

Introduction to sampling and sample pre-treatment techniques

Marko Štrok Jožef Stefan Institute

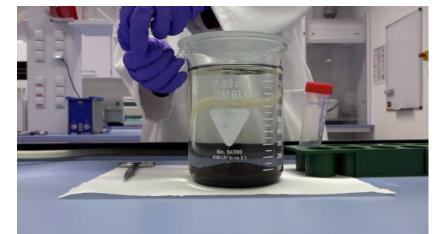
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Euratom research and training programme 2014-2018 under grant agreement No 754 972

Sampling

- Sampling is the most important step errors made here can not be corrected afterwards
- We can take different kind of samples (water, soil, sediment, biological material, air, dust particles, concrete,...)
- Sampling must be representative
- Prevent contamination and cross-contamination during sampling

Preserving sample integrity

- To prevent adverse change in analyte concentration or speciation in time between sampling and analysis in the laboratory
- Example: water sample
 - filtration right after the sampling (0.45 μ m)
 - change pH to acidic by adding acid to prevent radionuclide loss from water



Sample pre-treatment: water

- Activity concentrations are usually very low => need to pre-concentrate radionuclides
- Co-precipitation:

 $FeOH_3$ MnO₂ PbSO₄ CaPO₃

- Evaporation
- Addition of suitable tracers for recovery before sample pre-treatment

Sample pre-treatment: biological material

- Separation of specific organs or parts of interes or species Fish: muscle, bones, liver, spleen,...
 Plants: leaves, shots, roots
- Drying (air, oven, freeze drying, depending on volatility of radionuclide)
- Homogenisation (grinding, milling, sieving, mixing, subsampling)
- Reducing sample mass and removing organic material by ashing (for non-volatile radionuclides)
- Addition of suitable tracers for recovery
- Digestion, decomposition, leaching with acids, either on hot plate, microvawe or alkaline fusion

Sample pre-treatment: soil, sediment

- Drying (air, oven, depending on volatility of radionuclide)
- Removal of large stones and roots
- Homogenisation (grinding, milling, sieving, mixing, subsampling)
- Removing organic material by ashing for high organic content soil or sediment (for non-volatile radionuclides)
- Addition of suitable tracers for recovery
- Digestion, decomposition, leaching with acids, either on hot plate, microvawe or alkaline fusion

Institut "Jožef Stefan", Ljubljana, Slovenija

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Euratom research and training programme 2014-2018 under grant agreement No 754 972