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OverviewOverview

Li d l• Linear models.
• Parameter estimation.Parameter estimation.
• Linear in the parameters.
• Classification.

The nonlinear bits• The nonlinear bits.
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Linear modelsLinear models
• Linear model has general form• Linear model has general form
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iix xwhere     is the  th component of input     .

• Assume             and therefore      is the bias.
C t li d l

iix x
0 1x = 0w

• Can represent lines and planes.
• Should ALWAYS try simplest model first!
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Parameter estimationParameter estimation
• Least squares estimation• Least squares estimation.
• Choose parameters that minimise, SSE
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• Unique minimum…
• Optimum when noise is Gaussian

1i=

• Optimum when noise is Gaussian.
• Corresponds to maximum-likelihood estimate.
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Least squares cost functionLeast squares cost function
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Least squares parametersLeast squares parameters
Define the design matriDefine the design matrix
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⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥
M M O M

,1 ,1 N N mx x⎢ ⎥⎣ ⎦L

z w e= Φ +
Then

21 January 2008 Mathematics for Data Modelling: Linear Models



A bit of mathsA bit of maths
( ) ( )TSSE z w z w= −Φ −Φ( ) ( )SSE z w z wΦ Φ
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ExampleExample
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ExampleExample
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ExampleExample
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How can we generalise this?How can we generalise this?
Consider instead• Consider instead
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Wh i li f ti f th
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( )φ• Where           is a nonlinear function of the 

inputs.
( )ixφ

• Nonlinear transform of the inputs and then 
form a linear model.
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Linear in the parametersLinear in the parameters
• A nonlinear model that is often called• A nonlinear model that is often called 

linear.
• Can apply simple estimation to the 

parameters.p
• But… it is nonlinear in the basis functions.

Li i th t b t li• Linear in the parameters but nonlinear 
input-output relationship.
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Nonlinear mapping (regression)Nonlinear mapping (regression)
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Nonlinear mapping (regression)Nonlinear mapping (regression)
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Nonlinear mapping (regression)Nonlinear mapping (regression)
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Nonlinear mapping (regression)Nonlinear mapping (regression)
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Parameter estimationParameter estimation

D fi th d i t i• Define the design matrix

1 1 1( ) ( )x xφ φ⎡ ⎤L1 1 1( ) ( )mx xφ φ⎡ ⎤
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥

M O M

Then the optimal parameters given by
1( ) ( )N m Nx xφ φ⎢ ⎥⎣ ⎦L

• Then the optimal parameters given by
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ExampleExample
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ExampleExample
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ExampleExample
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Example – how does it work?Example – how does it work?
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Example – how does it work?Example – how does it work?
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Example – how does it work?Example – how does it work?
Add all these together To get the function estimate
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Example – when it all goes wrongExample when it all goes wrong
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Linear classificationLinear classification
How do we apply linear models to classificationHow do we apply linear models to classification –

output is now categorical?
• Discriminant analysis.
• Probit analysis.Probit analysis.
• Log-linear regression.
• Logistic regression.
Aim is to get a linear decision boundary.
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Logistic regressionLogistic regression
A regression model for Bernoulli distributed• A regression model for Bernoulli-distributed 
targets.

• Form the linear model
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Can we generalise it?Can we generalise it?

I t d f• Instead of
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Nonlinear mapping (classification)Nonlinear mapping (classification)
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Nonlinear mapping (classification)Nonlinear mapping (classification)
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Nonlinear mapping (classification)Nonlinear mapping (classification)
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Nonlinear mapping (classification)Nonlinear mapping (classification)
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Parameter estimationParameter estimation

M i lik lih d• Maximum likelihood.
• Maximise the probability of getting theMaximise the probability of getting the 

observed results given the parameters.
Alth h i i i d t• Although unique minimum need to use 
iterative techniques (no closed form 
solution).
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ExampleExample

21 January 2008 Mathematics for Data Modelling: Linear Models



ExampleExample
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ExampleExample
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ExampleExample
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Example – class probabilitiesExample – class probabilities
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ButBut…
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Basis function optimisationBasis function optimisation

N d t ti tNeed to estimate:
• Type of basis functions.Type of basis functions.
• Number of basis functions.
• Positions of basis functions.
These are nonlinear problems difficult!These are nonlinear problems – difficult!
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Types of basis functionsTypes of basis functions
• Usually choose a favourite!• Usually choose a favourite!
• Examples include:

{ }2 2Polynomials: 
Gaussians: 2
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Fourier:
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( ) sin cosx nx nxφ =Fourier:  
…

( ) sin ,cos ...x nx nxφ
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Number of basis functionsNumber of basis functions

H b i f ti ?• How many basis functions?
• Slowly increase number until overfit data.Slowly increase number until overfit data.
• Exploratory vs optimal.
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Positions of basis functionsPositions of basis functions
• This is really difficult!• This is really difficult!
• One easy possibility is to put one basis 

function on each data point.
• Uniform grid (but curse of dimensionality)Uniform grid (but curse of dimensionality).
• Advantage of global basis functions e.g. 

l i l d ’t d t ti ipolynomials – don’t need to optimise 
positions.
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Note on DataNote on Data

H h d t d d?How much data do we need?
• Enough to train the model?Enough to train the model?
• But how much is this?
• What about validating and testing the 

model?model?
• Need train, validate and test data!
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Concluding remarksConcluding remarks
• Always try the simplest possible model• Always try the simplest possible model 

first (e.g. linear).
• Can make nonlinear in the input but linear 

in the parameters.p
• But becomes nonlinear optimisation.

I l t / i lik lih d th• Is least squares/maximum likelihood the 
best way?
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