Applications of Machine Learning to the Game of Go

David Stern

Applied Games Group Microsoft Research Cambridge

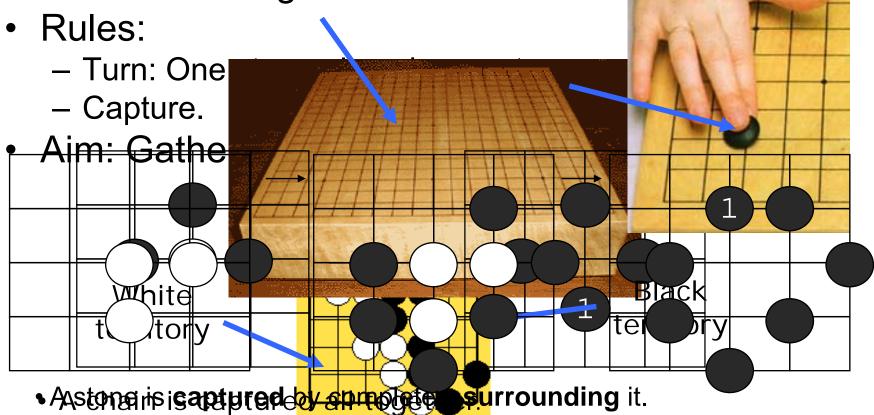
(working with Thore Graepel, Ralf Herbrich, David MacKay)

Contents

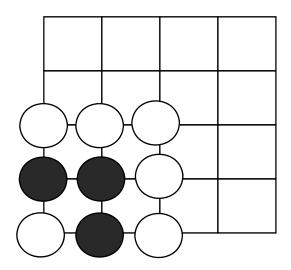
- The Game of Go
- Uncertainty in Go
- Move Prediction
- Territory Prediction
- Monte Carlo Go

The Game of Go

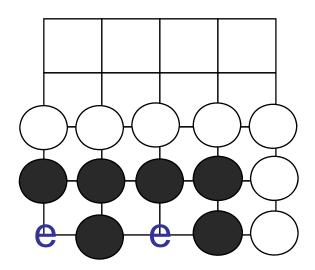
- Started about 4000 years ago in ancient China.
- About 60 million players worldwide.
- 2 Players: Black and White.
- Board: 19×19 grid.



One eye = death



Two eyes = life

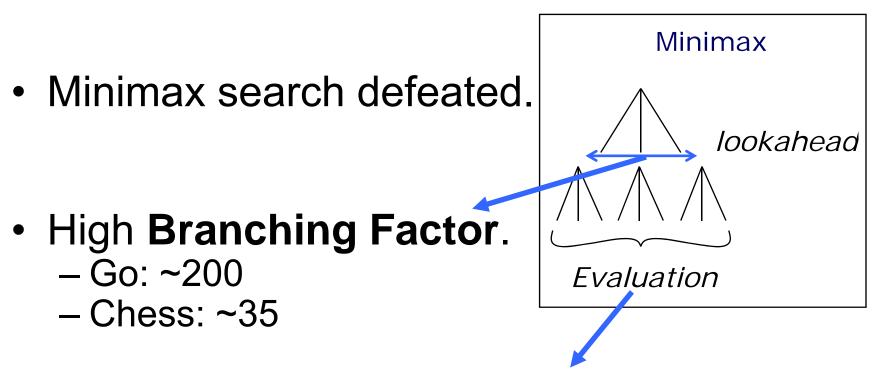


Computer Go

 5th November 1997: Gary Kasparov beaten by Deep Blue.

- Best Go programs cannot beat amateurs.
- Go recognised as grand challenge for AI.
- Müller, M. (2002). Computer Go. Artificial Intelligence, 134.

Computer Go



- Complex Position Evaluation.
 - Stone's value derived from configuration of surrounding stones.

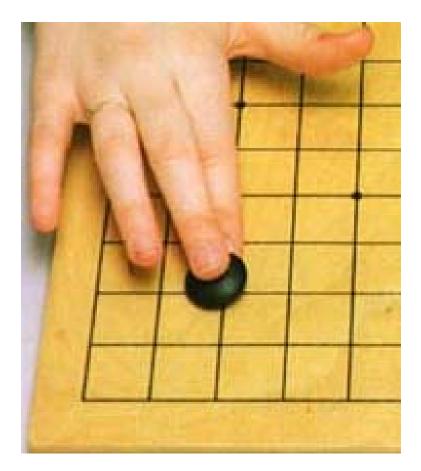
Use of Knowledge in Computer Go

- Trade off between search and knowledge.
- Most current Go programs use hand-coded knowledge.
 - 1. Slow knowledge acquisition.
 - 2. Tuning hand-crafted heuristics difficult.
- Previous approaches to automated knowledge acquisition:
 - Neural Networks (Erik van der Werf et al., 2002).
 - Exact pattern matching (Frank de Groot, 2005), (Bouzy, 2002)

Uncertainty in Go

- Go is game of perfect information.
- Complexity of game tree + limited computer speed → uncertainty.
- 味 'aji' = 'taste'.
- Represent uncertainty using probabilities.

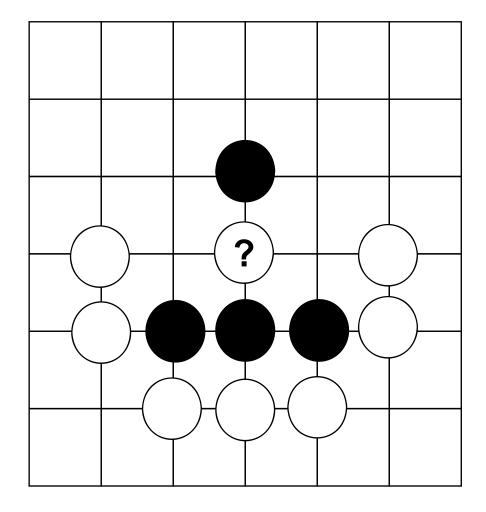
Move Prediction Learning from Expert Game Records

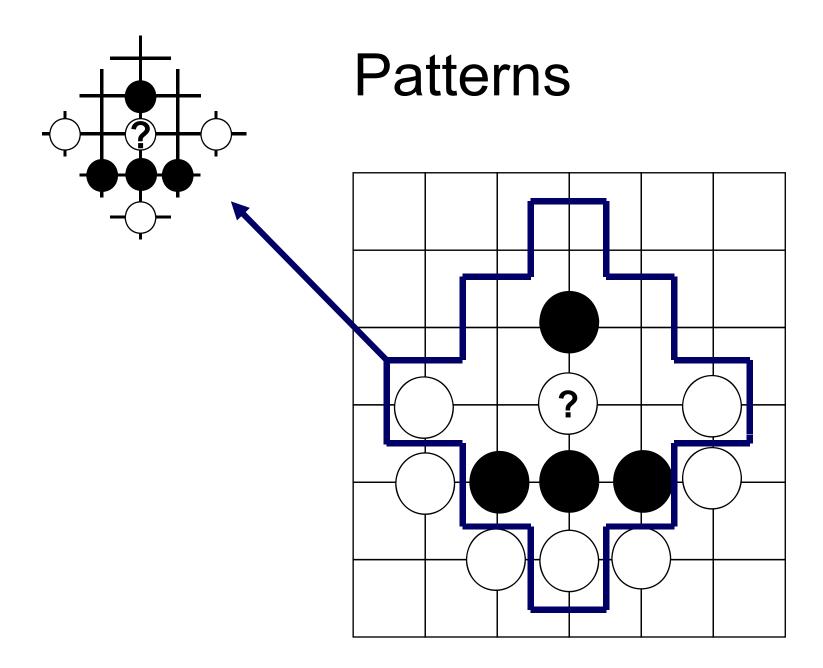


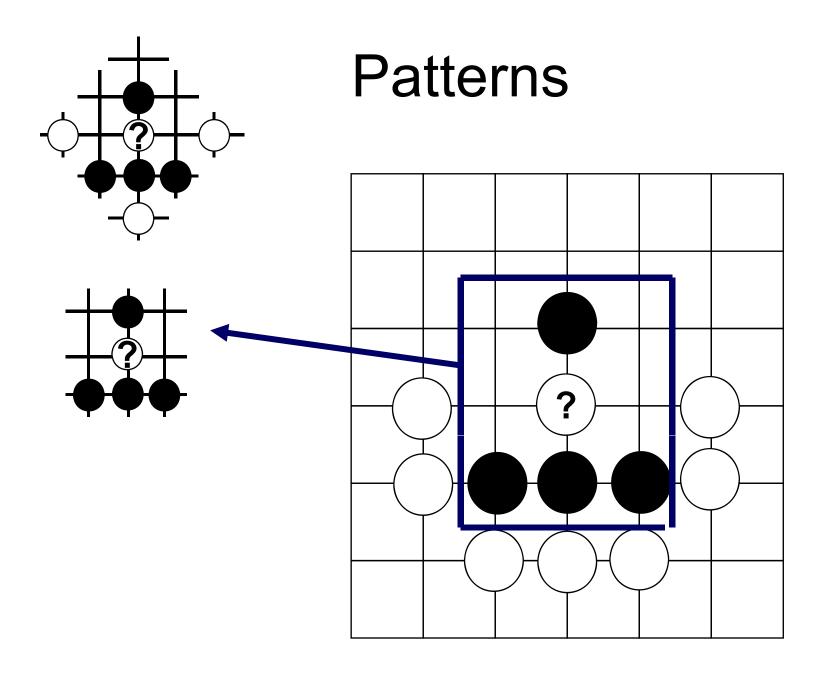
Pattern Matching for Move Prediction

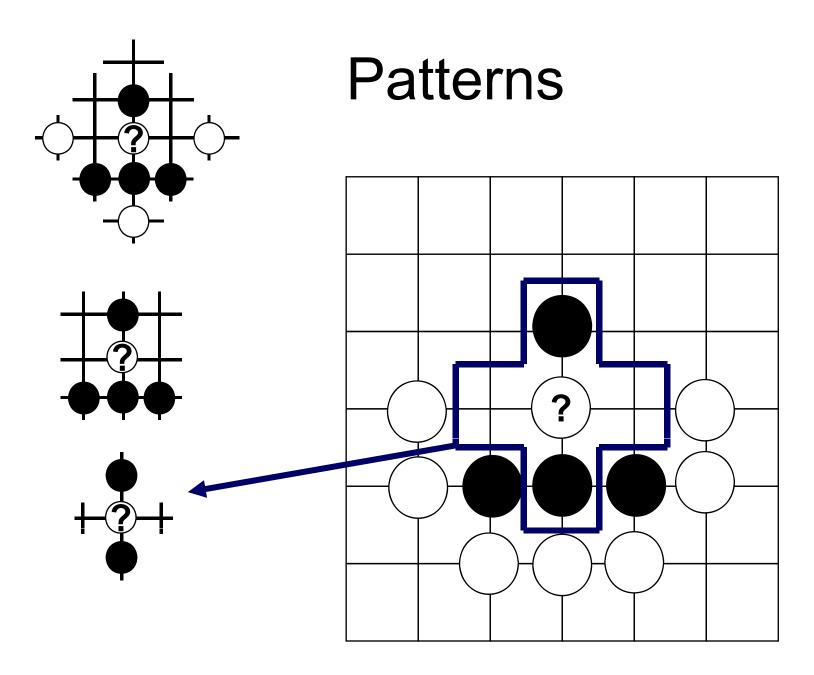
- Move associated with a set of *patterns*.
 - Exact arrangement of stones.
 - Centred on proposed move.
- Sequence of nested templates.

