

Unveiling the local properties of nanomaterials using x-ray photoelectron spectromicroscopy

Andrea Locatelli andrea.locatelli@elettra.eu

Elettra synchotron and FERMI FEL

International reserch centre specialized in synchrotron and free electron laser radiation and their application to materials and life sciences

3rd generation synchrotron

first light (1993) booster injector (2008) constant accumulated current 310 mA (2 GeV) 160mA (2.4 GeV) **27 operating beamlines**

open to accademic users 06/2018 – 06/2019 submitted proposal 882 (Elettra) + 159 (CERIC) Accepted proposals 451 + 93 FERMI free electron laser (seeded source) Wavelenght (FEL 1): 100 – 20 nm Lunghezza d'onda (FEL 2): 20 – 4 nm Pulse energy : 100 – 10 µJ Pulse duration: 150 – 20 fs Frequency: 10 – 50 Hz

Elettra photoemission spectromicroscopes

Outlook – materials & applications

Nanomaterials

Electronic and optical devices Magnetic devices Corrosion protection... Catalysis and electro-chemistry

Goal

understand/control their properties at the microscopic scale!

- Crystal Structure / Morphology
- □ Chemical / Electronic Structure
- Magnetic Structure
- Interfacial interactions

Synchrotron-based Spectromicroscopes

ESCA Microscopy Beamline

Scanning Photoelectron Microscope (SPEM)

- Linearly Polarised Undulator
- Photon energy range: 400 1200 eV
- Overall Energy resolution: ~180meV @ 500 eV
- Beam Spot size at the sample: > 130 nm @ 500 eV

Contact: luca.gregoratti@elettra.eu

https://www.elettra.eu/elettra-beamlines/escamicroscopy.html

Graphene environmental cells: probing liquids

M. Amati et al., J. Electron Spec. Rel. Phenomena, in press (2020)

Operando photoemission microscopy

Highlighting the Dynamics of Graphene Protection toward the Oxidation of Copper Under Operando Conditions

Near Ambient Pressure Cell for NAP-XPS spectromicroscopy (custom set up for pressure up to 1 mbar)

M. Scardamaglia et al., ACS Appl. Mater. Interfaces 11, 29448 (2019)

Characterization of a singlechamber solid oxide fuel cell

(in collaboration with B. Bozzini, Università del Salento, Italy)

 In operando near-ambient pressure characterization of an operating single chamber solid oxide fuel cell (SC-SOFC)

T= 923 K with a CH_4/O_2 gas mixture; $P_{max}=0.1$ mbar

Spectromicroscopy beamline

microspot angle resolved x-ray photoemission spectroscopy

Dudin et al., Journal of Synchrotron Radiation, Vol. 17 - 4 (2010)

Visualizing electrostatic gating of monolayer graphene

https://doi.org/10.1038/s41586-019-1402-1

P. Nguyen et al., Nature 572, 220-223 (2019)

Visualizing electrostatic Layernumber-dependent CBE in WSe₂

P. Nguyen et al., Nature 572, 220-223 (2019)

NanoESCA beamline

microspot angle resolved x-ray photoemission spectroscopy

- hv: 20 1000 eV, *s p* and c+/c- pol.
- Energy Filter: $\Delta E \sim 70 \text{ meV}$
 - Real Space (100 nm)
 - Reciprocal Space
 - μ-ARPES: spot size ~ 12-4 μm

C. Tusche et al., Nature Communications, Vol. 9 - 1, pp. 3727 (2018)

The SPELEEM @ Nanospectroscopy

Full-field, soft x-rays (25-1000eV) or low energy electrons as probe

SPELEEM multi-method analysis

Spectroscopic imaging XAS-PEEM / XPEEM / LEEM microprobe-diffraction ARPES / LEED microprobe-spectroscopy Fast-XPS

b) diffraction mode energy filter energy slit projectors imaging column imaging detector field limiting aperture energy filtered diffraction image

spatial resolutionenergy resolutionLEEM : 10 nmXPEEM : 0.3 eVXPEEM : 25 nm

Detector blanking avaialable for time-resolved XMCD-PEEM: see Ultramicroscopy 202, 10-17 (2019) Limited: to 2 microns in dia. Energy resolution: **ARPES: 0.3 eV** angular resolution **ARPES: 0.01 Å**⁻¹

