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.=.II\/|edicine

Medicine is the science and practice of establishing

e diagnosis,

® Prognosis,

e treatment, and
* prevention

of disease.

Encompasses a variety of health care practices to
maintain and restore health by prevention/treatment.
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.=.IHeaIth care

Health care is the maintenance or improvement of
health via

* prevention,
e diagnosis,

e treatment,
* recovery, or
* cure

of disease, illness, injury, and other physical and
mental impairments in people.



.=.IDrug discovery

e Drug discovery is the process

by which new candidate
medications are discovered.

Drug Discovery Cycle

in vitro

Primary Assays
high through-put,

Secondary Assays
counter screens, bioavailability
toxicity, metabolism, ete.

Indirect

Lead Compounds
and SAR

Direct L

Structural
Characterization of
Protein-Ligand Complex

e Compound screening: Applying compounds from a
library (to a cellular assay) to determine their effect

e Genomic screening: Turning on/off of genes, to
determine the effect, potential targets for compounds
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.. m Drug repositioning/repurposing
I

* Drug repositioning (aka drug repurposing) involves
the investigation of existing drugs for
new therapeutic purposes.

* The most famous/successful example of drug
repurposing:

sildenafil,
originally used to
treat pulmonary
arterial
hypertension



.. m A taxonomy of Al approaches
I

 Knowledge representation
 Knowledge engineering

e Reasoning & Planning

* Natural language processing
* Computer vision

 Machine learning (from big data)
 Neural networks
e Deep neural networks (DNNs)

e Learning understandable/ explainable models
e Trees & tree ensembles
* Rules & rule ensembles



EEE , | |
BE= DNNs for Image-based Diagnosis:

HE . . .
I Classification of skin cancer

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

® Acral-lentiginous melanoma - . ) )
/@ Amelanotic melanoma —$ @ 92% malignant melanocytic lesion
/@ Lentigo melanoma -
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* DNN pretrained on ImageNet
e Fine tuned on 129450 images of skin lesions

e 757 training classes defined according to a novel
taxonomy of skin disease



... Disease taxonomy & test images
II
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e A subset of the top of the tree-structured taxonomy of
skin disease.

e A set of testing images (photos & dermoscopy images)
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== Diabetes causes blindness
I

e Fastest growing cause of blindness as

* A significant proportion of the population (5-10%)
is diabetic

e Should be checked/ screened annually for diabetic
retinopathy

e There is shortage of personnel to check/ grade
Images

e Grading is highly technical

10



.==.' Diaghosing Diabetic Retinopathy

W8 via Retinal Fundus Images

Hemorrhages

¢

Healthy Diseased

No DR Mild DR
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S == Additional problems with grading
.l

Even when available, ophthalmologists are not consistent...

Mone
Miid

Moderate

Ophthalmologist Graders

Savers
Bl provteratve

Patient - :
Images EE i . l. : . : -

Consistency: intragrader ~65%, intergrader ~60%
Google PR
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HENE
... Tralnlng a DNN for diagnosing DR

Adapt deep neural network to read fundus images

No DR

Mﬁﬂmﬁ -

Severe DR

Conv Network - 26 layers

Proliferative DR

Labeling tool

54 ophthalmologists
130k images
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BEEE Diagnostic performance as

BN | DAging esestigation | INWOVRT 0N & AL TH Ckll ELVERY

Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy

in Retinal Fundus Photographs

A EpePACE-10 AUC, #9.1%, 95% (1, 90.0%-95 0%
(fe]

F-score

0.95 | 0.91

Algorithm Ophthalmologist
(median)

“The study by Gulshan and
colleagues truly represents the
brave new world in medicine.”

