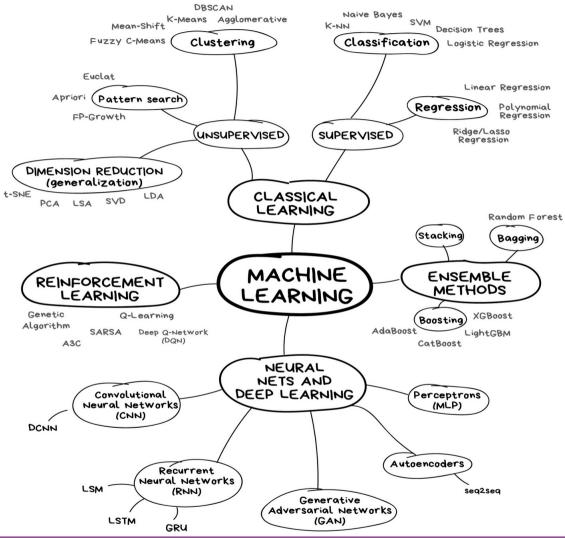


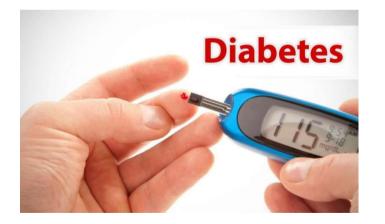
Beyond the headlines: How to make the best of machine learning models in the wild

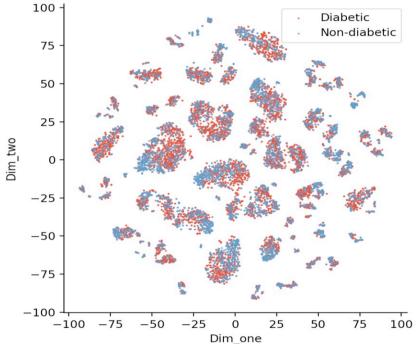
NOURA AL MOUBAYED, DURHAM UNIVERSITY MACHINE LEARNING FOR BIOMEDICINE NGSCHOOL 26/10/2019

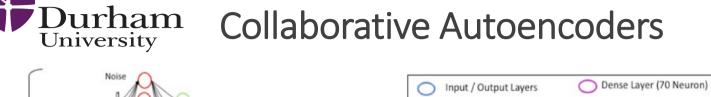


Type-2 Diabetes Mellitus Prediction

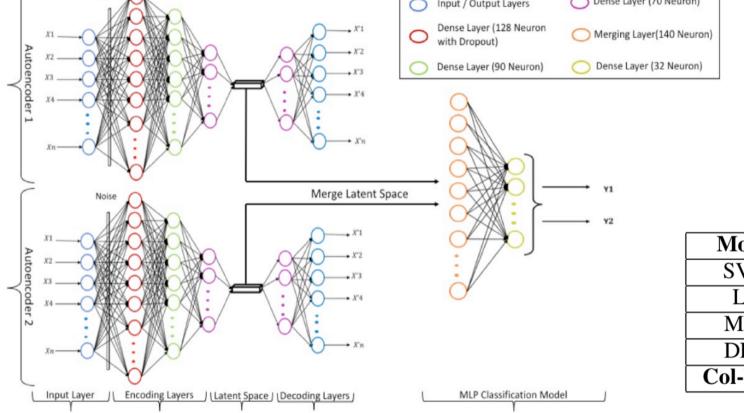
- Largest dataset in diabetes research
- Data recorded from 14,609 patients
- 41 million time-stamped lab tests and vital signs





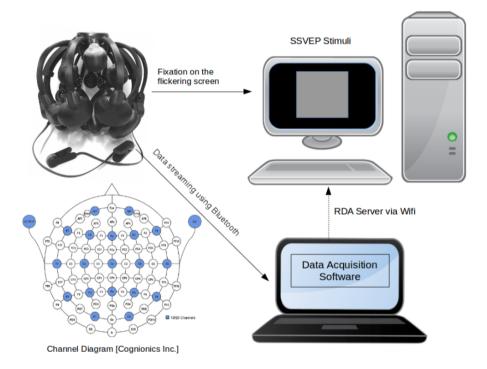


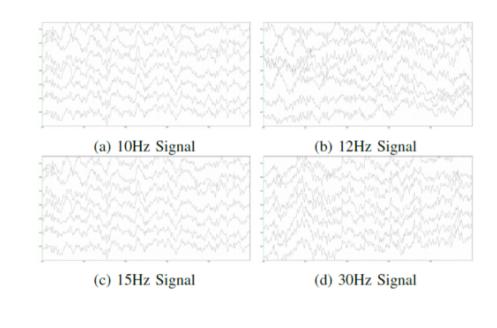
×



Model	F1-Score
SVM	0.7984
LR	0.7541
MLP	0.8106
DEA	0.7283
Col-DEA	0.9126

SSVEP prediction from Dry EEG





Using Variable Natural Environment Brain-Computer Interface Stimuli for Real-time Humanoid Robot Navigation