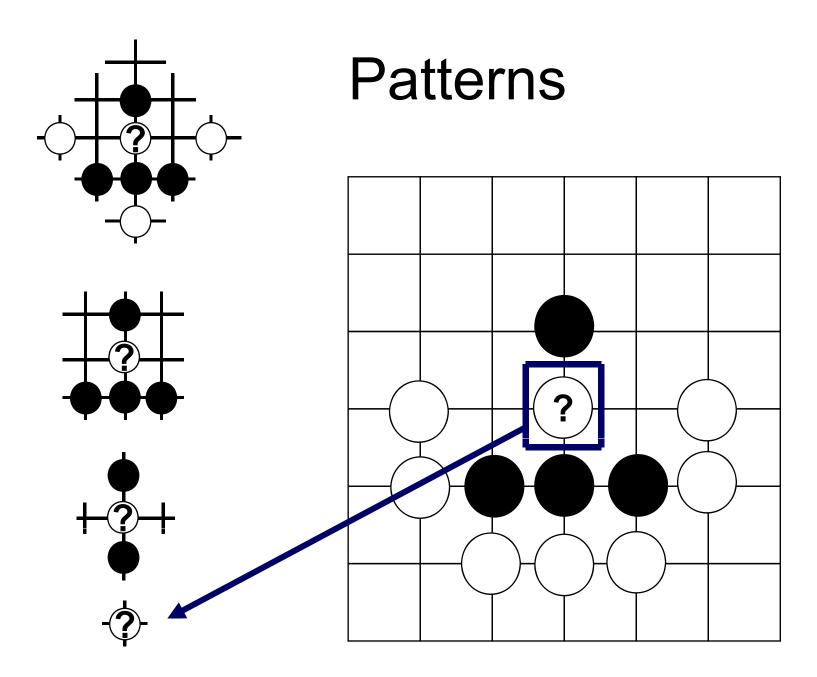
Patterns

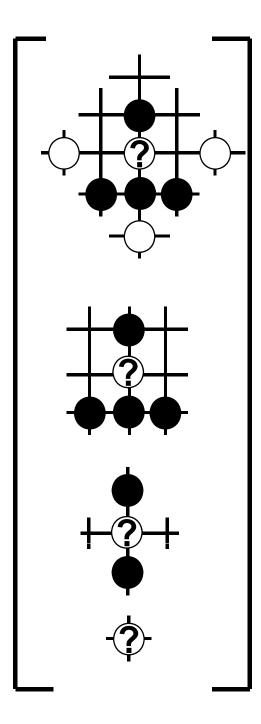




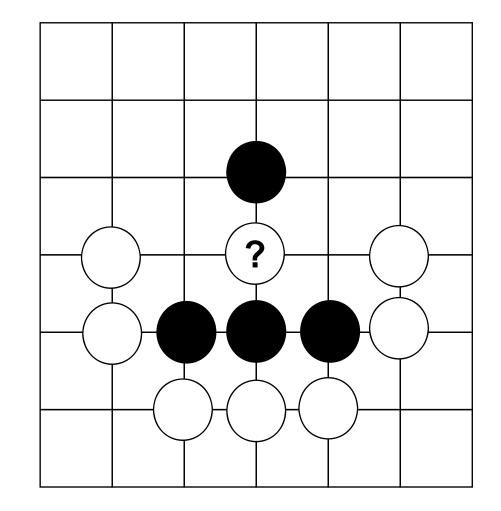


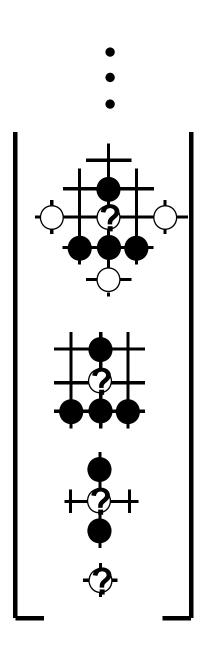






Patterns



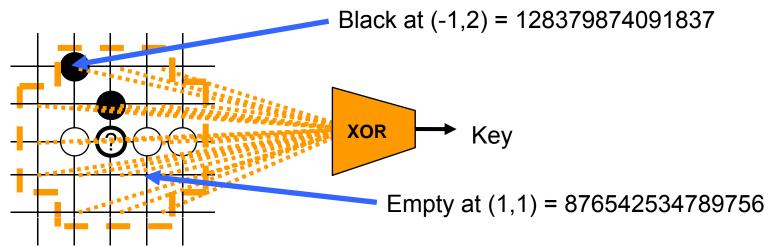


Patterns

- 13 Pattern Sizes
 - Smallest is vertex only.
 - Biggest is full board.

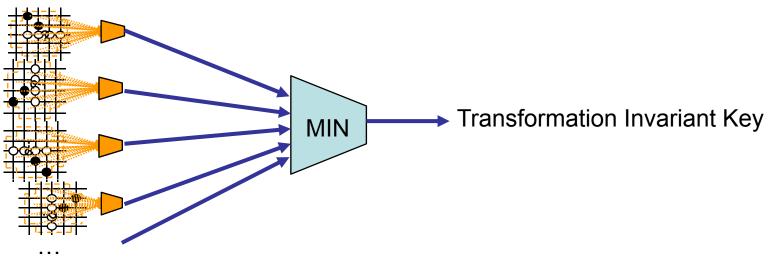
Pattern Matching

- Pattern information stored in hash table.
 - Constant time access.
 - No need to store patterns explicitly.
- Need rapid incremental hash function.
 - Commutative.
 - Reversible.
- 64 bit random numbers for each template vertex: One for each of {black, white, empty, off}.
- Combine with XOR (Zobrist, 1970).



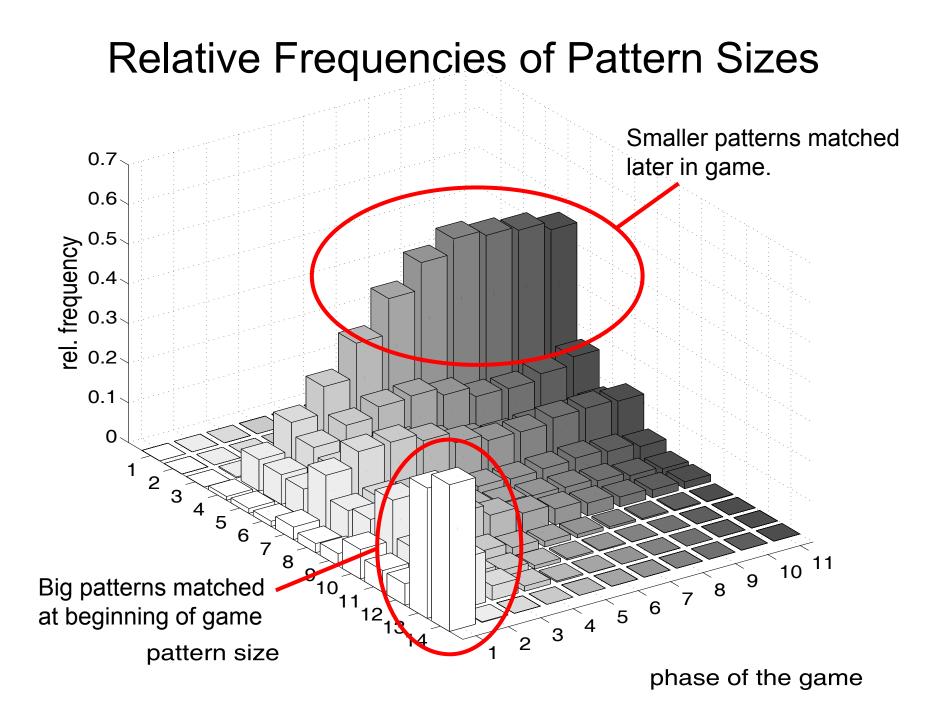
Pattern Hash Key

- Pattern information stored in hash table.
 - Access in constant time.
 - No need to store patterns explicitly.
- Need rapid incremental hash function.
 - Commutative.
 - Reversible.
- 64 bit random numbers for each template vertex: One for each of {black, white, empty, off}.
- Combine with XOR (Zobrist, 1970).
- Min of transformed patterns gives invariance.



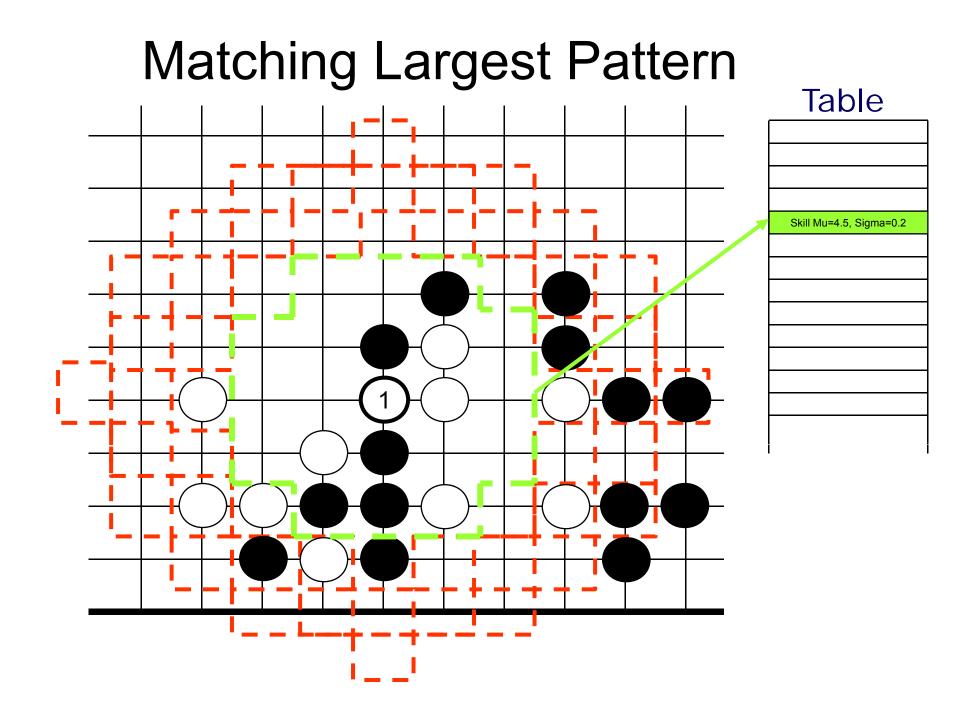
Harvesting

- Automatically Harvest from Game Records.
- 180,000 games × 250 moves × 13 pattern sizes…
 - ... gives 600 million potential patterns.
- Need to limit number stored.
 - Space.
 - Generalisation.
- Keep all patterns played more than *n* times.
- Bloom filter. Approximate test for set membership with minimal memory footprint. (Bloom, 1970).



