# Artificial Intelligence for Medicine and Pharma

Sašo Džeroski

Jozef Stefan Institute (JSI), Ljubljana, Slovenia Jozef Stefan International Postgraduate School (JS IPS)

### Medicine

Medicine is the science and practice of establishing

- diagnosis,
- prognosis,
- treatment, and
- prevention

of disease.

Encompasses a variety of health care practices to maintain and restore health by prevention/treatment.

#### Health care

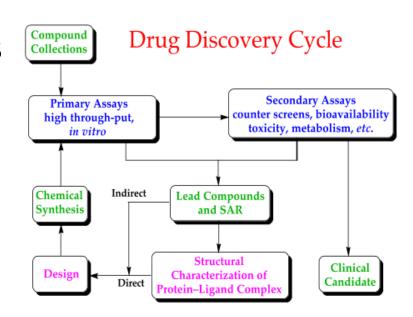
Health care is the maintenance or improvement of health via

- prevention,
- diagnosis,
- treatment,
- recovery, or
- cure

of disease, illness, injury, and other physical and mental impairments in people.

#### Drug discovery

 Drug discovery is the process by which new candidate medications are discovered.



- Compound screening: Applying compounds from a library (to a cellular assay) to determine their effect
- Genomic screening: Turning on/off of genes, to determine the effect, potential targets for compounds

#### Drug repositioning/repurposing

 Drug repositioning (aka drug repurposing) involves the investigation of existing drugs for new therapeutic purposes.

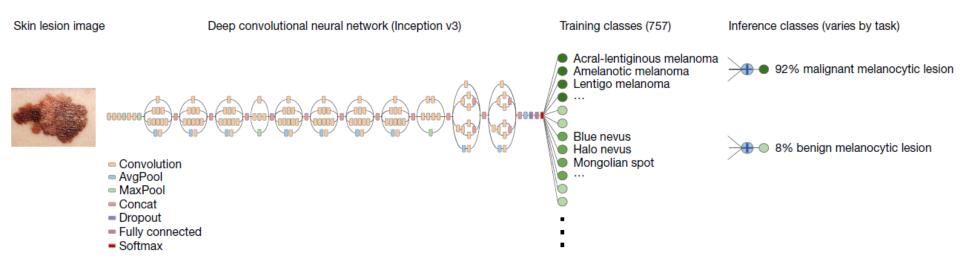
 The most famous/successful example of drug repurposing:

sildenafil,
originally used to
treat pulmonary
arterial
hypertension

#### A taxonomy of Al approaches

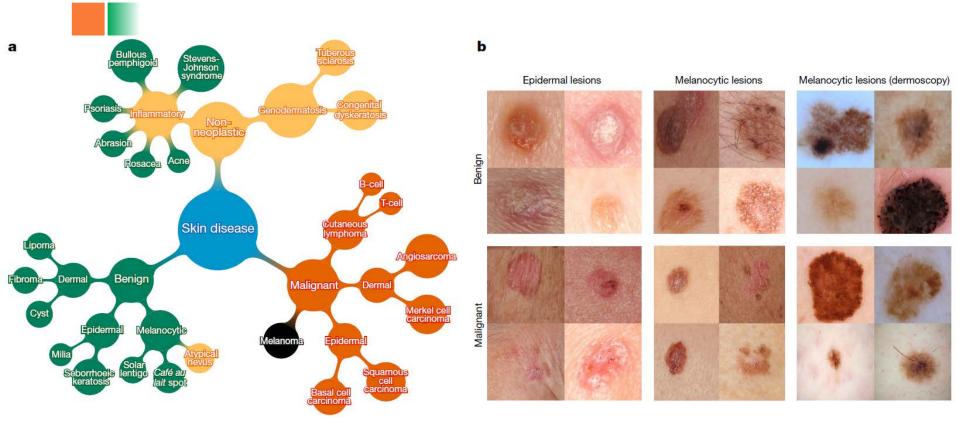
- Knowledge representation
- Knowledge engineering
- Reasoning & Planning
- Natural language processing
- Computer vision
- Machine learning (from big data)
  - Neural networks
    - Deep neural networks (DNNs)
  - Learning understandable/ explainable models
    - Trees & tree ensembles
    - Rules & rule ensembles

