A Generative Model for Rhythms

Jean-François Paiement, IDIAP Research Institute Yves Grandvalet, CNRS Samy Bengio, Google Douglas Eck, Université de Montréal

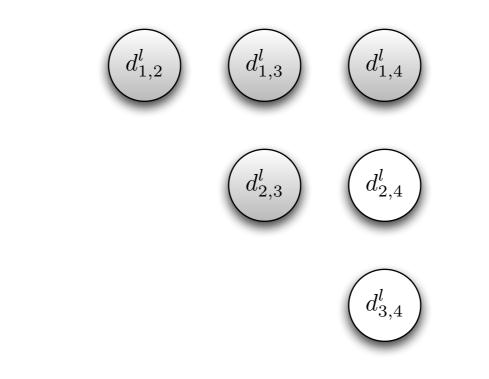
Motivation

- Music (and rhythm in particular) involves long term dependencies;
- Dependencies are characterized by hierarchical structure related to meter;
- We assume that distance patterns between subsequences are at least as important as the actual choice of notes in music structure.

Distance Patterns

- Repeated sequences of random notes sound like melody;
- Where can we put variability?
- Here, distance patterns refers to hierarchical distributions of distances between subsequences of equal lenght (partition).

Distance Model



$$\alpha_{i,j}^{l} = \min_{\substack{k \in \{1,\dots,(i-1)\}}} (d_{k,j}^{l} + d_{i,k}^{l})$$
$$\beta_{i,j}^{l} = \max_{\substack{k \in \{1,\dots,(i-1)\}}} (|d_{k,j}^{l} - d_{i,k}^{l}|)$$

 $\beta_{i,j}^l \le d_{i,j}^l \le \alpha_{i,j}^l$

Rhythms

- We represent rhythms with 3 states on each position:
 - I. Note onset;
 - 2. Note continuation;
 - 3. Silence.
- Thus, *d* can be chosen to be the Hamming distance.

Binomial Mixture Model

- We assume that the random variables $(d_{i,j}^l \beta_{i,j}^l)/(\alpha_{i,j}^l \beta_{i,j}^l)$ are iid;
- We can model $d_{i,j} \beta_{i,j}$ with a binomial distribution of parameters $(\alpha_{i,j} \beta_{i,j}, p_{i,j})$;
- For more flexibility, we use a binomial mixture.

Hierarchy Learning

- The joint distribution of distances can be computed for many number of partitions;
- Parameters can be learned with the EM algorithm;
- We initialize the parameters with a variant of k-means.

Conditional Prediction

- We combine the distance model with a "local" HMM model;
- We solve the optimization problem

$$\begin{cases} \max_{\tilde{x}_s,\ldots,\tilde{x}_m} & p_{\text{HMM}}(\tilde{x}_s,\ldots,\tilde{x}_m | x_1,\ldots,x_{s-1}) \\ \text{subject to} & \prod_{r=1}^h p(D_{\rho_r}(\mathbf{x}^l)) \ge P_0 \end{cases},$$

• In practice, we solve the Lagrangian $\max_{\tilde{x}_s,...,\tilde{x}_m} \log p_{\text{HMM}}(\tilde{x}_s,...,\tilde{x}_m | x_1,...,x_{s-1}) + \lambda \sum_{r=1}^h \log p(D_{\rho_r}(\mathbf{x}^l))$

Experiments

- A jazz database of 47 standards and a subset of the "Nottingham" database (53 hornpipes tunes) were used for the experiments;
- We compared the proposed model with an HMM using conditional prediction accuracy computed with double cross-validation.

Conditional Accuracy

Jazz standards				
Observed	Predicted	НММ	Global	
32	96	34.53%	54.61%	
64	64	34.47%	55.55%	
96	32	41.56%	47.21%	

Hornpipes				
Observed	Predicted	НММ	Global	
48	144	75.07%	83.02%	
96	96	75.59%	82.11%	
144	48	76.57%	80.07%	

Dyadic structures

• Best results with deeper dyadic structures:

Ρ	Accuracy
2	49.30%
2,4	49.27%
2,4,8	51.36%
2,4,8,16	55.55%

Demo