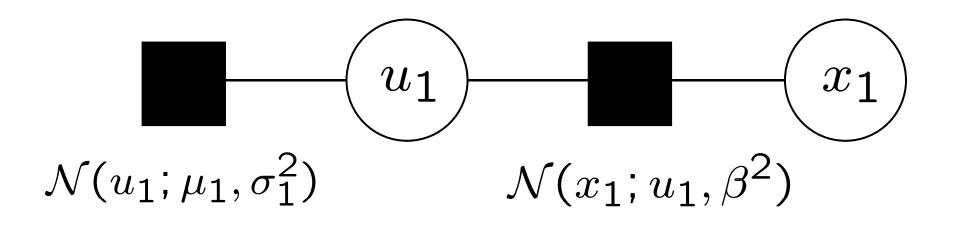
Training

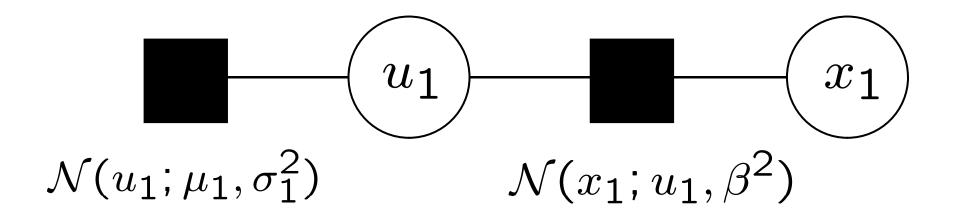
- First Phase: Harvest
- Second Phase: Training
- Use same games for both.
- Represent move by largest pattern only.

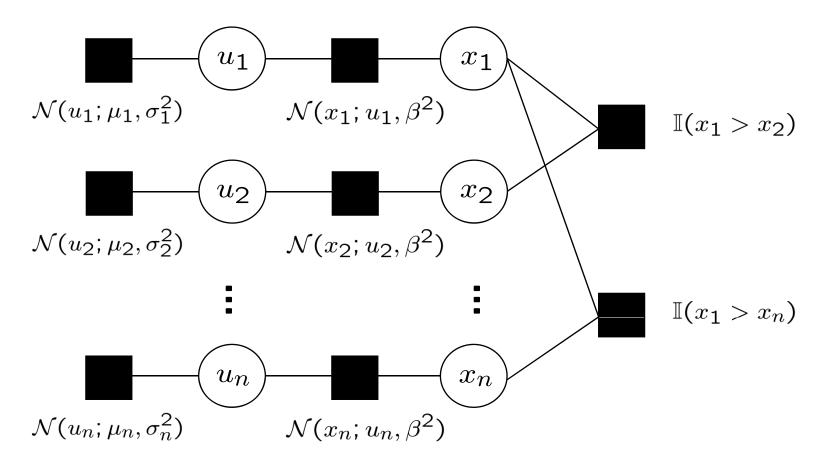


- Pattern value:
- Latent urgency:

$$u_1 \sim \mathcal{N}(u_1; \mu_1, \sigma_1^2)$$
$$x_1 \sim \mathcal{N}(x_1; u_1, \beta^2)$$

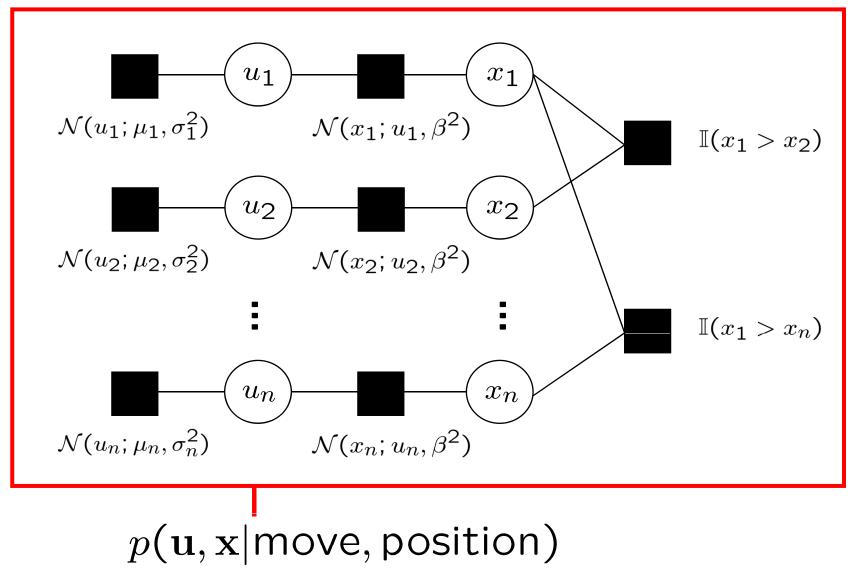


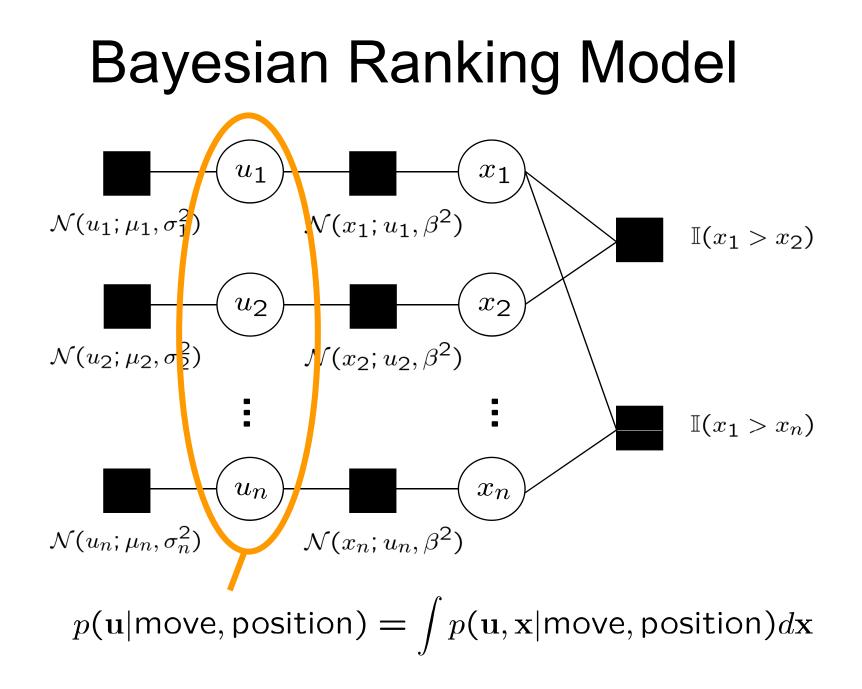




Training Example:

- Chosen move (pattern).
- Set of moves (patterns) not chosen.



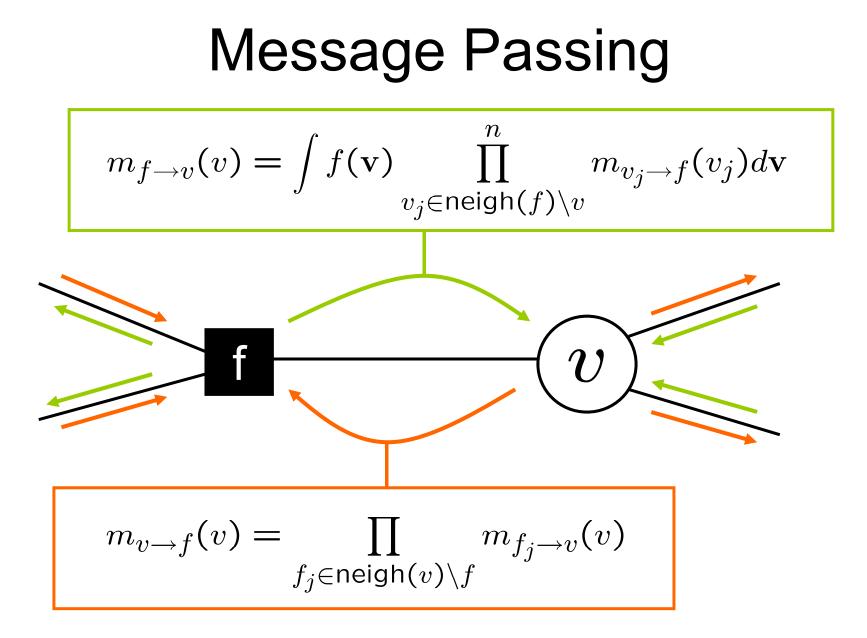


Online Learning from Expert Games

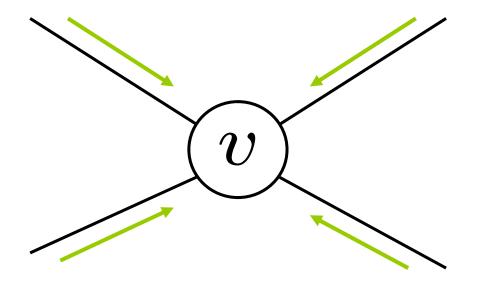
- Training Example:
 - Chosen move (pattern).
 - Set of moves (patterns) not chosen.
- Posterior:

 $p(\mathbf{u}|\text{move}, \text{position}) = \int p(\mathbf{u}, \mathbf{x}|\text{move}, \text{position})d\mathbf{x}$

- Approximate (Gaussian) posterior determined by Gaussian message passing.
- Online Learning (Assumed Density Filtering):
 - After each training example we have new $\mu_i\,$ and $\,\sigma_i\,$ for each pattern.
 - Replace values and go to next position.