### DNNs for Image-based Diagnosis: Classification of skin cancer



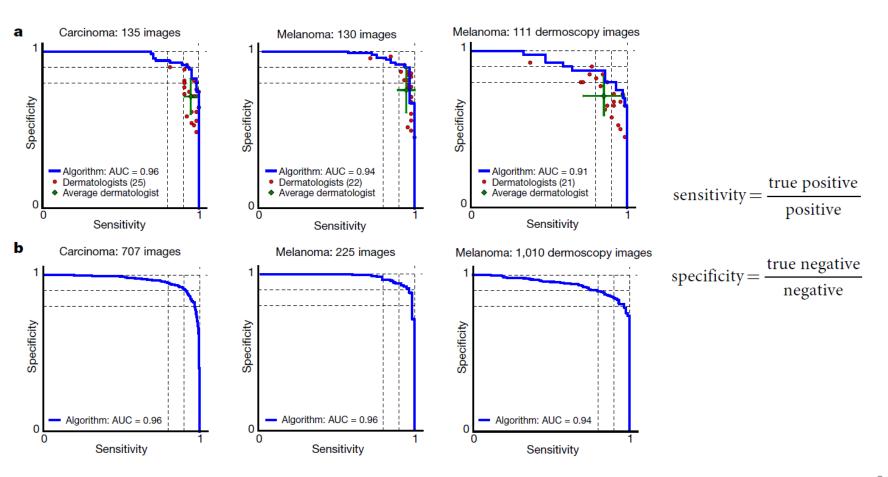
- DNN pretrained on ImageNet
- Fine tuned on 129450 images of skin lesions
- 757 training classes defined according to a novel taxonomy of skin disease

#### Disease taxonomy & test images



- A subset of the top of the tree-structured taxonomy of skin disease.
- A set of testing images (photos & dermoscopy images)

## Performance: Comparison to Dermatologists

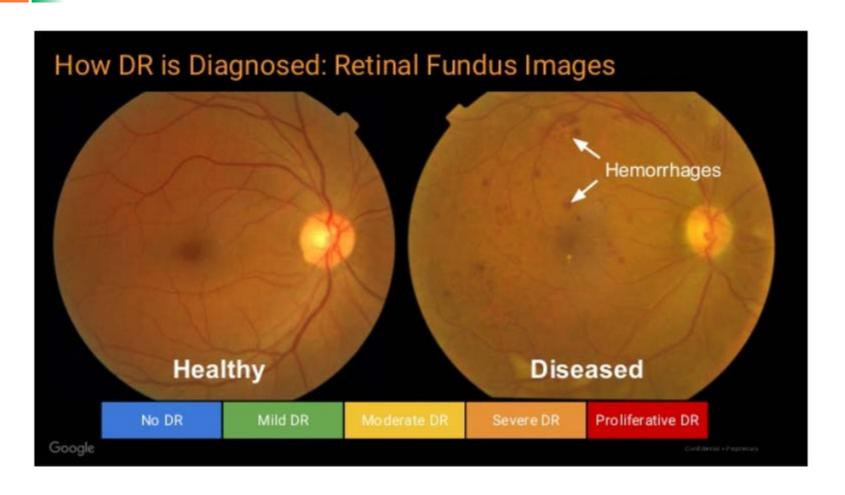


#### Diabetes causes blindness

- Fastest growing cause of blindness as
- A significant proportion of the population (5-10%) is diabetic
- Should be checked/ screened annually for diabetic retinopathy

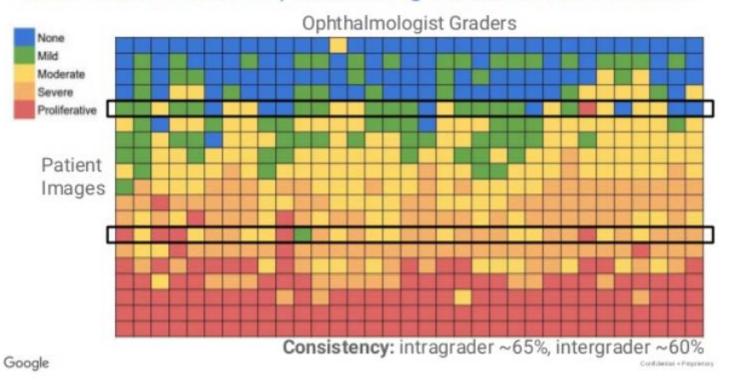
- There is shortage of personnel to check/ grade images
- Grading is highly technical

