

Challenging nanomaterials for sustainable processes

Tiziano Montini

Material, Environment & Energy research group Department of Chemical and Pharmaceutical Sciences University of Trieste

> "Nanotechnology and NanoApplication" Ljubljana, 5 February 2020

ENERGY CONSUMPTION VS POPULATION

DEPLETION

The famous Carlin-type gold ores of Nevada are often found in limestone or lime-rich shales. Tens of millions of ounces of gold have been mined from rocks just like this.

ETHICAL COBALT EXTRACTION

Cobalt Supply & Demand

Replacing noble metals with base metal (?)

To sustainable satisfy population needs

Extensive use of renewable energy sources and raw materials

More efficient processes for production of energy and chemicals

Design of new catalytic materials with improved properties for new sustainable processes

MEE RESEARCH ACTIVITIES

Air pollution abatement

- Three Way Catalysts
- CH₄ combustion

Water purification by photocatalysis

- Doped TiO₂
- Bi₂O₃-based materials
- Metal tungstates Bi₂O₃

H₂ & Fuels production

- CH₄ partial oxidation
- Steam reforming of renewable compounds
- Photocatalytic reforming of oxygenated compounds
- Synthesis of valuable organic compounds

H₂ purification

Bi₂O₄

- Water Gas Shift
- Preferential Oxidation of CO

0.5 µm

Pd@CeO₂/MWCNT

MEE RESEARCH ACTIVITIES

Air pollution abatement

- Three Way Catalysts
- CH₄ combustion

Water purification by photocatalysis

- ✤ Doped TiO₂
- Bi₂O₃-based materials
- Metal tungstates Bi₂O₃

- CH₄ partial oxidation
- Steam reforming of renewable compounds
- Photocatalytic reforming of oxygenated compounds
- Synthesis of valuable organic compounds

Bi₂O₄

- Water Gas Shift
- Preferential Oxidation of CO

0.5 µm

H₂ PRODUCTION TECHNOLOGIES

Mater. Sci. Semicond. Process. 42 (2016) 122-130

PHOTOCATALYTIC H₂ PRODUCTION

PHOTOCATALYTIC H₂ PRODUCTION

Photoreforming of oxygenated compounds (iii) H_2 H

E⁰(H₂/H⁺)

H₂ PRODUCTION FROM ETHANOL

Possible pathway

TUNING TiO₂ COMPOSITION

Rutile

A + B A + B Brookite

Appl. Catal. A-Gen. 518 (2016), 167-175

TUNING TiO₂ COMPOSITION

Appl. Catal. A-Gen. 518 (2016), 167-175

TiO₂ BROOKITE NANORODS

Proc. Nat. Acad. Sci., 113 (2016), 3966-3971

TiO₂ BROOKITE NANORODS

Proc. Nat. Acad. Sci., 113 (2016), 3966-3971

TiO₂ BROOKITE NANORODS

Increase life-time of electron/hole pairs with length

Proc. Nat. Acad. Sci., 113 (2016), 3966-3971

Pd@TiO₂/CARBON NANOTUBES

Formation of hybrid materials

Pd@TiO₂/CARBON NANOTUBES

After calcination

- Porous Pd@TiO₂ shell around CNT
- Anatase phase

Green Chem. 19 (2017), 2379-2389

Pd@TiO₂/CARBON NANOTUBES

Pd@TiO₂/CARBON NANOTUBES@Fe

Before

After

Appl. Catal. B-Environ. 227 (2018), 356-365

Pd@TiO₂/CARBON NANOTUBES@Fe

 $EtOH : H_2O = 1:1$ UV-vis irradiation 1200 75 Α (mmol g⁻¹ м@тю, h⁻¹) Pd@TiO₂/Fe@CNT-magnetic H₂ production rate H₂ production (mmol g⁻¹Pd@TiO₂) 50 900 -25 5 10 15 Irradiation time (h) 0 20 600 -Pd@TiO₂/Fe@CNT-filtered 300 -Pd@TiO₂ 0 15 10 20 0 5 Irradiation time (h)

Appl. Catal. B-Environ. 227 (2018), 356-365

Pd@TiO₂/CARBON NANOTUBES@Fe

EtOH : $H_2O = 1:1$ Simulated Sunlight irradiation

12 B 800 'n H_2 production (mmol g⁻¹) 1,3 600 1,3 0001 400 8 ອັ້ 200 ສິ 0 15 n 5 10 Irradiation time (h) Cycle 1 Cycle 2 Cycle 3 15 10 5 20 Irradiation time (h)

Pd@TiO₂/Fe@CNT-magnetic

Easily reusable by magnetic recovery from the reaction mixture!!!