Marginal Calculation



 $p(v) = \prod_{k \to v} m_{f_k \to v}(v)$ $f_k \in \operatorname{neigh}(v)$

Gaussian Message Passing

- All messages Gaussian!
- Most factors Gaussian.
- Messages from 'ordering' factors are approximated:
 - Expectation propagation.
- True Marginal Distribution:

$$p(v_i) = m_{f_k \to v_i}(v_i) \cdot m_{v_i \to f_k}(v_i)$$

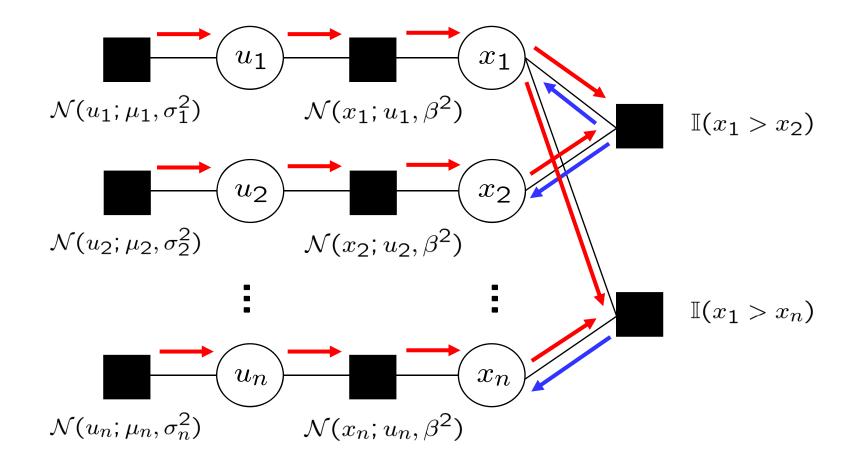
• Approximation:

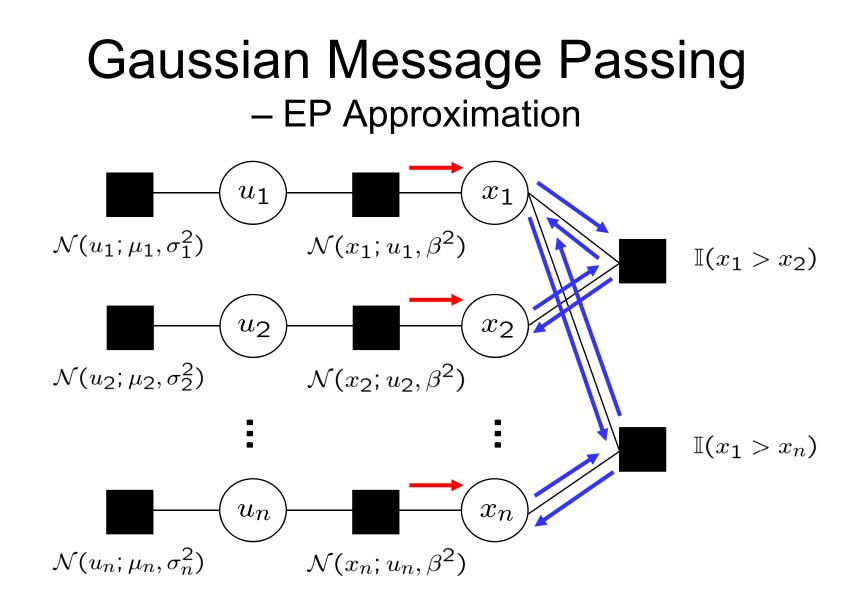
$$q(v_i) = \hat{m}_{f_k \to v_i}(v_i) \cdot m_{v_i \to f_k}(v_i)$$

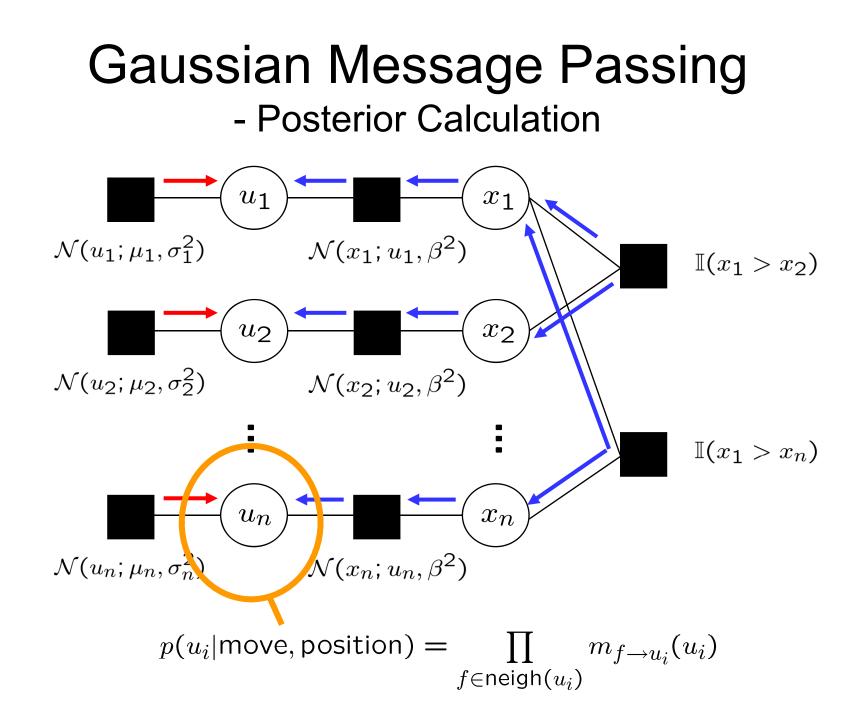
• Moment Match:

$$\hat{m}_{f_k \to v_i}(v_i) = \frac{\mathsf{MM}\left[m_{f_k \to v_i}(v_i) \cdot m_{v_i \to f_k}(v_i)\right]}{m_{v_i \to f_k}(v_i)}$$

