

Metode za določanje 3D strukture makromolekul

- Rentgenska kristalografija
- Jedrska magnetna resonanca (NMR nuclear magnetic resonance spectroscopy)
- (Krio)-elektronska mikroskopija (cryoEM)
- Komplementarne biofizikalne metode
 Predikcija strukture

"Protein Data Bank" trenutno vsebuje >160,000 struktur makromolekul

Zakaj je pomembno določiti 3D strukturo proteinov?

- Funkcija proteinov in drugih makromolekul temelji na njihovi 3D strukturi
 - Oblika, lastnosti in zato funkcija proteinov je odvisna od tega, kako se zaporedje amino-kislin zvije v prostoru
 - 3D-struktura nam omogoci razložiti, z atomsko ločljivostjo, kako molekula funkcionira

Kakšna je vrednost poznanja 3D strukture makromolekul za medicino in biotehnologijo?

- Razumevanje funkcije
- Razvoj zdravil: "structure-based drug design"
- Razvoj vakcin
- Racionalne modifikacije proteinov: diagnostika, "humanizacija", encimi za industrijo
- Razumevanje zvijanja (folding)
- Razumevanje stabilnosti in drugih fizikalnih lastnosti makromolecul

N3

Diplomska naloga

Brencic et al.

C47: 311-313

(1991). Acta Cryst

C33

Fig. 2. Stereoscopic projection of the unit cell.

Inhibitor ribonukleaze (ribonuclease inhibitor) - zaporedje amino-kislin

•	5	10	15	20	25	
	·	I	, M N	LDIHC	, CEQLSDAR	1 - 14
A1	WTELLPL		VVRLD	₽⊘GĿ	Peeh 🗇 K d I	15 - 43
B1	GSALRAN	P S L T E	- LCLR	T N E L	JDAGVH L V	44 - 71
A2	L Q G L Q S 🖗	т с к 🗘 о	ксѕсо	N	Þeagog v L	72 - 100
в2	PSTLRSL	PTLRE]- ЦнЦ s	D N P L	JDAGLRLL	101 - 128
A3	СЕСЦІР	осн (Г)Е	KLQLE	Y OR L	DAAS CEPL	129 - 157
в3	ASVLRAT] – ГТ V s	NNDIC	JEAGARVL	158 - 185
A4	GQGLADS		TLRLE		P A N 🔿 K D 📘	186 - 214
в4	CGIVASQ	A S L R E] - [] Þ [] G	SNGL	DAGIAEL	215 - 242
A5	C P G L L S (P)	ASR (L) K	TLWLW	E 🗘 D 🛛 🕻	ÈASGÔRDE	243 - 271
в5	CRVLQAK	ETLKE] – [] S [] A	GNKL	GDEGARLL	272 - 299
A6	C E S L L Q P	G C Q € E	ѕ∟ѡѴк	s 🗇 s 🗔 🤅	раас⊘он∨	300 - 328
B6	SLMLTQN	K H L L E] – L Q L S	SNK L	JDSGIQEL	329 - 356
A7	C Q A L S Q P	G T T	VLCLG		ÈN S GÒS S L	357 - 385
в7	ASLLAN	RSLRE] – [] Þ [] s	N N C V C	DPGVLQE	386 - 413
8A	L G S L E Q P	G C A	QĽVĽY	ртү 🕅 🕅	P E E V E D R L	414 - 442
	QALEGSK	PGLRV	'IS			443 - 456

Hofsteenge et al. (1988) Biochemistry 27, 8537-8544

Kristalna struktura inhibitorja ribonukleaze (ribonuclease inhibitor)

Naravni imunski odziv (innate immunity)

Peter Lavrencic et al

MAL^{TIR} and TLR4^{TIR} skupaj tvorita filamente

MAL^{TIR} spodbudi sestavo kompleksov MyD88^{TIR}

MAL spodbudi sestavo kompleksov MyD88 v celicah

CryoEM struktura filamenta MAL^{TIR}

Model kooperativne formacije signalosoma TLR4

- MAL TLR4
- **12 MAL protofilaments** •
- **3 MAL protofilaments**
- 3 TLR4 strands •

٠

C2 TLR4-MAL

MAL

TLR4

- 2 MAL protofilaments 2 TLR4 strands •

- MAL TLR4
- **12 MAL protofilaments** •
- **3 MAL protofilaments**
- 3 TLR4 strands •

٠

MAL TLR4

C2 TLR4-MAL

- 2 MAL protofilaments
- 2 TLR4 strands •

CryoEM struktura TLR4^{TIR}-MAL^{TIR} ko-filamenta

Jeff Nanson et al.

CryoEM struktura TLR4^{TIR}-MAL^{TIR} ko-filamenta

Jeff Nanson et al.

Electrostatic potential map MyD88^{TIR}

Packing of MyD88^{TIR}

MAL^{TIR} filament

Imunski sistem v raslinah

Signaling via cooperative assembly formation (SCAF)

Povzetek

- Funkcija makromolekul temelji na njihovi 3D strukturi
 Strukturna biologija koristi terapiji in biotehnologiji
 Poznavanje detajlov funkcije
 - Razumevanje učinka mutacij ki vodijo do bolezni
 - Razvoj zdravil
 - Inžinerstvo proteinov za biotehnološke aplikacije
- TIR domene v TLR tvorijo filamente; naravni imunski odziv na splosno temelji na SCAF
- TIR domene v SARM1 in rastlinksih NLR so encimi, ki cepijo NAD⁺ (Horsefield et al, Science (2019) 365: 793) – nova varianta SCAF
- Strukture bodo pomagale razviti zdravila proti kroničnim boleznim vnetja

Univesity of Queensland, Brisbane

- **Thomas Ve**
- **Shane Horsefield**
- Weixi Hu
- Hayden Burdett
- Jeff Nanson
- Peter Lavrencic
- Xiaoxiao Zhang
- Simon Williams
- Michael Landsberg
- Parimala Vajjhala
- **Kate Stacey**

.

.

Mehdi Mobli

Sodelavci

Glycomics Institute, Griffith U., Gold Coast

- Yun Shi
- Thomas Ve

CSIRO Food and Agriculture, Canberra

- Maud Bernoux
- Jian Chen
- Peter Dodds
- Jeff Ellis

Financiranje

University of Virginia. Charlottesville

- Ed Egelman
- **Stockholm University**
 - Hongyi Xu
 - Max Clabbers
- University of Texas Southwestern, Dallas
 - Johann Deisenhofer

National Institutes of Health, Bethesda/CRBM, Université Montpellier, France

Andrej Kajava

Australian Government Australian Research Council

National Health and Medical Research Council

Proteins