DYE SENSITIZED PHOTOCATALYSTS

Materials active under visible light (λ > 420nm)

x Not sustainableSacrificialElectron Donor

ChemSusChem 8 (2015), 4216-4228

ChemSusChem 8 (2015), 4216-4228

Effect of aromatic structure

Sustain. Energ. Fuels, 1 (2017), 694-698

Ligand-to-Metal Charge Trasfer

TRIPHENYLAMINE-BASED DYES

Toward sustainability

EtOH / water solution as sacrificial electron donor $\lambda > 420 \text{ nm}$

Figure 2. Structure of the dyes investigated in this study.

ChemSusChem 11 (2018), 793-805

MEE RESEARCH ACTIVITIES

Air pollution abatement

- Three Way Catalysts
- CH₄ combustion

Water purification by photocatalysis

Bi₂O₄

H₂ purification

Preferential Oxidation of CO

- ✤ Doped TiO₂
- Bi₂O₃-based materials
- Metal tungstates Bi2O3

Water Gas Shift

- CH₄ partial oxidation
- Steam reforming of renewable compounds
- Photocatalytic reforming of oxygenated compounds
- Synthesis of valuable organic compounds

•••

0.5 µm

ELECTRICAL VEHICLES

Electric Vehicles Smart Fleets

Electric Unmanned aerial vehicles

ELECTRIC / HYBRID AIRCRAFT

1 MJ/Kg

43 MJ/Kg

7 hrs 260,000 Kg of batteries

Nature Energy 4 (2019), 575-584

Doped-ZnIn₂S₄ photocatalysts

Nature Energy 4 (2019), 575-584

Ru-ZnIn₂S₄ photocatalyst

2,5-DMF + 2-MF

2,5-DMF 0.56 g of DPF g $_{cat}$ -1 h⁻¹ 3.3 mmol of $H_2 g_{cat}^{-1} h^{-1}$ AQY 15.2 %

Nature Energy 4 (2019), 575-584
VISIBLE-LIGHT-DRIVEN COPRODUCTION OF DIESEL FUEL PRECURSORS AND HYDROGEN

Ru-ZnIn₂S₄ photocatalyst

Nature Energy 4 (2019), 575-584

VISIBLE-LIGHT-DRIVEN COPRODUCTION OF DIESEL FUEL PRECURSORS AND HYDROGEN

Ru-ZnIn₂S₄ photocatalyst

Radical mechanism confirmed

Nature Energy 4 (2019), 575-584

VISIBLE-LIGHT-DRIVEN COPRODUCTION OF DIESEL FUEL PRECURSORS AND HYDROGEN

Ru-ZnIn₂S₄ photocatalyst: role of Ru

✓ Decreased band gap

- ✓ Stabilization of e⁻/h⁺ pairs
- Reduction of Ru ions to Ru(0) justifies slight deactivation

Nature Energy 4 (2019), 575-584

PERSPECTIVES

Materials manipulation at nanoscale level and precise assembly of nano-building blocks in hierarchical materials can lead to a step change in photo-, electro- & catalytic performances.

We have great options for a sustainable world!

The future is bright but there are still lots of shadows.