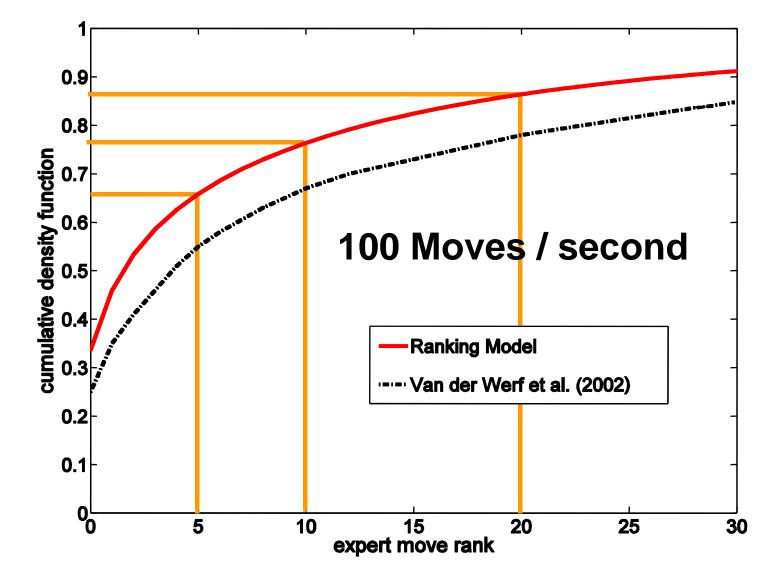
Gaussian Message Passing



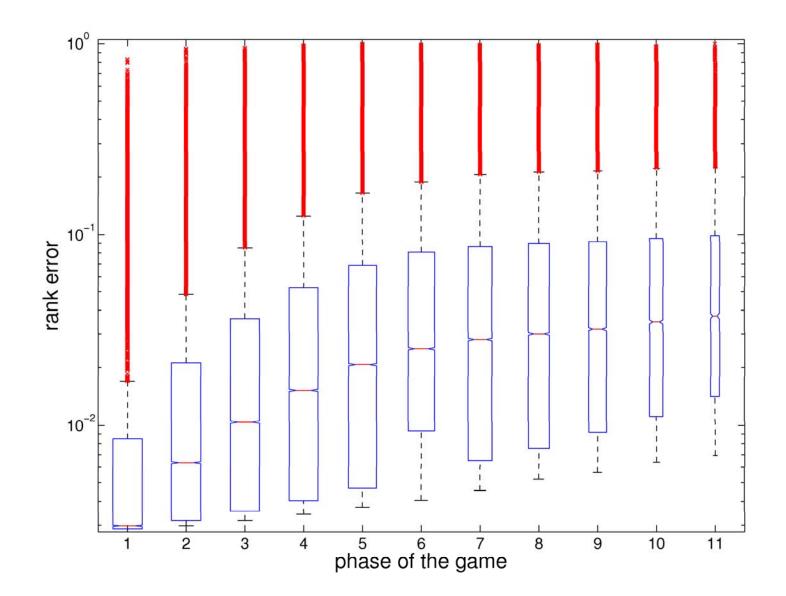




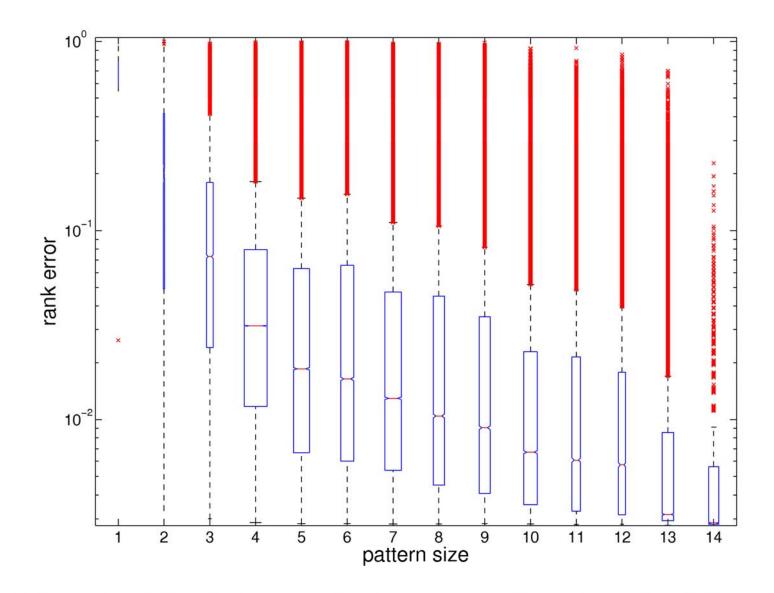
Move Prediction Performance



Rank Error vs Game Phase

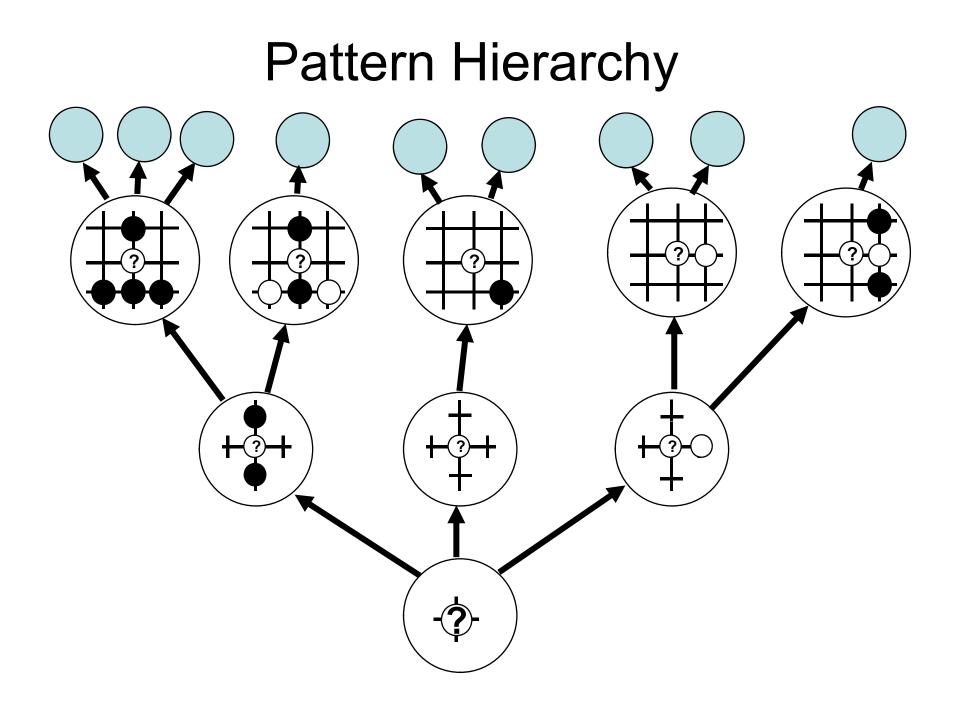


Rank Error vs Pattern Size



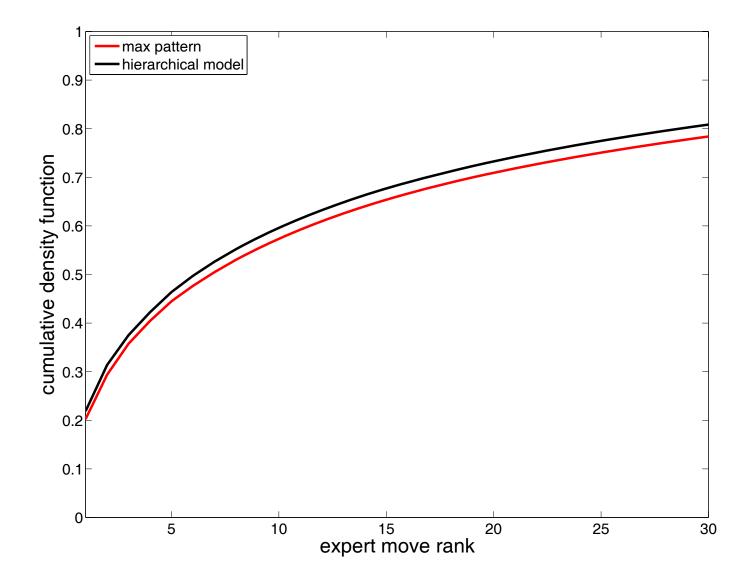
Hierarchical Gaussian Model of Move Values

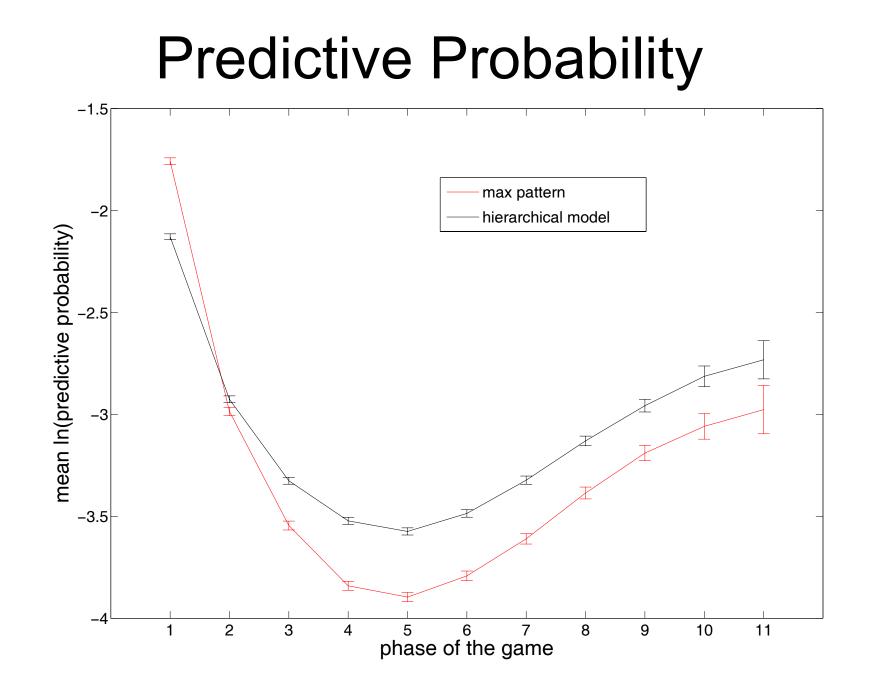
- Use all patterns that match not just biggest.
 - Evidence from larger pattern should dominate small pattern at same location.
 - However big patterns seen less frequently.
- Hierarchical Model of move values.



Hierarchical Gaussian Model ? y_{02} (y_{01}) **y**40 y_{31} y_{10} y_{30} y_{20} *y*21 x_{23} x_{24} x_{22} x_{21} x_{20} *x*₁₂ x_{10} x_{11} $p(x_{10}|x_{00})$ $= \mathcal{N}(x_{10}; x_{00}, \beta_0^2)$ $(x_{00})_{p(x_{00})} = \mathcal{N}(x_{00}; \mu_0, \sigma_0^2)$

Move Prediction Performance

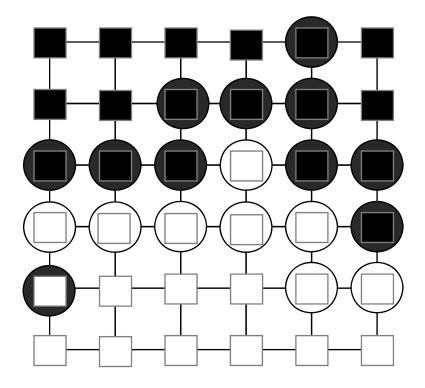




Territory Prediction

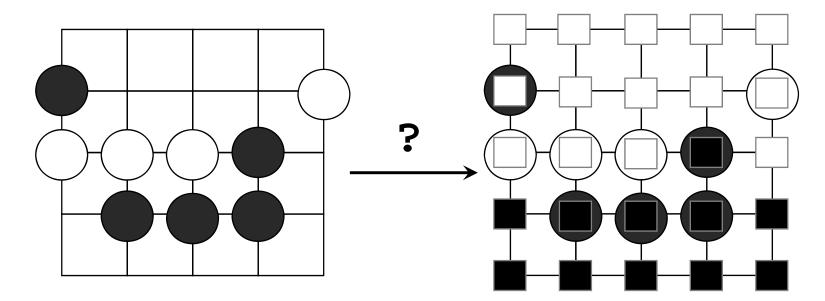
Territory

- 1. Empty intersections surrounded.
- 2. The stones themselves (Chinese method)

