#### What/when causal expectation modeling in monophonic pitched melodies and percussive audio

Amaury Hazan, Paul Brossier, Ricard Marxer and Hendrik Purwins ahazan@iua.upf.edu

> Pompeu Fabra University Barcelona, Spain http://www.iua.upf.edu/mtg



## Outline

- Goals
- Background
- System Design
- Evaluation
- Future Work
- Conclusions



## Goals

- Build a system for producing musical expectations based on the observation of musical audio
- The system has to be unsupervised and causal to respect cognitive constraints
  - this enables to study the effect of exposure
    A use case for musical sequence learning models
- what/when expectation task
- As a first step, we focus on constant tempo musical patterns
  - Drum loops
  - Monophonic Pitched Melodies





# Background

- Prediction-driven listening [Ellis, Abdallah]
- Symbolic pitch sequences learning systems
  - [Todd, Mozer, Tillmann, Eck & Schmidhuber, Pearce & Wiggins]
- Bayesian score following and accompaniment of audio signals
  - [Raphael, Cemgil, Orio]
- Unsupervised learning and concatenative synthesis
  - [Schwarz, Jehan]
- Improvisation systems
  - [Pachet, Assayag, Dubnov, Cont]



### **System Design**

#### Audio to Symbolic



Symbolic to Audio



# **Feature Extraction Module**

Extracts on-the-fly the following features:

- Beats [Davis et al. 2005]
- Onsets (High frequency content based)
  - meter description is not explicitly modeled
- Timbre Descriptors
  - rough spectral shape (ZCR, SC)
  - MFCC
  - pitch (YIN-FFT, [Brossier 2004])
- Timbre descriptors can be computed on the onset frame (fast), or averaged over the IOI region



#### **Feature Extraction Module: output**





# **Dimensionality Reduction Module**

- On-line unsupervised clustering to create symbols for both temporal and timbre features
- Prior to this, we perform a *bootstrap* step
  - Accumulates timbre features and beat-relative IOI
  - We normalize the timbre
  - GMM+EM grid, choose best number of components



# **Bootstrap GMM+EM grid**

#### Create GMM grid

- each row is an independent run
- for each row, each column is associated with a GMM with number of components = 1, 2, ..., K<sub>max</sub>
- Fit each GMM using EM
  - Simple regularization procedure to avoid excessively low variances.
- For each model, compute information criterion
  - BIC, AIC, AICc
- Get median of best K over each row



### **GMM Grid: Example (drums)**



#### Music Technology Group



# **Running state: Online K-Means**

- For each incoming point
  - Cluster assignment

$$C(x) = \operatorname{argmin}_{1 < j < K} ||x - \mu_j||^2$$

Cluster mean update

$$\Delta \mu_j = \eta (x - \mu_j)$$

•  $\eta$  is the learning rate





### **Dimensionality Reduction Module: Output (drums)**



#### **Timbre Symbols**



#### Time Symbols





### **Dimensionality Reduction Module: Output (sung melody)**





### **Dimensionality Reduction Module: Output (sung melody)**





### **Dimensionality Reduction Module: Output (sung melody)**





## Prediction By Partial Match [Cleary&Witten, Pearce&Wiggins]

probability of next symbol given context sequence

$$p(e_i|e_{(i-n)+1}^{i-1}) = \begin{cases} \alpha(e_i|e_{(i-n)+1}^{i-1}) & \text{if } c(e_i|e_{(i-n)+1}^{i-1}) > 0\\ \gamma(e_{(i-n)+1}^{i-1})p(e_i|e_{(i-n)+2}^{i-1}) & \text{if } c(e_i|e_{(i-n)+1}^{i-1}) = 0 \end{cases}$$

- α is computed based on the counts of a given symbol after the observed context
- *y* controls the recursive *backoff* 
  - enables to integrate predictions based on lower order contexts when needed
  - if symbol never seen before in any context: uniform distribution



### **Next Event Prediction Module: output**





# **Evaluation**

- Listening to looped patterns
- We compute a *weighted F-Measure* to compare transcription and expectation
  - weights needed because unused clusters can appear

$$WFM = \sum_{i=1}^{K_t} w_i F_i$$

The systems performs twice better than using random predictors



# **Evaluation: Drums and Sung Melody**



 Drums: Depending of descriptor set

| ZCR, SC           | MFCC              |
|-------------------|-------------------|
| 0.60 (3.22, 2.33) | 0.69 (1.50, 2.42) |

Sung Melodies

| Excerpt | Folk.1      | Folk.2      | Folk.3      |
|---------|-------------|-------------|-------------|
| Exp.2   | 0.08 (7, 4) | 0.32 (5, 3) | 0.24 (5, 3) |
| Exp.4   | 0.22 (6, 4) | 0.34 (6, 3) | 0.25 (5, 5) |
| Exp.8   | 0.64 (7, 5) | 0.53 (7, 3) | 0.37 (5, 2) |



Music Technology Group

# **Expectation Entropy**

- PPM gives posterior distribution over possible next symbol
- We compute expectation entropy



# **Expectation Entropy**





# **Concatenative Synthesis**

- [Schwarz, Jehan]
- For each predicted timbre symbol, concatenate in output stream a prototypical audio slice of this symbol having the predicted IOI length
- Examples
  - Drums
  - Melody



# Discussion

- Bootstrapping is cheating
  - Cheat more: define a timbre and timing distance based on a whole collection
  - Bootstrap step run in parallel instead of once [Marxer]
    - allows to track variations in the attended signal
    - clusters can appear and disappear
- A less discrete system
  - from hard to soft cluster assignment [McKay]
  - work with transient regions instead of crisp onsets



### Summary

- An on-line and unsupervised system for computing expectation in audio signals
- Can be applied to different kinds of monophonic musical signals
- But the sequential prediction system is purely symbolic and markov-chain based
- Expectation entropy may be used to mark temporal cues in the attended signal



#### Thanks

| Music      | Technology Group |
|------------|------------------|
| IUA, UPF – | Barcelona, 2007  |



#### PPM

$$\begin{split} \gamma(e_i|e_{(i-n)+1}^{i-1}) &= \frac{t(e_{(i-n)+1}^{i-1})}{\sum_K c(e_{(i-n)+1}^{i-1}) + t(e_{(i-n)+1}^{i-1})} \\ \alpha(e_i|e_{(i-n)+1}^{i-1}) &= \frac{c(e_i|e_{(i-n)+1}^{i-1})}{\sum_K c(e|e_{(i-n)+1}^{i-1}) + t(e_{(i-n)+1}^{i-1})} \end{split}$$