ACKNOWLEDGEMENTS

Group members:

Prof. Paolo Fornasiero, Dr. Michele Melchionna Dr. Valentina Gombac, Dr. Manuela Bevilacqua Dr. F. Longobardo, Dr. T.H. Dolla, Dr. M. Ferrara, Dr. M. Daka

Collaborators:

Prof. Feng. Wang (DICP - China) Prof. M. Prato (Univ. Trieste - Italy) Dr. E. Fonda (Soleil - France) Prof. J.J. Delgado (Univ Cadiz - Spain) Dr. N. Manfredi, Prof. A. Abbotto (Univ. Milano Bicocca - Italy)

Financial support NanoRegion EURASIACAT Chinese Academy of Sciences University of Trieste, FRA 2018 Projects INSTM & ICCOM-CNR

MEE RESEARCH GROUP http://meeresearch.weebly.com/

THANK YOU ALL FOR YOUR KIND ATTENTION

MEE - Materials, Environment and Energy Research Group

College & University

Via Giorgieri 1, Edificio C11, 5º plano Trieste, Italy

MEE - Materials, Environment and Energy Research Group Official Page

MINING REQUIRES ENERGY

CH₄ & GREENHOUSE EFFECT

- Lifetime in the atmosphere is much shorter than CO₂
- More efficient at trapping radiation than CO₂

Impact of CH_4 on climate change is more than 25 times greater than CO_2

P. Gélin, M. Primet, Appl. Catal. B-Environ. 39 (2002), 1-37

Pd-BASED CH₄ COMBUSTION CATALYSTS

Pd@CeO₂ SUPRAMOLECULAR STRUCTURES

Ce(IV) tetrakis(decyloxide)

THF

MUA-Pd NPs

MUA: 11-Mercapto Undecanoic Acid

Pd core size: 1.8 ± 0.2 nm

Dispersible in CH₂Cl₂, toluene, hexane Hydrolysis conditions: THF + 30 eq H_2O (120 mol vs Ce) in 4 h

Dodecanoic Acid (DA) + Controlled Hydrolysis

J. Am. Chem. Soc. 132 (2010), 1402-1409

Science 337 (2012), 713-717

Pd@CeO₂ FOR CH₄ COMBUSTION 100% -**Light Off** CH_4 conversion (%) Dry Wet 80% 60% 000000000 **Effect of water** 100% 40% 99% 20% 98% 700 750 800 0% 500 300 400 600 700 800 900 200 Catalyst temperature (°C) 600 °C 100% -100% -CH⁴ conversion (%) **Steady State** 80% Wet Dry 60% 0.5% CH₄, 2.0% O₂, 15% H₂O (if present), Ar 40% balance, $O_2/O_{2(stoich)}$ =2, GHSV = 200000 mL g⁻¹ h⁻¹ 20% H₂O off 0% 0% 200 400 600 2 10 12 600 400 200 4 6 8 T (°C) T (°C) time (h) ChemCatChem7 (2015), 2038-2046

Fresh	3.0
Dry aged	2.8
Reactivated after dry aging	3.3
Wet aged	1.1
Reactivated after wet aging	3.2

Pd@CeO₂ MODEL CATALYSTS

Pd@CeO₂/THF

Synchrotron Radiation PhotoEmission Spectroscopy

Surface Study

Elettra Sincrotrone Trieste

Appl. Catal. B-Environ. 202 (2017), 72-83

Appl. Catal. B-Environ. 202 (2017), 72-83

- Surface area 90-100 m²g⁻¹
- Pd accessible area 3 m² g⁻¹ (~ 60% D)
- Similar activity in light off experiments

Appl. Catal. B-Environ. 202 (2017), 72-83

Single Cations Sulfates

- Pristine
 500°C SO₂/dry
- 600°C SO₂/dry

At 600°C: no deactivation observed

- Modification of Ce and Zr spectra
- Zr signal not affected in CZ
- In CZ, sulfates are mostly formed on Ce

MEE RESEARCH ACTIVITIES

Air pollution abatement

- Three Way Catalysts
- CH₄ combustion

Water purification by photocatalysis

- ✤ Doped TiO₂
- Bi₂O₃-based materials
- Metal tungstates Bi₂O₃

- CH₄ partial oxidation
- Steam reforming of renewable compounds
- Photocatalytic reforming of oxygenated compounds
- Synthesis of valuable organic compounds

Bi₂O₄

- Water Gas Shift
- Preferential Oxidation of CO

0.5 µm

Pd@CeO₂/MWCNT

H₂ PRODUCTION FROM GLYCEROL

Possible pathway

TIO₂/CARBON NANOMATERIALS

Formation of hybrid materials

CNTs as electron sink

W.-D. Zhang, B. Xu, L.-C. Jiang, J. Mater. Chem. 20 (2010), 6383

Pd@TiO₂/CARBON NANOHORNS

Ox-SWCNHs

Pd@TiO₂/ox-SWCNHs

Pd@TiO₂/CARBON NANOHORNS

CVs measured in (—) N₂-saturated or (—) CO₂-saturated 0.10 M phosphate buffer solution pH 7.40, at 50 mV s⁻¹

