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OverviewOverview
• Metric spaces• Metric spaces
• Linear spaces
• Normed, inner product and Hilbert spaces

B t i ti• Best approximation
• Reproducing kernel Hilbert spacesp g p
• Approximation vs estimation
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SpacesSpaces
Define some space ΦDefine some space Φ
Points/elements in Φ denoted fi
What is Φ ?What is Φ ?
• Euclidean space
• Space of sines and cosines (Fourier)
• Space of bandlimited functions (Paley-Wiener)
• L2
• Can be a nonlinear space
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Metric spacesMetric spaces

P t t t Φ• Put some structure on our space Φ

Φ

f
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Metric spacesMetric spaces
Define the distance :d × → �F FDefine the distance                                 
•

:d × → �F F
1 2( , ) 0d f f ≥

• if and and only if1 2( , ) 0d f f =
1 2( , )f f

1 2f f=
( ) ( )d f f d f f•

•
1 2 2 1( , ) ( , )d f f d f f=
1 2 1 3 3 2( , ) ( , ) ( , )d f f d f f d f f≤ +

1f

1 2 1 3 3 2( , ) ( , ) ( , )f f f f f f
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Why are metric spaces important?Why are metric spaces important?

All t d fi th di t b t• Allow us to define the distance between 
functions

• Can then talk about best approximations
C l t h l i th• Completeness – no holes in the space

• We want to look at spaces that are veryWe want to look at spaces that are very 
similar to Euclidean space
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Linear spacesLinear spaces
Need two algebraic operations:Need two algebraic operations:
• Addition f3 = f1+f2:

• f1+f2 = f2+f1 and  f1+(f2 + f3)=( f1+f2) + f3 

• Multiplication by scalars f2 = αf1:
• α(f1+f2) = α f1+ α f2

• (α+β)f1 = αf1+βf1 

• α(βf1) = (αβ)f1

• 1·f1 = f1; 0·f1 = 0
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Linear spaces and basisLinear spaces and basis
• Set of f f f is linearly independent if• Set of f1, f2, …, fn is linearly independent if

α1 f1+ α2 f2 + …+ αn fn = 0
Holds only if each =0• Holds only if each αi =0.

• Finite dimensional if only n linearly independent 
elementselements

• Linear manifold: αf1+βf2 in Φ
B i f i Φ i th f• Basis: can express every f in Φ in the form

f = α1 f1+ α2 f2 + …+ αn fn
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BasisBasis
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Normed spacesNormed spaces
• Define the notion of the size of an element• Define the notion of the size of an element 

in Φ
• Norm || f ||

0,f ≥ 0 0f f= ⇔ =f f
f fα α=

f f f f≤
• Defines a metric

1 2 1 2f f f f+ ≤ +
( )1 2 1 2,d f f f f= −
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Algebraic and geometricAlgebraic and geometric

B d fi i th t i b d th• By defining the metric based on the norm 
we have combined the algebraic (metric) 
and geometric (linear, norm) properties.

• Algebraic the technical bits that we need• Algebraic – the technical bits that we need 
but are difficult!

• Geometric – the intuitive bits.
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Inner product spacesInner product spaces
• Linear space with an inner product• Linear space with an inner product

, : F F⋅ ⋅ × → �

1 2 2 11. , ,

2

f f f f

f f f f f f fα α α α

=

+ = +1 1 2 2 3 1 1 2 23 3
2. , , ,

3. , 0

f f f f f f f

f f

α α α α+ = +

≥ with equality iff f = 0
• Define the norm as

,f f q y f

f f f
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Hilbert spacesHilbert spaces
• These “look like” Euclidean space• These look like  Euclidean space.
• An inner product space which is complete 

with respect to the metric defined from the 
inner product is called a Hilbert space.p p

• In simple terms they have all the nice 
mathematical properties we need – somathematical properties we need – so 
don’t worry about the complicated bits.
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Best approximationBest approximation

Φ f

Η f̂Η f
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Best approximationBest approximation

F i f i Hilb t Φ d• For any given f in a Hilbert space Φ and a 
closed subspace                there exists a ⊂H F

ˆunique best approximation    to f out of Η.
• In fact ⊥= ⊕F= H H

f

• In fact
• i.e. 

= ⊕F= H H
ˆf f− ⊥ H
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Best approximationBest approximation

A Η i fi it di i l ith b i• Assume Η is finite dimensional with basis
{ }1 2, , , mk k kK

• i.e. 
{ }1 2, , , m

1 1 2 2
ˆ

m mf k k kα α α= + + +L

• gives m conditions (i=1,…,m)  ˆf f− ⊥ H
0k f k k kα α α = or1 1 2 2, 0i m mk f k k kα α α− − − − =L

1 1 2 2, , , , 0i i i m i mk f k k k k k kα α α− − − − =L

or
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Reproducing kernel Hilbert spacesReproducing kernel Hilbert spaces 
(RKHS)

A ti l l f Hilb t• A particular class of Hilbert space very 
important in machine learning.

• Splines, kernel machines, support vector 
machines neural networks Gaussianmachines, neural networks, Gaussian 
processes, time series analysis, 
b dli it d i lbandlimited signals…
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RKHSRKHS

Hilb t ith t t• Hilbert space with even more structure.
• Not worry about technical details here.Not worry about technical details here.
• Main properties:

• Observations:
•

,i iy k f=
( ), ,i j i jk k k x x=

• k are positive definite functions 
( ), ,i j i jk k k x x
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RKHS approximationRKHS approximation
m conditions become:

( ) ( ) ( )1 1 2 2, , , 0i i i m i my k x x k x x k x xα α α− − − − =L

1K yα −=
Can then estimate the parameters using:

y
In practise can be ill-conditioned/noise on the data so 
minimise: 2m

1

( ) 2

1

ˆ ( ) , 0
m

i i
i

f x z fλ λ
=

− + ≥∑
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Approximation vs estimationApproximation vs estimation

Hypothesis
spaceBest possible

Estimate

Best possible
estimate

Target
space

True
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