What/when causal expectation modeling in monophonic pitched melodies and percussive audio

Amaury Hazan, Paul Brossier, Ricard Marxer and Hendrik Purwins
ahazan@iua.upf.edu
Pompeu Fabra University
Barcelona, Spain
http://www.iua.upf.edu/mtg

Outline

- Goals
- Background
- System Design
- Evaluation
- Future Work
- Conclusions

Goals

- Build a system for producing musical expectations based on the observation of musical audio
- The system has to be unsupervised and causal to respect cognitive constraints
- this enables to study the effect of exposure

A use case for musical sequence learning models

- what/when expectation task
- As a first step, we focus on constant tempo musical patterns
- Drum loops
- Monophonic Pitched Melodies

Background

- Prediction-driven listening [Ellis, Abdallah]
- Symbolic pitch sequences learning systems
- [Todd, Mozer, Tillmann, Eck \& Schmidhuber, Pearce \& Wiggins]
- Bayesian score following and accompaniment of audio signals
- [Raphael, Cemgil, Orio]
- Unsupervised learning and concatenative synthesis
- [Schwarz, Jehan]
- Improvisation systems
- [Pachet, Assayag, Dubnov, Cont]

System Design

Audio to Symbolic

Symbolic to Audio

Feature Extraction Module

Extracts on-the-fly the following features:

- Beats [Davis et al. 2005]
- Onsets (High frequency content based)
- meter description is not explicitly modeled
- Timbre Descriptors
- rough spectral shape (ZCR, SC)
- MFCC
- pitch (YIN-FFT, [Brossier 2004])
- Timbre descriptors can be computed on the onset frame (fast), or averaged over the IOI region

Feature Extraction Module: output

Onsets

Beats

Dimensionality Reduction Module

- On-line unsupervised clustering to create symbols for both temporal and timbre features
- Prior to this, we perform a bootstrap step
- Accumulates timbre features and beat-relative IOI
- We normalize the timbre
- GMM+EM grid, choose best number of components

Bootstrap GMM+EM grid

- Create GMM grid
- each row is an independent run
- for each row, each column is associated with a GMM with number of components $=1,2, \ldots, K_{\max }$
- Fit each GMM using EM
- Simple regularization procedure to avoid excessively low variances.
- For each model, compute information criterion
- BIC, AIC, AICc
- Get median of best K over each row

GMM Grid: Example (drums)

Timbre

IOI

Running state: Online K-Means

- For each incoming point
- Cluster assignment

$$
C(x)=\operatorname{argmin}_{1<j<K}\left\|x-\mu_{j}\right\|^{2}
$$

- Cluster mean update

$$
\Delta \mu_{j}=\eta\left(x-\mu_{j}\right)
$$

- η is the learning rate

Dimensionality Reduction Module: Output (drums)

Timbre Symbols

Clustered Inter-onset intervals (quarter duration)

Unclustered Inter-onset intervals (quarter duration
Time Symbols

Dimensionality Reduction Module: Output (sung melody)

Timbre Symbols

Clustered Inter-onset intervals (quarter duration)

Unclustered Inter-onset intervals (quarter duration

Time Symbols

Dimensionality Reduction Module: Output (sung melody)

Timbre Symbols

$$
\eta=0.9
$$

Clustered Inter-onset intervals (quarter duration)

Unclustered Inter-onset intervals (quarter duration

Time Symbols

Dimensionality Reduction Module: Output (sung melody)

Timbre Symbols
Time Symbols

Prediction By Partial Match [Cleary\&Witten, Pearce\&Wiggins]

- probability of next symbol given context sequence

$$
p\left(e_{i} \mid e_{(i-n)+1}^{i-1}\right)= \begin{cases}\alpha\left(e_{i} \mid e_{(i-n)+1}^{i-1}\right) & \text { if } c\left(e_{i} \mid e_{(i-n)+1}^{i-1}\right)>0 \\ \gamma\left(e_{(i-n)+1}^{i-1}\right) p\left(e_{i} \mid e_{(i-n)+2}^{i-1}\right) & \text { if } c\left(e_{i} \mid e_{(i-n)+1}^{i-1}\right)=0\end{cases}
$$

- α is computed based on the counts of a given symbol after the observed context
- γ controls the recursive backoff
- enables to integrate predictions based on lower order contexts when needed
- if symbol never seen before in any context: uniform distribution

Next Event Prediction Module: output

Evaluation

- Listening to looped patterns
- We compute a weighted F-Measure to compare transcription and expectation
- weights needed because unused clusters can appear

$$
W F M=\sum_{i=1}^{K_{t}} w_{i} F_{i}
$$

- The systems performs twice better than using random predictors

Evaluation: Drums and Sung Melody

- Drums: WFM histogram

- Drums: Depending of descriptor set

ZCR, SC	MFCC
$0.60(3.22,2.33)$	$0.69(1.50,2.42)$

- Sung Melodies

Excerpt	Folk.1	Folk.2	Folk.3
Exp.2	$0.08(7,4)$	$0.32(5,3)$	$0.24(5,3)$
Exp.4	$0.22(6,4)$	$0.34(6,3)$	$0.25(5,5)$
Exp.8	$0.64(7,5)$	$0.53(7,3)$	$0.37(5,2)$

Music Technology Group
IUA, UPF - Barcelona, 2007

Expectation Entropy

- PPM gives posterior distribution over possible next symbol
- We compute expectation entropy

$$
H(p)=-\sum_{K} p\left(e_{i}\right) \log _{2} p\left(e_{i}\right)
$$

Expectation Entropy

Music

Concatenative Synthesis

- [Schwarz, Jehan]
- For each predicted timbre symbol, concatenate in output stream a prototypical audio slice of this symbol having the predicted IOI length
- Examples
- Drums
- Melody

Discussion

- Bootstrapping is cheating
- Cheat more: define a timbre and timing distance based on a whole collection
- Bootstrap step run in parallel instead of once [Marxer]
- allows to track variations in the attended signal
- clusters can appear and disappear
- A less discrete system
- from hard to soft cluster assignment [McKay]
- work with transient regions instead of crisp onsets

Summary

- An on-line and unsupervised system for computing expectation in audio signals
- Can be applied to different kinds of monophonic musical signals
- But the sequential prediction system is purely symbolic and markov-chain based
- Expectation entropy may be used to mark temporal cues in the attended signal

Thanks

Technology

PPM

$$
\begin{gathered}
\gamma\left(e_{i} \mid e_{(i-n)+1}^{i-1}\right)=\frac{t\left(e_{(i-n)+1}^{i-1}\right)}{\sum_{K} c\left(e_{(i-n)+1}^{i-1}\right)+t\left(e_{(i-n)+1}^{i-1}\right)} \\
\alpha\left(e_{i} \mid e_{(i-n)+1}^{i-1}\right)=\frac{c\left(e_{i} \mid e_{(i-n)+1}^{i-1}\right)}{\sum_{K} c\left(e \mid e_{(i-n)+1}^{i-1}\right)+t\left(e_{(i-n)+1}^{i-1}\right)}
\end{gathered}
$$