Energy Environ. Sci. 2018

Pd@TiO₂/CARBON NANOCONES

Montini et al. Chem. Commun. 52 (2016), 764-767

PHENOTIAZINE-BASED DYES

Dye Loading (µmol g⁻¹)

ÓМе

Effect of wettability

Chem. Commun. 52 (2016), 6977-6980

PHENOTIAZINE-BASED DYES

Sensitizers systems

Effect of co-adsorbents

Stable interaction between PTZ-GLU and GLUA

ACS Energy Lett. 3 (2018), 85-91

Single Atom Catalyst on high quality functionalized graphene

R. Zboril et al. Adv. Mater 2019
Oxidative homocoupling of substituted benzylamines

R. Zboril et al. Adv. Mater 2019

Aim of this work

Evaluation of the effect of the doping of TiO₂ with B and N on the production of valuable chemicals:

Hydrogen

by photoreforming of aqueous solutions containing ethanol or glycerol.

Benzimidazole

B,N

V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello and M. Graziani, *Chem. Phys.* **339** (2007) 111-123.

M. Fittipaldi, V. Gombac, T. Montini, P. Fornasiero and M. Graziani, *Inorg. Chim. Acta* **361** (2008), 3980-3987 Synthesis of the supports

Sol-gel method for TiO₂ supports

Characterization of the supports

	Composition (wt%)			Crystallite size (nm)			Surface
	Anatase	Brookite	Rutile	Anatase	Brookite	Rutile	(m ² g ⁻¹)
TiO ₂	64	28	8	11	11	32	80
TiO ₂ -B,N	68	26	6	8	7	12	138

Deposition of the metal phase

Metal photodeposition

Support + metal nitrate

50% water- 50% ethanol

UV-vis irradiation

Metal/TiO₂ Metal/TiO₂-B,N

Cu 1.0wt%

H₂ production from ETHANOL

Cu/TiO₂ Cu/TiO₂-B,N

- > Doping TiO_2 , leaching is significantly reduced
- More stable performances for TiO₂-B,N supported catalysts

Synthesis of benzimidazole

Synthesis of benzimidazole

One-Pot Synthesis of Benzimidazoles by Simultaneous Photocatalytic and Catalytic Reactions on Pt@TiO₂ Nanoparticles**

Yasuhiro Shiraishi,* Yoshitsune Sugano, Shunsuke Tanaka, and Takayuki Hirai

Angew. Chem. Int. Ed. 2010, 49, 1656-1660

Scheme 1. One-pot synthesis of benzimidazole using a $Pt@TiO_2$ catalyst under photoirradiation.

Synthesis of benzimidazole

Alternative processes:

- Less toxic reagents
- Renewable and cheap solvent

Synthesis of 2-methylbenzimidazole

Conditions:

- 60 mL DNB/NA 2mM in EtOH 96%
- 150 mg Pd/TiO₂-B,N
- Ar flow, 30°C
- Simulated sunlight irradiation

Synthesis of 2-methylbenzimidazole

Conditions:

- 60 mL DNB/NA 2mM in EtOH 96%
- 150 mg Pd/TiO₂-B,N
- Ar flow, 30°C
- Simulated sunlight irradiation

Substituted 2-methylbenzimidazole

Bromo derivate

GC/MS analysis

Bromo derivate

GC/MS analysis

hydrodebromination

Bromo derivate

Chloro derivate

GC/MS analysis

Methyl ester derivat

Н

GC/MS analysis

ACKNOWLEDGEMENTS

Group members: Prof. Paolo Fornasiero, Dr. Michele Melchionna Dr. Valentina Gombac, Dr. Manuela Bevilacqua Dr. Matteo Monai, Dr. Alessandro Beltram

Prof. Mauro Graziani 1936 – 2019

The sleep of reason produces monsters Francisco Goya (1799)