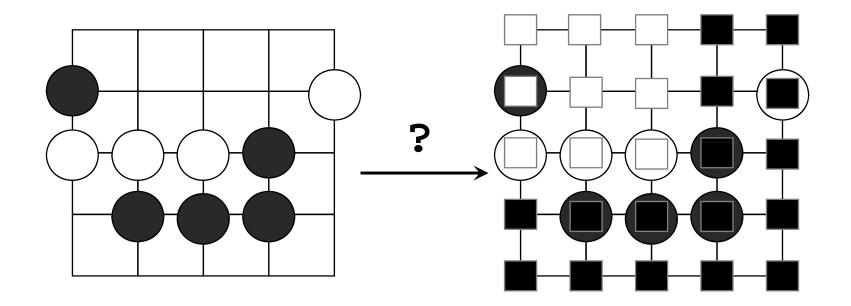


Go Position

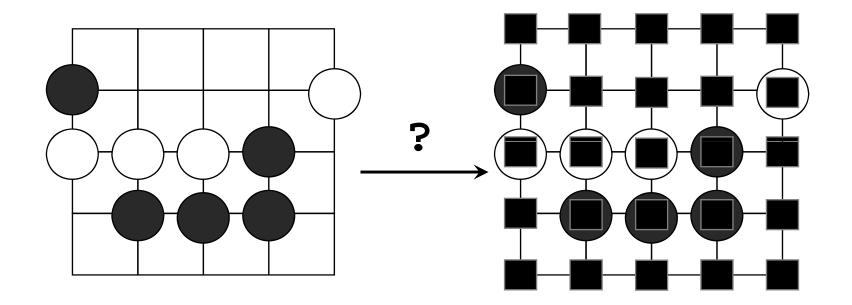
Territory Hypothesis 1



Territory Hypothesis 2



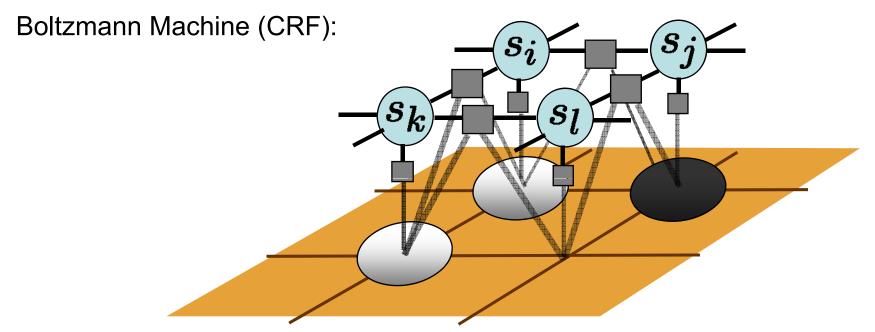
Territory Hypothesis 3

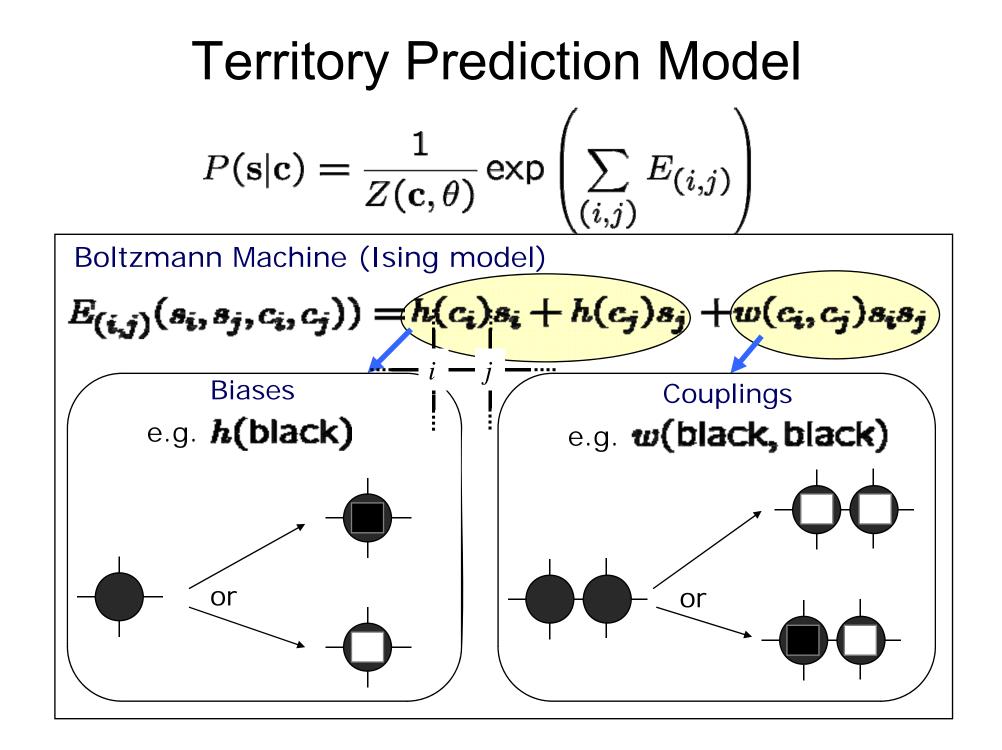


- Board Position: $\mathbf{c} \in \{ black, white, empty \}^N$
- Territory Outcome: $\mathbf{s} \in \{+1, -1\}^N$
- Model Distribution: $P(\mathbf{s}|\mathbf{c})$

٠

• E(Black Score) = $\sum_{i} \langle s_i \rangle_{P(\mathbf{s}|\mathbf{c})}$





Game Records

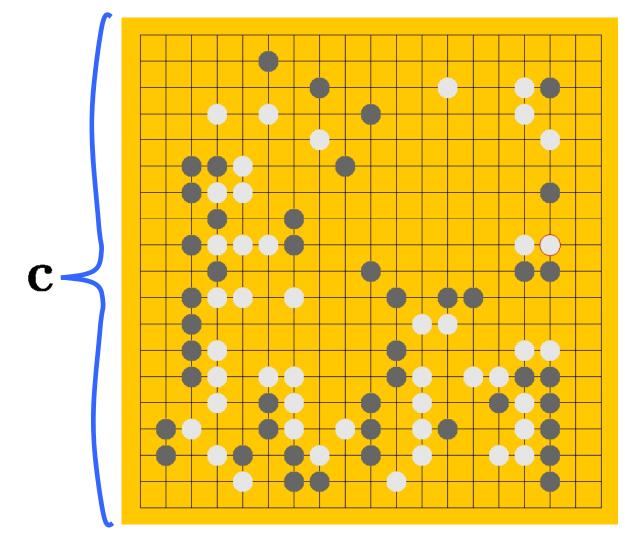
- 1,000,000 expert games.
 - Some labelled with final territory outcome.
- Training Data is pair of game position, C_i , + territory outcome, S_i.
- Maximise Log-Likelihood:

$$\sum_i \ln P(\mathbf{s}_i | \mathbf{c}_i, \mathbf{w})$$

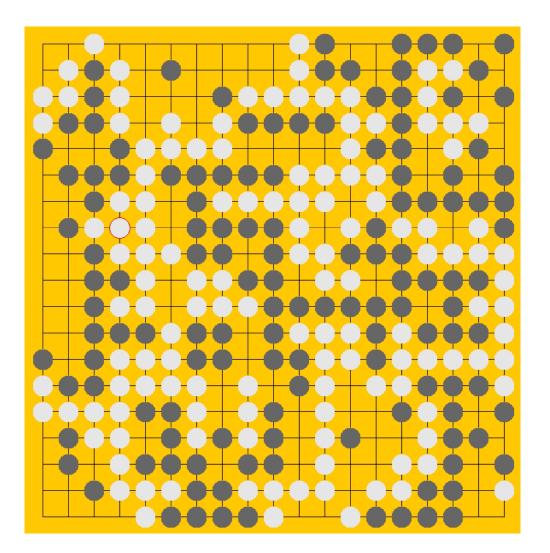
• Inference by Swendsen-Wang sampling

1000,000 Expert Games...

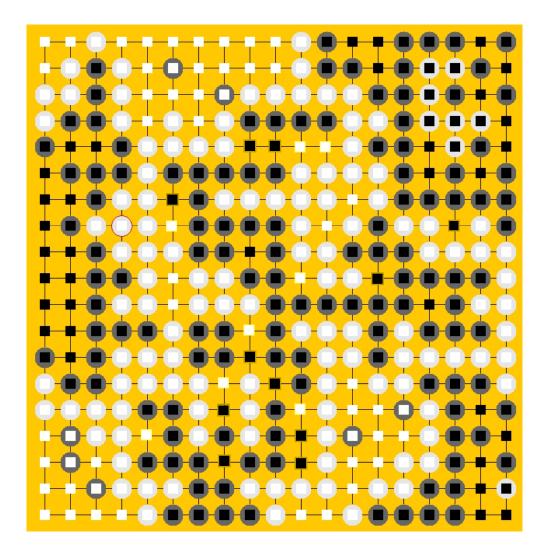
So Yokoku [6d] (black) -VS- (white) [9d] Kato Masao



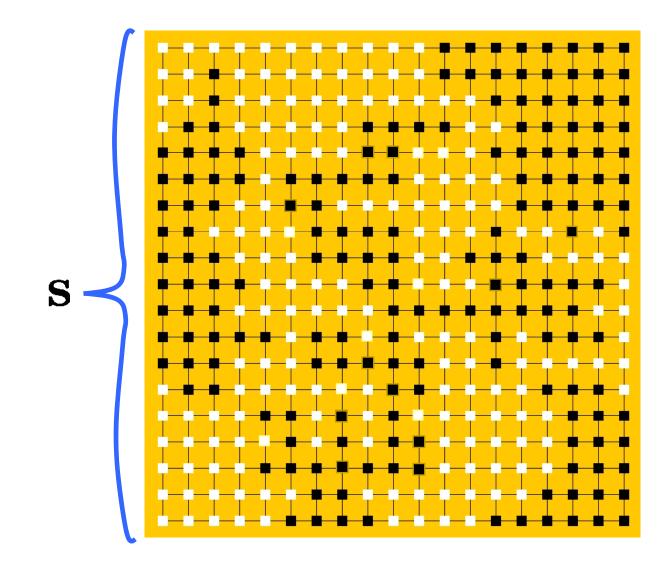
Final Position



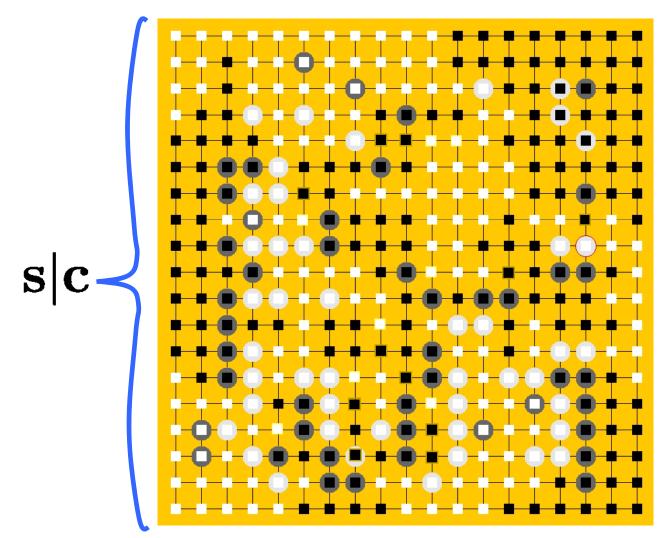
Final Position + Territory



Final Territory Outcome

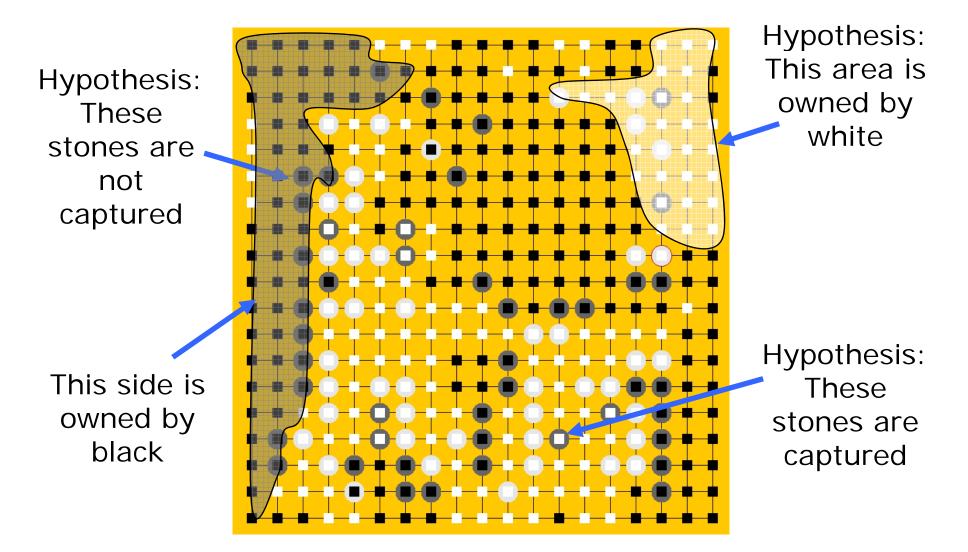


Position + Final Territory Train CRF by Maximum Likelihood



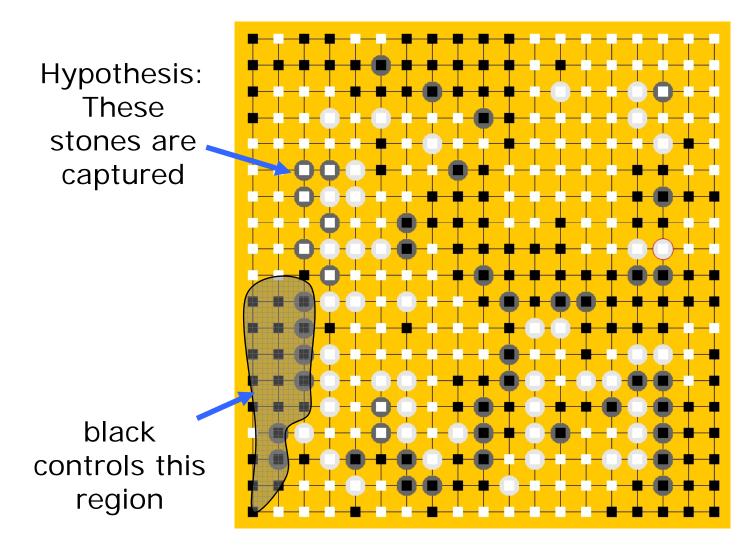
Position + Boltzmann Sample

(Generated by Swendsen-Wang)