## Diagnosing Diabetic Retinopathy via Retinal Fundus Images



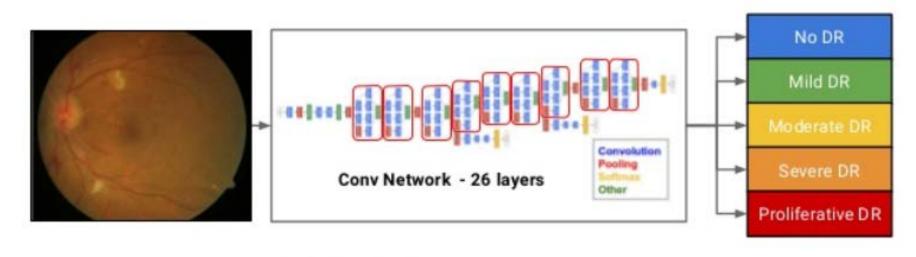
### Additional problems with grading

#### Even when available, ophthalmologists are not consistent...



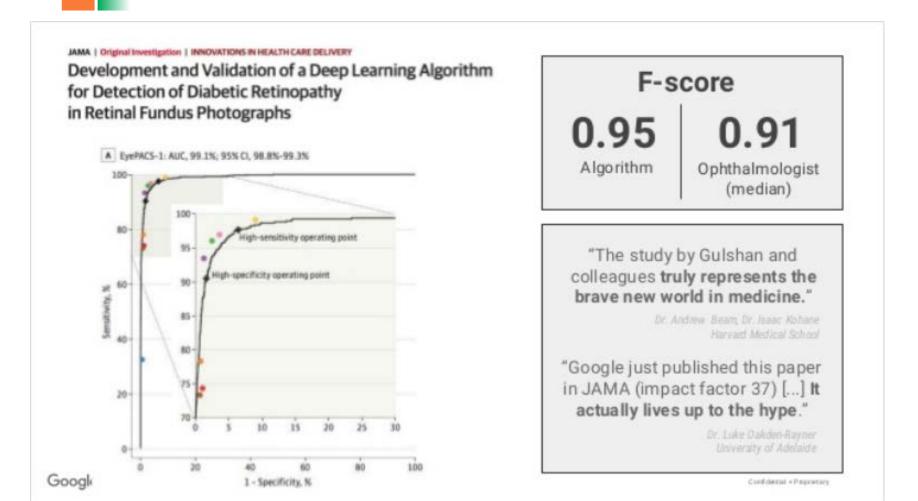
### Training a DNN for diagnosing DR

#### Adapt deep neural network to read fundus images



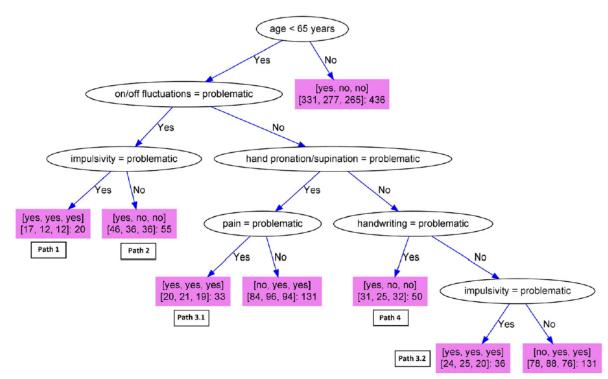
Labeling tool 54 ophthalmologists 130k images

### Diagnostic performance as compared to ophtalmologists



#### Understandable ML for therapy

- Indicating change of therapy for Parkinson's patients
- From patient's symptoms at visit, predict whether physician will change each of three groups of meds: Levodopa, dopamine agonists, MAO-B inhibitors



### Drug discovery/repurposing

- Perform compound screening with a relatively small compound library to collect data
- From the collected data, learn a predictive QSAR model that relates compound structure to activity

- Apply the learned model to perform virtual compound screening on a large set of compounds
- Find candidate compounds for new drugs

