

NanoInnovationLab Elettra Sincrotrone Trieste http://www.elettra.eu/labs/nanostructure

Nanoscale strategies for high sensitivity liquid biopsy

Loredana Casalis loredana.casalis@elettra.eu

Bilateral Workshop on Nanotechnology and Nano Application February 5 - 6, 2020, Ljubljana, Slovenia

Miniaturized sensors for liquid biopsy

Device equirements:

High sensitivity ---binders! Reproducibility ---surface functionalization Low noise --- no aspecific binding Low cost Fast

M. Westpahl, Nature Review Neurology, 2015 C. Dincer et al., CellPress 2017

Liquid Biopsy

Both healthy and tumor (diseased) cells transmit information on their state to the bloodstream, either directly (proteins) or as cell signaling intermediate (exosomes, metabolites).

Such information are possible **biomarkers** for **early non-invasive population screening**, cancer diagnosis and prognosis and for **monitoring the response to therapeutic**

Emerging application in resource-limited settings: early and accurate diagnosis

Key Figure

Multiplexed Point-of-Care Testing (xPOCT)

Atomic Force Microscopy Lithography

SH

VHH (1Cys)

ssDNA-maleimide

Nanoarrays Detection of ECD-Her2 with nanobodies in serum

better and can be made specific for different splice variants of ERC-HER2, indicator of tumor heterogeneity

Work in progress: colorimetric assay

Sample	Z-average (nm)	STD	RSD%
cit@AuNP	23.6	0.5	2.1
ssDNA@AuNPs	24.3	0.5	2.0
ssTOEG6@AuNPs	30.1	0.8	2.6
dsDNA@TOEG6@AuNPs	32.3	1.2	3.6

Novel biomarkers: extracellular vesicles

Wiklander et al., Science Trans. Medicine. (2019)

Extracellular vesicles (EV) are small vesicles ensuring transport of molecules between cells throughout the body; contain specific signatures and have been shown to strongly impact on the fate of recipient cells.

Useful for diagnostics and therapy.

EVs characterization

EVs interaction with model membranes: PC lipid bilayer

DOPC

+ EVs

EVs interaction with model membranes: raft-like lipid bilayer

DOPC + SM (2:1) + 5% Chol

EVs interaction with raft-like bilayer: Comparison with single lipid

DOPC+EVs

DOPC + SM (2:1) + 5% Chol+EVs

Mechanical response of cells treated with EVs

BREAST CANCER CELL LINE MDA-MB-231	SUBTYPE <i>TNBC (ER-; PR-; HER2-)</i>	AGGRESSIVENESS +
BREAST CANCER CELL LINE	SUBTYPE	AGGRESSIVENESS
MCF7	Luminal A (ER+; PR+; HER2-)	-

Mechanical response of cells treated with EVs

MDA-MB-231

Silica sphere $D = 20 \mu m$

Fitting: Hertzian Model

Sample manteined in PBS1x buffer (30 cells and 2 sample analyzed for each cell line) ****= P-value < 0.0001 (Wilkcoxon test)

5.50

5.00

4.50

4.00

3.50 3.00

MCF7

Mechanical response of cells treated with EVs

NT-MDT Smena Tip: CSG01 (k = 0.012N/m) Silica sphere D = 20µm Fitting: Hertzian Model **= P-value < 0.01 ****= P-value < 0.0001 (Wilkcoxon test)

Huang et al. 2019, Am J Trasl Res. Wang et al. 2019, Stem Cell Res Ther.

Pietro Parisse

Beatrice Senigagliesi

Fabio Perissinotto

Sara Fortuna

Hendrik Vondracek

Elena Ambrosetti (now at Karolinska Institutet)

Luciana Gneo

SALZBURG

www.elettra.eu

Nanoarrays Detection of ECD-Her2 with nanobodies

Elettra Sincrotrone Mechanical response of cells treated with EVs

DAPI = Nuclei DiO = EVs Phalloidin = Actin

Scale bar = 10 μ m

MSCs mesenchimal stem cells from Umbilical cord

PROs $\,$ - different Abs on the same surface \rightarrow Multiplexing protein nanoarray

- small volume detection system
- label-free detection system

 f
 ssDNA
 MGR3-DNA
 ECD-Her2

 Height (nm)
 2.6 ± 0.6
 7.8 ± 0.4
 8.9 ± 0.3

Miniaturized capacitive immunosensors ECD-HER2 detection in human serum

Miniaturized capacitive immunosensors

21

Miniaturized capacitive immunosensors DNA hybridization

Hybridization time τ_d w.r.t. c_{conj}

Miniaturized capacitive immunosensors ECD-HER2 detection in human serum