42--2--4hv = 90 eV W 4f_{7/2} C.Ap. 20 um 100 80 60 40 · 20 0 -34 -33 -32 -31 -30 Binding energy (eV) T. O. Menteş et al. Beilstein J. Nanotechnol. 5, 1873-1886 (2014). energy resolution µXPS: 0.11 eV

Contact: andrea.locatelli@elettra.eu

XAS-PEEM and mu-ARPES

 microscopic origin of resistance variability in memristor devices

XAS at high lateral resolution reveals oxidaition state at filaments

C. Baeumer *et al.*, ACS Nano 11, 6921 (2017). See also: C. Baeumer *et al.*, Nano Lett. 19, 54–60 (2019). ✓ Electronic Properties at the WSe₂-Graphene Interface

Unique combination of crystal and electronic structure information

S. Agnoli *et al.*, ACS Appl. Nano Mater. 1 (3), 1131–114 (2018)

SPELEEM examples: magnetic imaging at high lateral resolution

 First observation of chiral skyrmions at room temperature

O. Boulle *et al.*, Nat. Nanotech. **11**, 449–454 (2016) doi: 10.1038/nnano.2015.315

More recently, «Current-Driven Skyrmion Motion and SHE» R. Juge *et al.*, Phys Rev. Appl. 12. 044007 (2019) ✓ Magnetism in Nanowires

Fast Domain Wall Motion in cylindrical magnetic NW M. Schöbitz *et al.*, Phys Rev. Lett., accepted (2019)

Flux-closure domains in high aspect ratio electroless-deposited CoNiB nanotubes M. Staňo *et al.*, SciPost Phys. 5, 038 (2018)

Quantitative analysis of shadow XMCD-PEEM S. Jamet *et al.*, Phys. Rev. B 92, 144428 (2015)

Bloch-point DW in cylindrical magnetic NW S. Da Col *et al.*, Phys. Rev. B 89, 180405(R) (2014).

Artificially fabricated 2D heterostacks

- Combining LEEM & microspot LEED with ARPES capabilities (energy resolution in particular) is highly desirable!
- ✓ Example: twisted graphene/h-BN (Graphene institute, Manchester, UK)

M. Hamer, A. Barinov, R. Gorbachev et al., in preparation

LEEM Imaging: thin film growth

Thickness dependent intensity modulations Co/Re(0001) at T= 460K

electron-beam assisted carbon lithography

P. Genoni et al., ACS Applied Materials & Interfaces 10(32), 27178–27187 (2018)

Chemistry and magnetism of gr/Co/Re(001)

CO exposures of the order or in excess of 1000 L \rightarrow ML amount of carbon on the surface, which transforms to graphene upon annealing at 380° C.

 enhanced perpendicular magnetic anisotropy

XMCD-PEEM Co L₃

- Neél magnetic domains with right handed chirality
- Dzyaloshinskii-Moriya interaction →
- Skyrmion bubbles observed upon magnetization reversal
- P. Genoni *et al.*, ACS Applied Materials & Interfaces 10(32), 27178–27187 (2018) F. Genuzio *et al.*, J. Phys. Chem. C 123(13), 8360-8369 (2019); IEEE Transactions on Magnetics 55(2), 1-4 (2019);

XMCD-PEEM imaging of a hysteresis cycle

F. Genuzio *et al.*, IEE Transactions on Magnetics - Conferences (2018). doi: <u>10.1109/TMAG.2018.2868423;</u>

Summary

photoemission microscopes available at Elettra: SPEM, XPEEM

- □ Nanometer-range lateral resolution
- LEEM in-situ preparation with surface science methodology
- □ time-resolved studies using stroboscopic approach
- Magnetic imaging
- Capabilities in operando experiments
- □ SPEM @ near ambient pressure

microprobe ARPES

- □ Spectromicroscopy beamline
- □ NanoESCA (also spin-resolved)