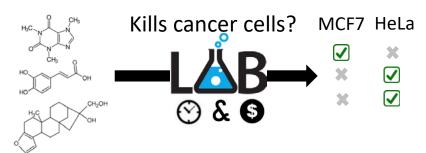


### Real compound screening: Collecting data

Testing compounds from libraries on cellular assays

#### Labeled data

|           | Descriptive space |       |      | Target space |      |      |
|-----------|-------------------|-------|------|--------------|------|------|
| Example 1 | 1                 | TRUE  | 0.49 | 0.69         | 0.68 | 3.91 |
| Example 2 | 2                 | FALSE | 0.08 | 0.07         | 0.56 | 7.59 |
| Example 3 | 1                 | FALSE | 0.08 | 0.07         | 0.10 | 7.57 |
| Example 4 | 2                 | TRUE  | 0.49 | 0.69         | 0.08 | 8.86 |
|           |                   |       |      |              |      |      |





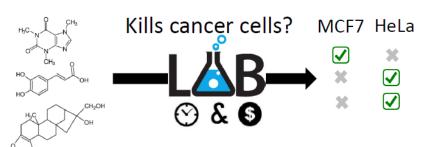
## Learning QSAR models for Virtual Compound Screening

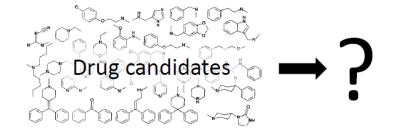
#### Labeled data

|           | Descriptive space |       |      | Target space |      |      |
|-----------|-------------------|-------|------|--------------|------|------|
| Example 1 | 1                 | TRUE  | 0.49 | 0.69         | 0.68 | 3.91 |
| Example 2 | 2                 | FALSE | 0.08 | 0.07         | 0.56 | 7.59 |
| Example 3 | 1                 | FALSE | 0.08 | 0.07         | 0.10 | 7.57 |
| Example 4 | 2                 | TRUE  | 0.49 | 0.69         | 0.08 | 8.86 |
| •••       |                   |       |      |              |      |      |

#### Unlabeled data

| Example N+1 | 1 | TRUE  | 0.86 | 0.35 | ? | ? |
|-------------|---|-------|------|------|---|---|
| Example N+2 | 2 | FALSE | 0.09 | 0.05 | ? | ? |
| Example N+3 | 4 | FALSE | 0.07 | 0.01 | ? | ? |
| Example N+4 | 2 | TRUE  | 0.91 | 0.78 | ? | ? |
| Example N+5 | 2 | TRUE  | 0.42 | 0.69 | ? | ? |
|             |   |       |      |      |   |   |





Learn

Supervised model

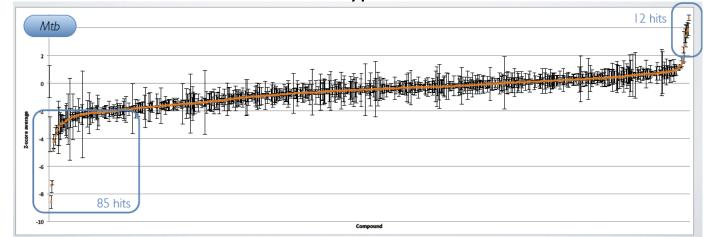
Predict

#### Virtual compound screening

- Descriptive variables refer to compound structure
  - Functional groups
  - Fingerprints
  - Bulk properties
- May also describe the compound in terms of the proteins it targets (e.g. from PubChem)
  - Their functional annotations
  - Pathways they are involved in
  - Proteins that the targets interact with (and/or their functional annotations, pathways they are involved in)
- Target variables describe compound activity and toxicity

## Host-targeted Drugs for MTB (Tuberculosis) and STM (Salmonella)

- Library of compounds
  - LOPAC library Library Of Pharmacologically Active Compounds
    - 1260 compounds
  - Well-characterized compounds, many already applied in clinical practice for a range of conditions
- Flow cytometry (FACS) measured reduction in bacterial load
  - MelJuSo cells infected with Mycobacterium tuberculosis at MOI 10 Mtb
  - HeLa cells infected with Salmonella typhimurium at MOI 10 Stm



#### MTB&STM: Host-targeted Drugs

Given SDF files, find PubChemID

Morphine

- PubChem repository
  - Retrieve the proteins that were found to be active in bio-assays with human cells
- Dataset
  - 964 compounds were found active on human protein targets
  - 711 distinct protein targets were identified
- Each compound is described with
  - the respective protein targets
  - functional annotations of the respective protein targets
  - functional annotations of both the respective protein targets and the proteins they interact with