Nik Khadijah Nik Aznan, Jason D. Connolly, Noura Al Moubayed and Toby P. Breckon

Department of {Computer Science, Engineering, Psychology} Durham University, UK

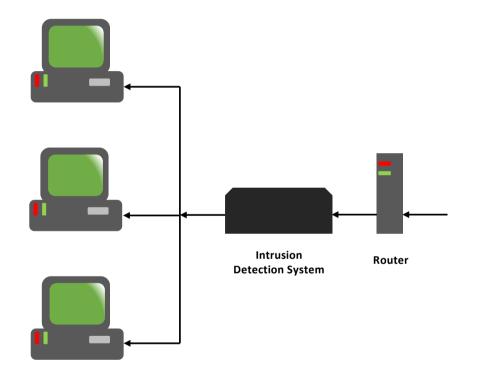
2019

Network Intrusion Detection

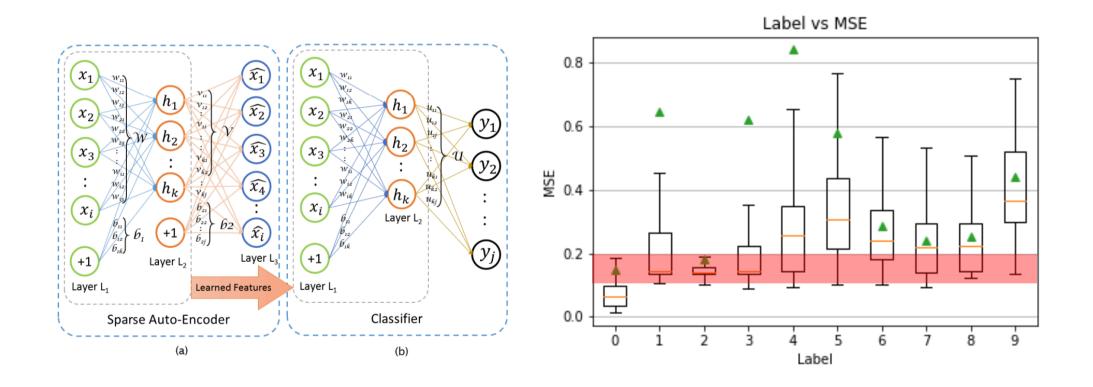
UNSW-NB15 attack categories

Id	Туре	No. Records	Description
0	Normal	2,218,761	Ordinary benign network traffic.
1	Analysis	2,677	Port scanning, spam and html file penetrations methods.
2	Backdoors	2,329	A technique to bypass a security mechanism stealthily.
3	DoS	16,353	An attack which compromises the availability of a service.
4	Exploits	44,525	An attack which exploits a source code vulnerability.
5	Fuzzers	24,246	An automated software testing technique used to find bugs.
6	Generic	215,481	A block-cipher attack without knowledge of structure.
7	Reconnaissance	13,987	A collection of passive information gathering techniques.
8	Shellcode	1,511	A payload used to exploit a software vulnerability.
9	Worms	174	A self-replicating malware that spreads through a network.

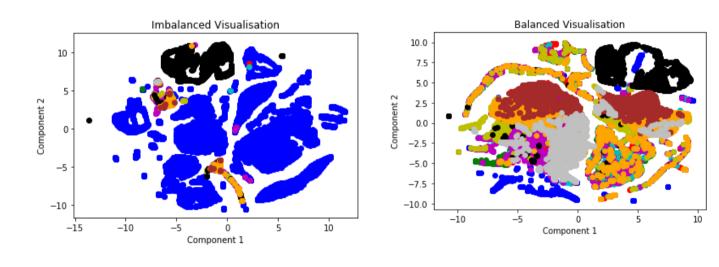
Durham University Network Intrusion Detection