“Google just published this paper

in JAMA (impact factor 37) [...] it
actually lives up to the hype.”

compared to ophtalmologists
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HER
...IUnderstandabIe VIL for therapy

e |Indicating change of therapy for Parkinson’s patients

 From patient’s symptoms at visit, predict whether physician will
change each of three groups of meds: Levodopa, dopamine
agonists, MAO-B inhibitors

[yes, no, noj
[331, 277, 265]: 436

on/off fluctuations = problematic

= problematic

hand pronation/supination

impulsivity = problematic

es, yes, yes es, no, no i :
[?7 1; 12‘?2% [‘,g 36, 36]: gs andwriting = problematic
[yes, yes, yes] [no, yes, yes] yes, no, noj
[20, 21, 19]: 33 [84, 96, 94]: 131 [31, 25, 32]: 60

[ves, yes, yes] [no, yes, yes] 15
[24,25,20]: 36 [78, 88, 76]: 131



.. m Drug discovery/repurposing
I

e Perform compound screening with a relatively
small compound library to collect data

 From the collected data, learn a predictive QSAR
model that relates compound structure to activity

e Apply the learned model to perform virtual
compound screening on a large set of compounds

* Find candidate compounds for new drugs
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.=..' Real compound screening:

W8 Collecting data

e Testing compounds from libraries on cellular assays

Labeled data

Descriptive space Target space
Example 1 1 | TRUE ! 049 ! 0.69 | 068 | 3.91

__________________________________________________________________________

__________________________________________________________________________
——————————————————————————————————————————————————————————————————————————

__________________________________________________________________________
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nE Learning QSAR models for

Labeled data

. Virtual Compound Screening

Unlabeled data

Descriptive space Target space
Example 1 1 TRUE 0.49 0.69 0.68 3.91
Example 2 2 FALSE 0.08 0.07 0.56 7.59
Example 3 1 FALSE 0.08 0.07 0.10 7.57
Example 4 2 TRUE 0.49 0.69 0.08 8.86
j A Kills cancer cells? MCF7 Hela
~ N

pe
CH o
.
HO,
HOY

CH,OH
H,C
OH

Example N+1 1 TRUE 0.86 0.35 ? ?
Example N+2 2 FALSE 0.09 0.05 ? ?
Example N+3 4 FALSE 0.07 0.01 ? ?
Example N+4 2 TRUE 0.91 0.78 ? ?
Example N+5 2 TRUE 0.42 0.69 ? ?
o TR TR
NJ S r"\ i L:»_V e

I
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I Learn
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Y -
..IV|rtuaI compound screening

e Descriptive variables refer to compound structure
e Functional groups

* Fingerprints
e Bulk properties

* May also describe the compound in terms of the
proteins it targets (e.g. from PubChem)
e Their functional annotations
e Pathways they are involved in

e Proteins that the targets interact with (and/or their
functional annotations, pathways they are involved in)

e Target variables describe compound activity and
toxicity



l=. Iost—ta rgeted Drugs for MTB

..("uberculosis) and STM (Salmonella)

 Library of compounds
e LOPAC library - Library Of Pharmacologically Active Compounds
e 1260 compounds

* Well-characterized compounds, many already applied in clinical practice for a
range of conditions

e Flow cytometry (FACS) - measured reduction in bacterial load
 MelJuSo cells infected with Mycobacterium tuberculosis at MOI 10 — Mtb
e Hela cells infected with Salmonella typhimurium at MOI 10 - Stm

12 hits
i 1]
rl 1L
TH: Iﬂi:-ll Tett FriR
i e
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.=.II\/ITB&STI\/I: Host—targeted Drugs

Given SDF files, find PubChemID

PubChem repository
* Retrieve the proteins that were found to be active in bio-assays
with human cells
Dataset
964 compounds were found active on human protein targets
e 711 distinct protein targets were identified
e Each compound is described with
* the respective protein targets
e functional annotations of the respective protein targets
e functional annotations of both the respective protein targets and
the proteins they interact with
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== Model excerpts
I
e MTR models (trees, ensembles) were built that
predict the effect of a compound on
e Bacterial load
e Host cell

e Example rule from a tree:
IF compound targets the protein AAL 06595
THEN bacterial load effect =-5.269 &
host cell effect = 0.0475
e Functional profiles of targeted proteins
IF a protein with function GO0002637 (regulation
of immunoglobulin production) is targeted THEN ...
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l=..I MTB&STM: Host-targeted Drugs

..| The Data Analysis Workflow

Compound Link to - PubChem Ftﬂhiﬂﬂh BioActivity | Fitter humaﬂ Processed
information |pubthem IDs | cOMpounds |gipAssayinfa| Profiles tamgets compounds