#### Model excerpts

- MTR models (trees, ensembles) were built that predict the effect of a compound on
  - Bacterial load
  - Host cell
- Example rule from a tree:

IF compound targets the protein AAL 06595

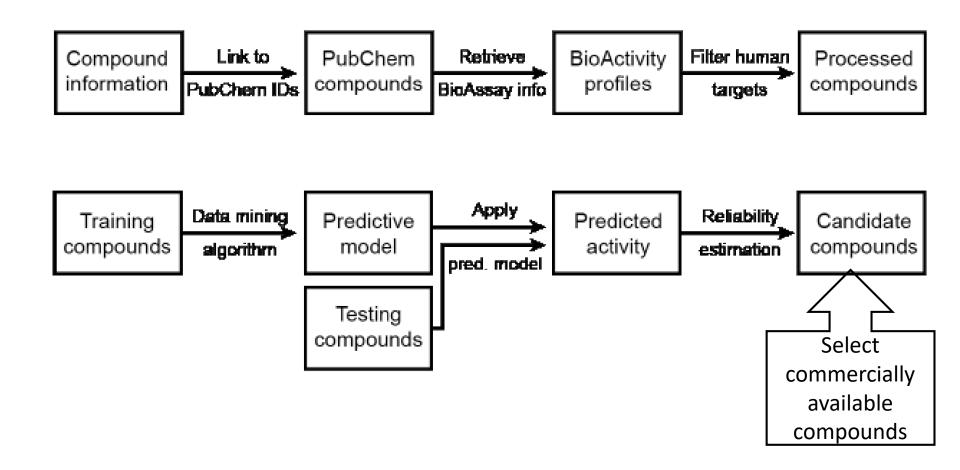
THEN bacterial load effect = -5.269 &

host cell effect = 0.0475

Functional profiles of targeted proteins
 IF a protein with function GO0002637 (regulation of immunoglobulin production) is targeted THEN ...



### MTB&STM: Host-targeted Drugs The Data Analysis Workflow





### MTB&STM: Host-targeted Drugs Results

Driman

- Greatly increased proportions of hit compounds
  - 5 out of 9 (55.6%) for Mtb and
  - LOPAC primary screen (90 out of 1260 (7.1%) for Mtb
- The in silico predictive model successfully identified active compounds de novo

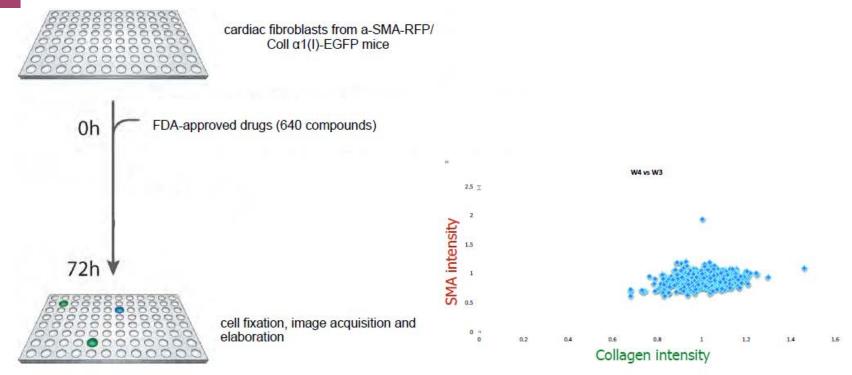
| Abbr. | Compound name                           | Alternative name(s)                                                                                    | sceen<br>z-score | Rescreen<br>z-score | Activity                                                 |
|-------|-----------------------------------------|--------------------------------------------------------------------------------------------------------|------------------|---------------------|----------------------------------------------------------|
| Mycob | acterium tuberculosis                   |                                                                                                        |                  |                     |                                                          |
| SU    | SU 6656                                 | 2,3-Dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,7-tetrahydro-1H-indol-2-yl)methylene]-1H-indole-5-sulfonamide | -5.79            | -10.51              | Src family kinase inhibitor                              |
| Q     | Quinacrine<br>dihydrochloride           |                                                                                                        | -5.25            | -9.90               | MAO inhibitor                                            |
| SB    | SB 216763                               | 3-(2,4-Dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione                                 | -6.02            | -8.29               | GSK-3 kinase inhibitor                                   |
| G     | GW5074                                  | 3-(3, 5-Dibromo-4-hydroxybenzylidine-5-iodo-<br>1,3-dihydro-indol-2-one)                               | -4.86            | -6.98               | Raf1 kinase inhibitor                                    |
| T494  | Tyrphostin AG 494                       | N-Phenyl-3,4-<br>dihydroxybenzylidenecyanoacetamide                                                    | -3.83            | -6.93               | EGFR kinase inhibitor                                    |
| L     | 3',4'-Dichlorobenzamil<br>hydrochloride | L-594,881                                                                                              | -3.87            | -5.13               | Na <sup>†</sup> /Ca2 <sup>†</sup> exchanger<br>inhibitor |
| Н     | Haloperidol                             |                                                                                                        | -3.77            | -2.96               | D2/D1 dopamine receptor antagonist                       |