Network Intrusion Detection

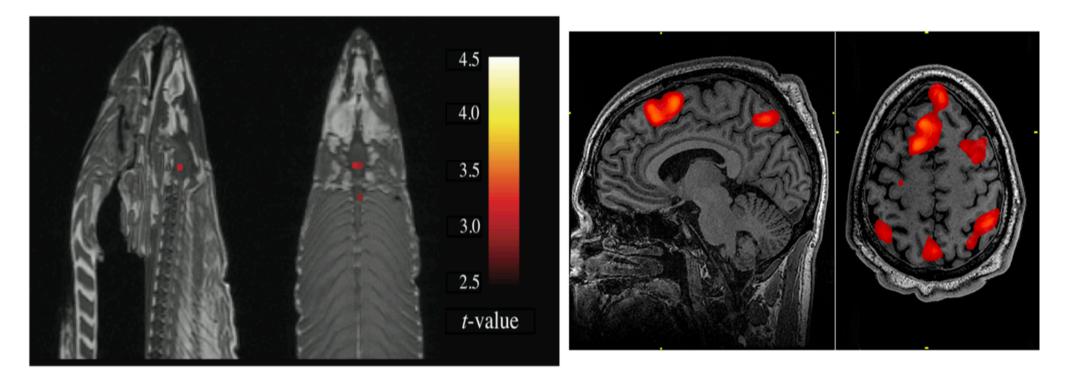


Network Intrusion Detection



	Artificial Neural Network (ANN)	
	F1	F1
Normal	0.994	0.992
Analysis	0.011	0.534
Backdoors	0.017	0.566
DoS	0.100	0.557
Exploits	0.663	0.648
Fuzzers	0.346	0.916
Generic	0.985	0.986
Reconnaissance	0.665	0.895
Shellcode	0.669	0.993
Worms	0.000	0.993

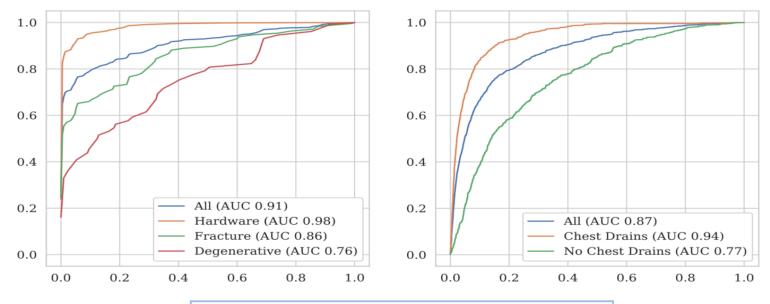
Dead Fish vs Human Brain



IgNobel Prize in Neuroscience, 2012

Bennett et al. "Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction" Journal of Serendipitous and Unexpected Results, 2010.

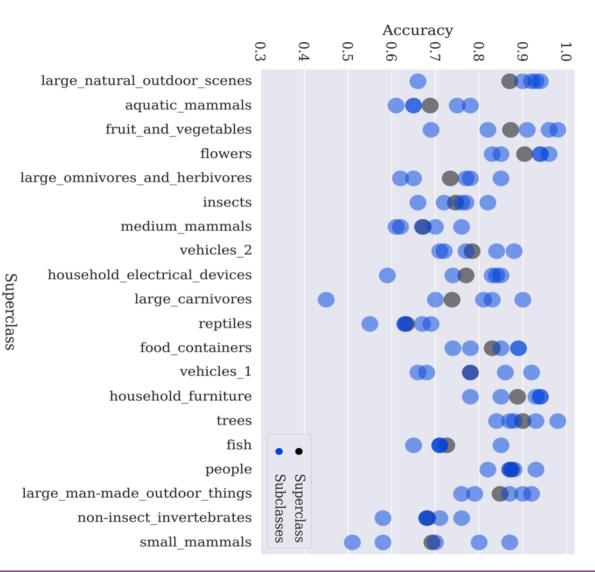
Hidden Stratification Problem



	Sensitivity/Recall
Cancer (human)	95%
Cancer (AI)	95%
High-risk subtype (human)	100%
High-risk subtype (AI)	0%

