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Goals

 Build a system for producing musical expectations 
based on the observation of musical audio

 The system has to be unsupervised and causal to 
respect cognitive constraints
 this enables to study the effect of exposure

A use case for musical sequence learning models

 what/when expectation task
 As a first step, we focus on constant tempo musical 

patterns
 Drum loops
 Monophonic Pitched Melodies
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Background

 Prediction-driven listening [Ellis, Abdallah]
 Symbolic pitch sequences learning systems

 [Todd, Mozer, Tillmann, Eck & Schmidhuber, Pearce & 
Wiggins]

 Bayesian score following and accompaniment of 
audio signals
 [Raphael, Cemgil, Orio]

 Unsupervised learning and concatenative synthesis
 [Schwarz, Jehan]

 Improvisation systems
 [Pachet, Assayag, Dubnov, Cont]
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System Design
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Feature Extraction Module

Extracts on-the-fly the following features:
 Beats [Davis et al. 2005]
 Onsets (High frequency content based)

 meter description is not explicitly modeled

 Timbre Descriptors 
 rough spectral shape (ZCR, SC)
 MFCC
 pitch (YIN-FFT, [Brossier 2004])

 Timbre descriptors can be computed on the onset 
frame (fast), or averaged over the IOI region
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Feature Extraction Module: output

Onsets

Beats
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Dimensionality Reduction Module

 On-line unsupervised clustering to create symbols 
for both temporal and timbre features

 Prior to this, we perform a bootstrap step 
 Accumulates timbre features and beat-relative IOI
 We normalize the timbre 
 GMM+EM grid, choose best number of components
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Bootstrap GMM+EM grid

 Create GMM grid 
 each row is an independent run
 for each row, each column is associated with a GMM with 

number of components= 1, 2, ... , 

 Fit each GMM using EM
 Simple regularization procedure to avoid excessively low 

variances.

 For each model, compute information criterion
 BIC, AIC, AICc

 Get median of best K over each row

K max
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GMM Grid: Example (drums)

Timbre IOI
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Running state: Online K-Means

 For each incoming point
 Cluster assignment

 Cluster mean update

    is the learning rate
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Dimensionality Reduction Module: 
Output (drums)

Timbre Symbols Time Symbols 
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Dimensionality Reduction Module: 
Output (sung melody)

Timbre Symbols Time Symbols 
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Dimensionality Reduction Module: 
Output (sung melody)

Timbre Symbols Time Symbols 

=0.9
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Dimensionality Reduction Module: 
Output (sung melody)

Timbre Symbols Time Symbols 

=0.3
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Prediction By Partial Match 
[Cleary&Witten, Pearce&Wiggins]

 probability of next symbol given context sequence

   is computed based on the counts of a given symbol 
after the observed context

   controls the recursive backoff
 enables to integrate predictions based on lower order 

contexts when needed
 if symbol never seen before in any context: uniform 

distribution
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Next Event Prediction Module: output
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Evaluation

 Listening to looped patterns
 We compute a  weighted F-Measure to compare 

transcription and expectation
 weights needed because unused clusters can appear

 The systems performs twice better than using 
random predictors 
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Evaluation: Drums and Sung Melody 

 Drums: WFM histogram  Drums: Depending of 
descriptor set

 Sung Melodies
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Expectation Entropy

 PPM gives posterior distribution over possible next 
symbol

 We compute expectation entropy



Music Technology Group
IUA, UPF – Barcelona, 2007

Expectation Entropy
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Concatenative Synthesis

 [Schwarz, Jehan]
 For each predicted timbre symbol, concatenate in 

output stream a prototypical audio slice of this 
symbol having the predicted IOI length

 Examples
 Drums
 Melody
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Discussion

 Bootstrapping is cheating
 Cheat more: define a timbre and timing distance based on 

a whole collection
 Bootstrap step run in parallel instead of once [Marxer]

 allows to track variations in the attended signal
 clusters can appear and disappear 

 A less discrete system
 from hard to soft cluster assignment [McKay]
 work with transient regions instead of crisp onsets 
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Summary

 An on-line and unsupervised system for computing 
expectation in audio signals

 Can be applied to different kinds of monophonic 
musical signals

 But the sequential prediction system is purely 
symbolic and markov-chain based

 Expectation entropy may be used to mark temporal 
cues in the attended signal
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Thanks
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PPM