- Compounds described by fingerprints
- Generated by open-source chemoinformatics SW library RDkit
- The FCFP2 fingerprits were used (1024 features)
- Also considered profiles of targeted proteins
- These are the attributes

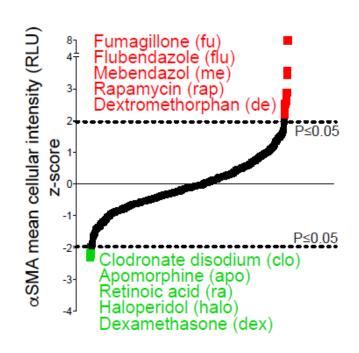
- Assays photographed under the microscope
- Features extracted from images
- These are then the targets

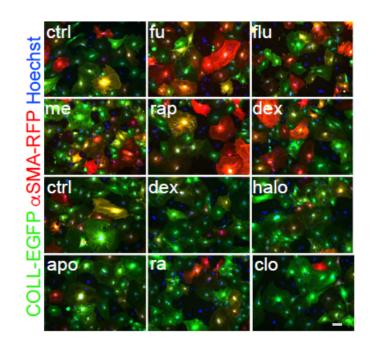
## HTS: Modulating fibroblast to myofibroblast transition

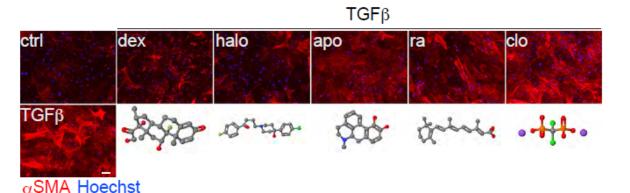


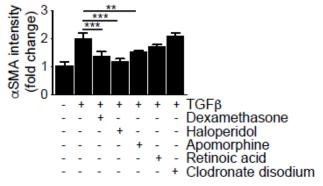


#### Hits in the HTS screen



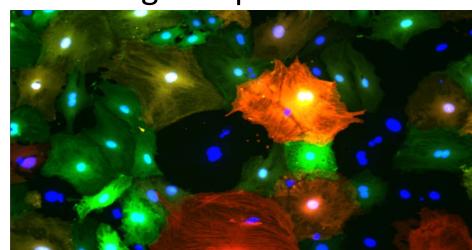






### Reducing fibrosis in myocardial infarction

- High content screen using a library of 640
   FDA approved drugs (ENZO)
- Identify drugs to reduce fibrosis in myocardial infarction
- Screen used murine cardiac fibroblasts which differentiate into myofibroblasts in culture, expressing increased alpha SMA-RFP and collagen-alpha1-EGFP
- Targets: Intensity of
  - alphaSMA
  - Collagen
- Attributes
  - Fingerprints





### New candidate drugs to help recovery after heart attack

- SMILE strings used in Chemmine to identify substances with structural similarity to non commercial compounds with high predicted values
- Three related compounds identified which are described in literature to have an anti-fibrotic effect
  - Melatonin \* and Indomethacin \*
  - Acyclovir
- Four related compounds identified which were not previously described to have an anti-fibrotic effect
  - Dopamine
  - Amiodarone \* and Progesterone \*
  - Zanamivir

#### Al in Medicine and Pharma

- Many different tasks to use AI for, from pharma, medicine, healthcare
- Many different AI methods to use, e.g., also decision support systems to avoid hospital infections

- Important issues unique to uses in medicine/healthcare
  - Explainability
  - Regulating the use of AI in medicine (FDA approvals)