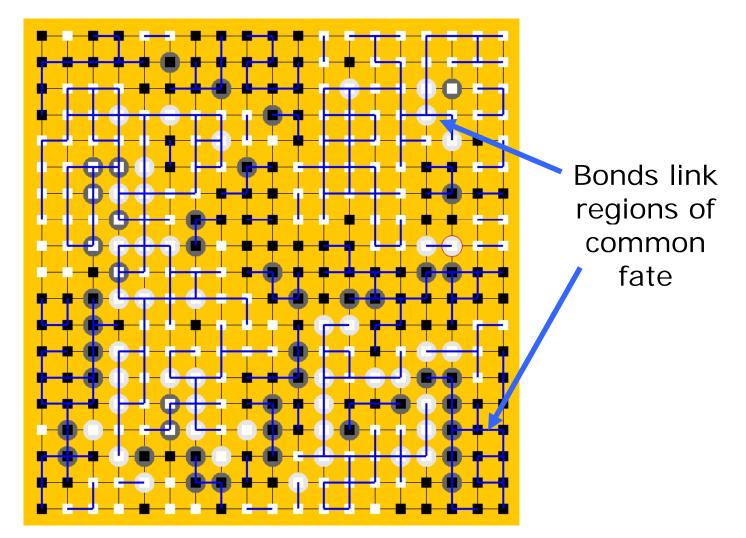


Position + Boltzmann Sample

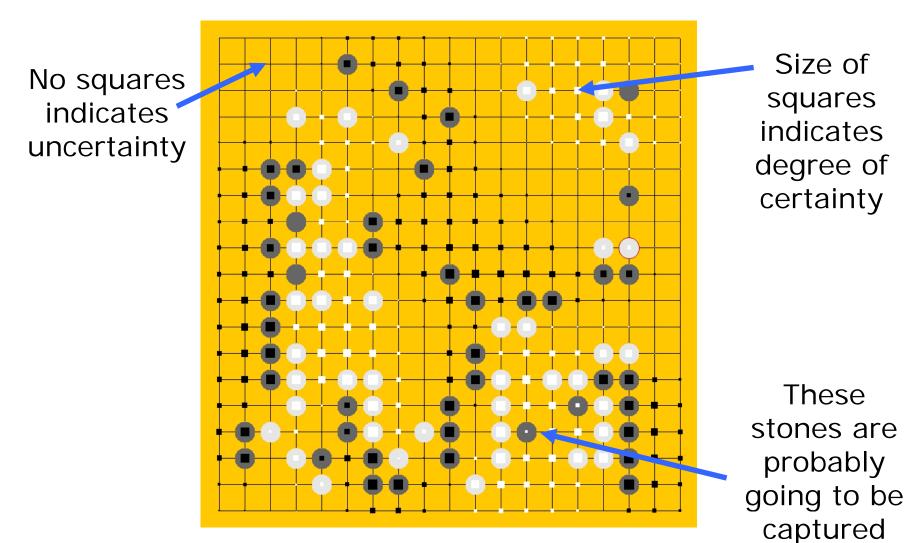
(Generated by Swendsen-Wang)



Sample with Swendsen-Wang Clusters Shown

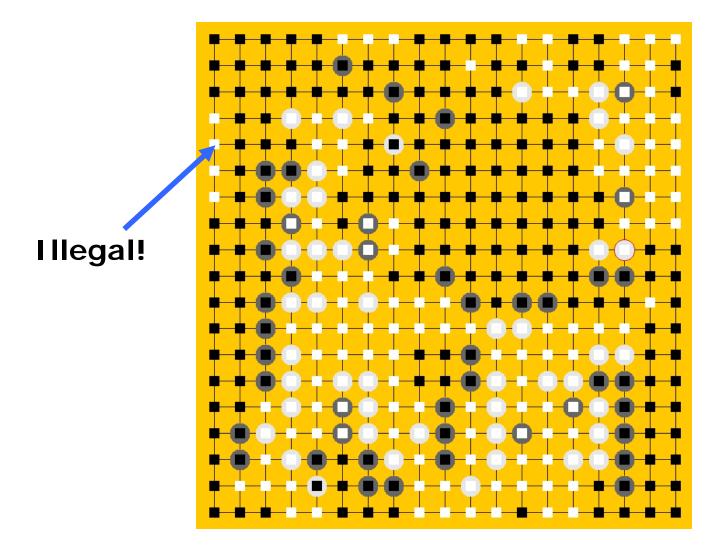


Boltzmann Machine – Expectation over Swendsen-Wang Samples



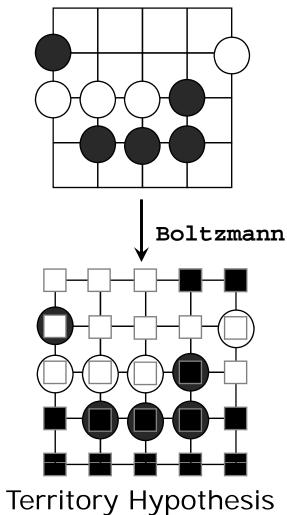
Position + Boltzmann Sample

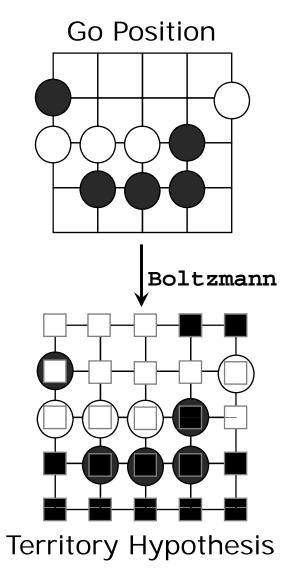
(Generated by Swendsen-Wang)

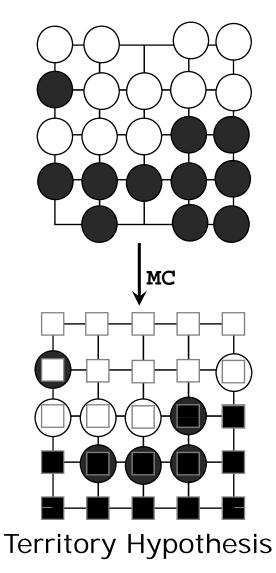


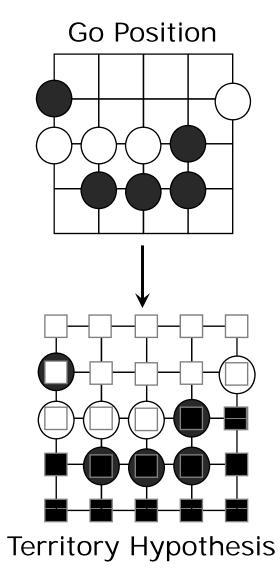
Monte Carlo Go (work in progress)

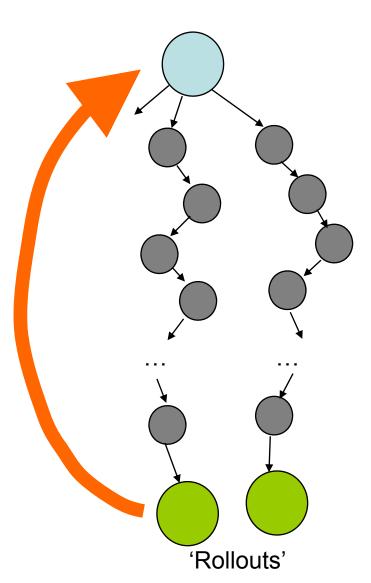
Go Position







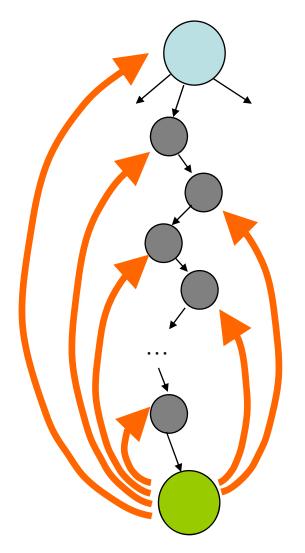




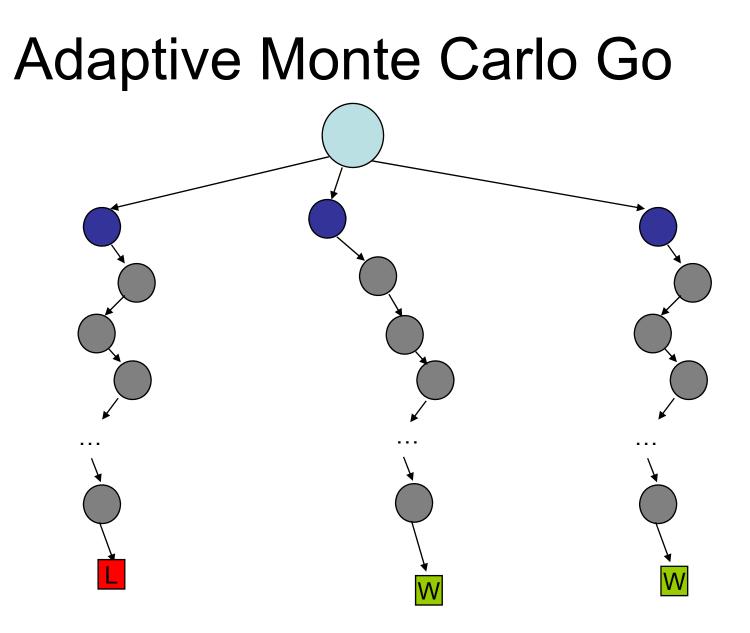
- 'Rollout' or 'Playout'
 - Complete game from current position to end.
 - Not fill in own eyes.
 - Score at final position easily calculated.
- 1 sample = 1 rollout
- Brugmann's Monte Carlo Go (MC)
 - For each available move m sample s rollouts.
 - At each position, moves selected uniformly at random.