Training | Data minng | Predictive Apply »| Predicted | Relabilty |} Candidate

compounds |  algorithen mode| activity estimation | compounds
pred. model
Testing g E

commercially
available
compounds




2E= N MTB&STM: Host-targeted Drugs
llI Results

e Greatly increased proportions of hit compounds
e 5out of 9(55.6%) for Mtb and
e LOPAC primary screen (90 out of 1260 (7.1%) for Mtb

e The in silico predictive model successfully identified active
compounds de novo

Primary
sceen Rescreen
Abbr,  Compound name Alternative name(s) z-score z-score Activity

Mycobacterium tuberculosis

2,3-Dihydro-N,N-dimethyl-2-oxo0-3-[(4,5,6,7-
SuU SU 6656 tetrahydro-1H-indol-2-yl)methylene]-1H-indole- -5.79 -10.51
5-sulfonamide

Src family kinase
inhibitor

Quinacrine

-5.25 -9.90 MAOQ inhibit
Q dihydrochloride inhibrtor
SB SB 216763 3-(2,4-Dichlorophenyl)-4-(1-methyl-1H-indol-3- ¢ -8.29 GSK-3 kinase inhibitor
yl)-1H-pyrrole-2,5-dione
G GW5074 3-(3, 5-Dibromo-4-hydroxybenzylidine-5-iodo- -4.86 -6.98 Raf1 kinase inhibitor
1,3-dihydro-indol-2-one)
N-Phenyl-3,4-
T494  Tyrphostin AG 494 rhenyi=aA- , -3.83 -6.93 EGFR kinase inhibitor
dihydroxybenzylidenecyanoacetamide
3' 4'-Dichlorobenzamil Na’/Ca2” exchanger
L hydrochloride L-594,881 -3.87 .13 inhibitor
n 24
H Haloperidol 3.77 2.9 D2/D1 dopamine

receptor antagonist




.=..' Analyzing c
BE  High-conte

ata from

nts Screens

 Compounds described by fingerprints

* Generated by open-source chemoinformatics SW

library RDkit

 The FCFP2 fingerprits were used (1024 features)
* Also considered profiles of targeted proteins

e These are the attributes

e Assays photographed under the microscope

e Features extracted from images

 These are then the targets



TS: Modulating fibroblast to
myofibroblast transition

cardiac fibroblasts from a-SMA-RFP/
Coll al1(l}-EGFP mice

Oh 4 FDA-approved drugs (640 compounds)

W vs W3

SMA intensity

cell fixation, image acquisition and
elaboration o .2 04 06 a8 1 %] 14 LE

Collagen intensity
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1 Fumagillone (fu) u
Flubendazole (flu)
Mebendazol (me) |
Rapamycin (rap)
Dextromethorphan (de)

aSMA mean cellular intensity (RLU)

<0.05

Clodronate disodium (clo)
Apomorphine (apo)
Retinoic acid (ra)
Haloperidol ( halo)
Dexamethasone (dex)

TGFp

-- 3 r

oSMA Hoech

st

aSMA intensity
(fold change)

=]

= M L2

+

+

TGFR
Dexamethasone
Haloperidol
Apomorphine
Retinoic acid
Clodronate disodium



Reducing fibrosis
in myocardial infarction

* High content screen using a library of 640
FDA approved drugs (ENZO)
 |dentify drugs to reduce fibrosis in myocardial infarction

e Screen used murine cardiac fibroblasts which
differentiate into myofibroblasts in culture, expressing
increased alpha SMA-RFP and collagen-alphal-EGFP

e Targets: Intensity of ’ £
e alphaSMA
e Collagen

e Attributes
* Fingerprints



.=..' New candidate drugs to help

..I recovery after heart attack

e SMILE strings used in Chemmine to identify substances
with structural similarity to non commercial compounds
with high predicted values

* Three related compounds identified which are described
in literature to have an anti-fibrotic effect
e Melatonin * and Indomethacin *
e Acyclovir

* Four related compounds identified which were not
previously described to have an anti-fibrotic effect
 Dopamine
e Amiodarone * and Progesterone *
e Zanamivir 29



.=.IA| in Medicine and Pharma

 Many different tasks to use Al for, from pharma,
medicine, healthcare

 Many different Al methods to use, e.g., also decision
support systems to avoid hospital infections

* [mportant issues unique to uses in
medicine/healthcare

e Explainability
e Regulating the use of Al in medicine (FDA approvals)
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