Rayner, et al, Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging, 2019

The Institute of Advanced Research Computing



Rayner, et al, Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging, 2019

×

Durham

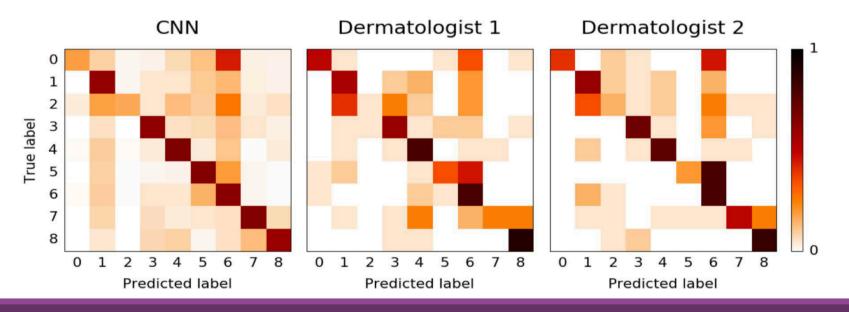
University

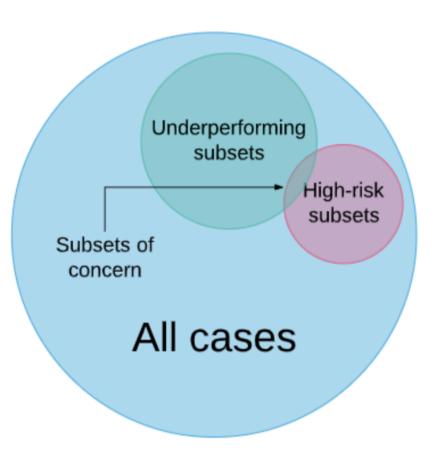
LETTER

doi:10.1038/nature21056

Dermatologist-level classification of skin cancer with deep neural networks

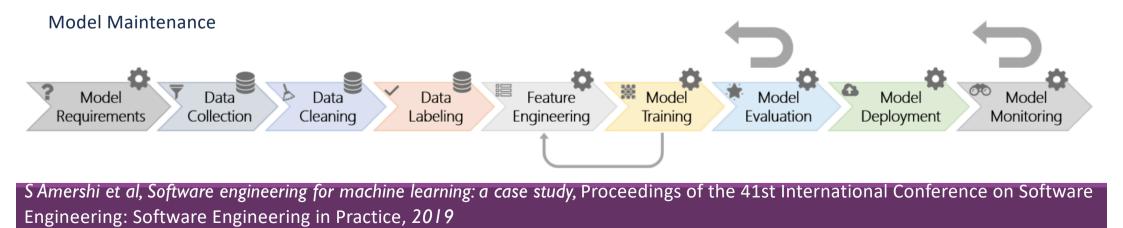
Andre Esteva¹*, Brett Kuprel¹*, Roberto A. Novoa^{2,3}, Justin Ko², Susan M. Swetter^{2,4}, Helen M. Blau⁵ & Sebastian Thrun⁶





"For an AI system to be judged safe for task X, we need to know the performance in the subsets of concern Y and Z."

"The most important question by far when someone wants to deploy a machine learning model is, how often do you want to deploy this? If the answer is once, that is a bad answer. You should never deploy a machine learning model once. You should deploy it never or prepare to deploy it over and over and over and over and over again, repeatedly forever, ad infinitum."



What do all these faces have in common?

Deep Fake

https://thispersondoesnotexist.com

MIT researchers: Amazon's Rekognition shows gender and ethnic bias

Above: Amazon's facial recognition service, Amazon Rekognition.

28 Congressional representatives were <u>misidentified</u> as criminals. A majority of the false matches — 38 percent — were people of colour.

Emerald Dr

Mulberry PI

Birch Bar

24 min

13 mi · 8:19 AM

Timberline PI

6 min slower

Thanks for the suggestion, Google.

Arizona Dr

Spruce Dr

)1

Dr

ding Way

Terrace

×

Dogwood Dr

Foolish ML

Me: *Spent days and hours writing a code* My CNN:

-

7 1

Parents: If all your friends jumped into the well, Will you?

Kid: NO!

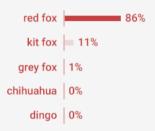
Machine Learning: ????

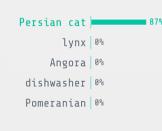
Foolish ML

Simen Thys, Fooling automated surveillance cameras: adversarial patches to attack person detection, 2019

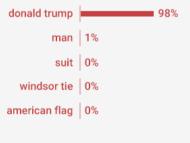
Foolish ML

Original Image





Adversarial A	Altered	Image



toaster	
Crock Pot	1%
Siamese cat	0%
wallaby	0 <u>°</u>
carton	0%

When Predictive performance is not enough

Why?

- -Fairness is critical
- -Consequences can be farreaching
- -Cost of a mistake is high
- -New hypothesis is observed -GDPR
- -Right to Explanation

Transparent solutions

- -Rule based
- -GAM(Generalized Additive Models)
- -LIME (Locally Interpretable
- Model Agnostic Explanations)
- -Naïve Bayes
- -Regression Models
- -Shapley Values

White-box

-Shallow Ensembles

Black-box

- -Deep Learning
- -Gradient Boosting -SVM