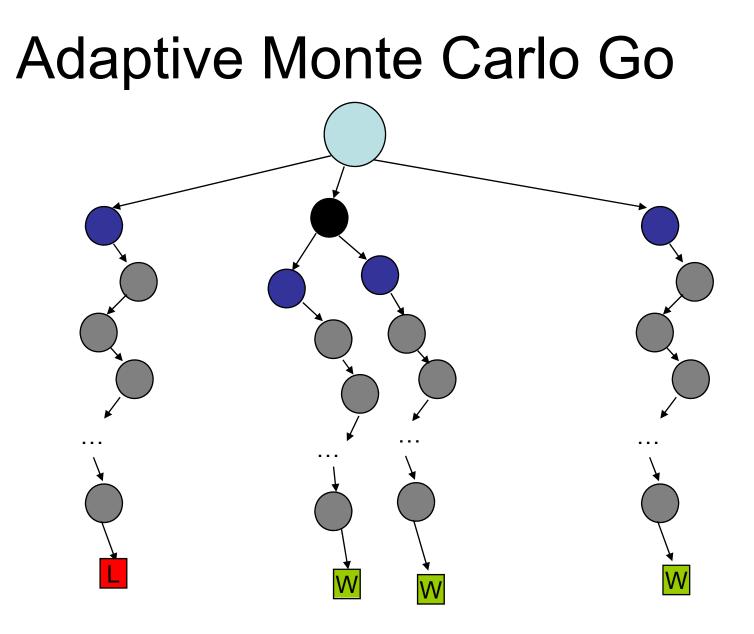
– Rollout Value:
$$X_{m,i} \in \{1,0\}$$
 (win or loss)
– Move Value: $\overline{X}_m = rac{1}{s} \sum_i X_{m,i}$

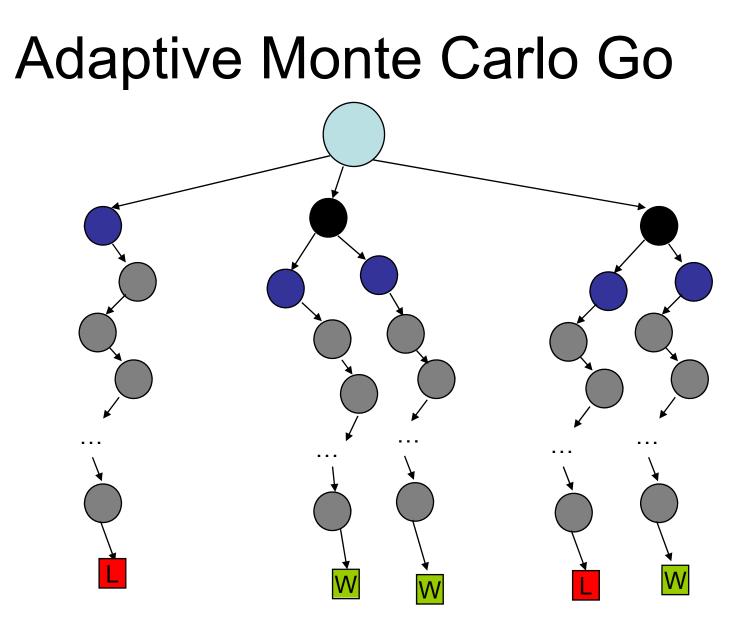
Adaptive Monte Carlo Planning

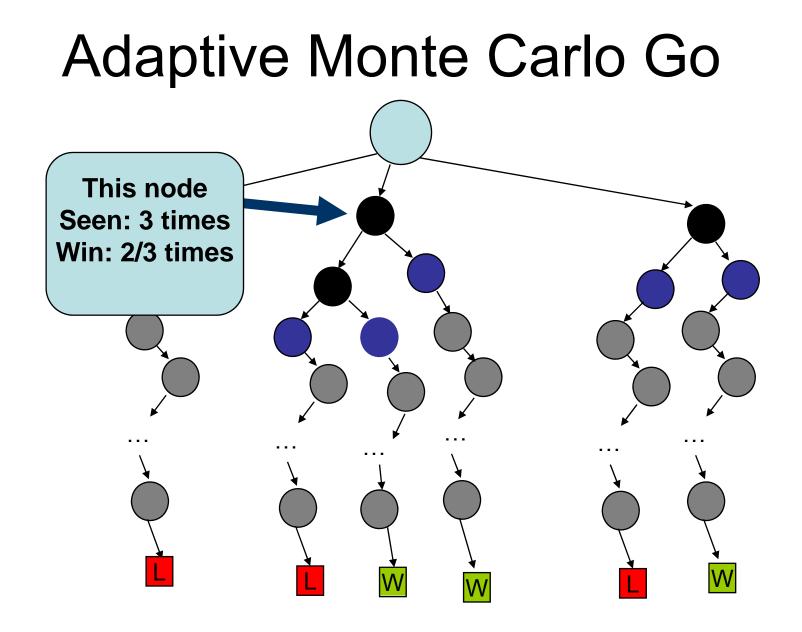


- Update values of all positions in rollout.
 - Store value (distribution) for each node.
 - Store tree in memory.
- Bootstrap policy.
 - UCT.
 - Strong Play on small boards
 - E.g. 'MoGo' (Silvain Gelly)

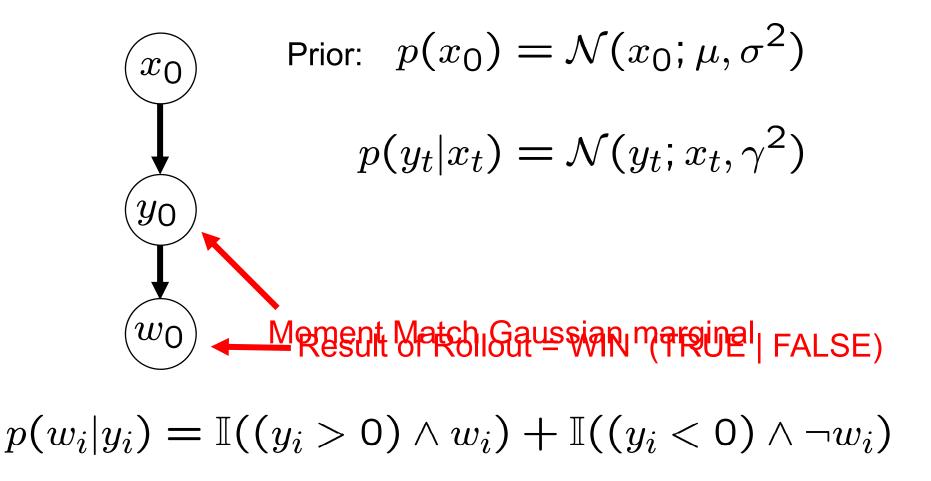






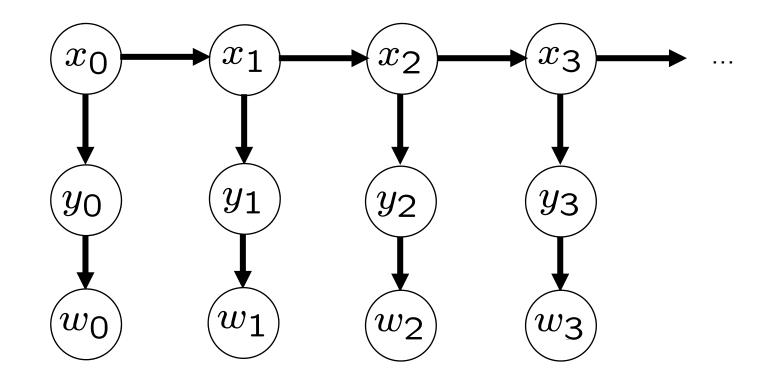


Bayesian Model For Policy



'Bayesian' Adaptive MC

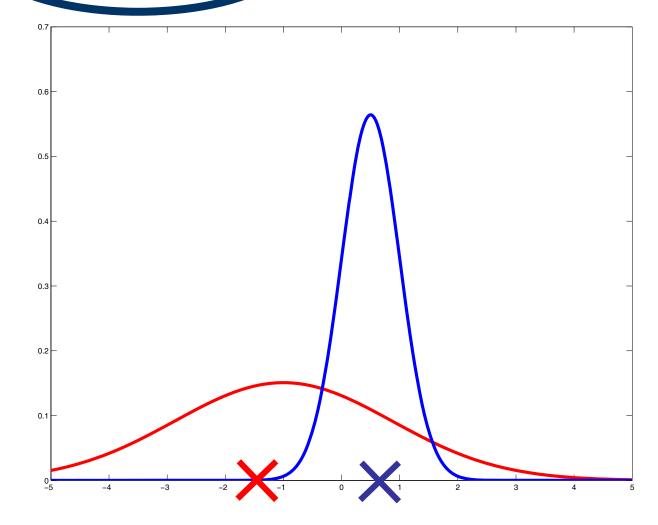
 $p(x_t|x_{t-1}) = \mathcal{N}(x_t; x_{t-1}, \tau^2)$

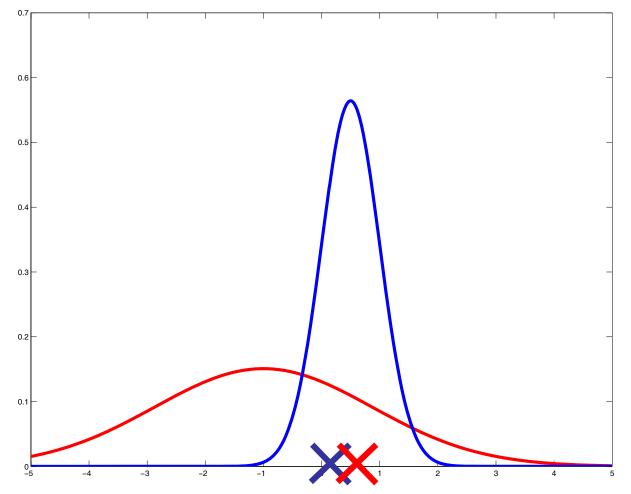


'Bayesian' Adaptive MC (BMC)

- Policy:
 - Sample from the distribution for each available move.
 - Pick best.
- Exploitation vs Exploration
 - Automatically adapted.

Exploitation vs Exploration

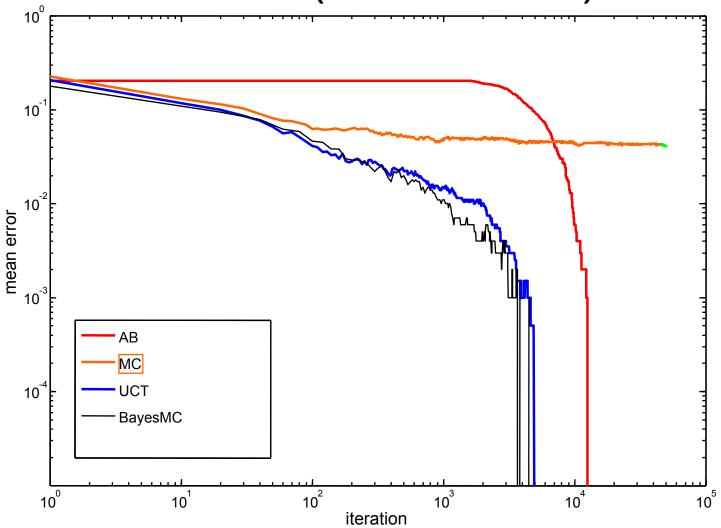




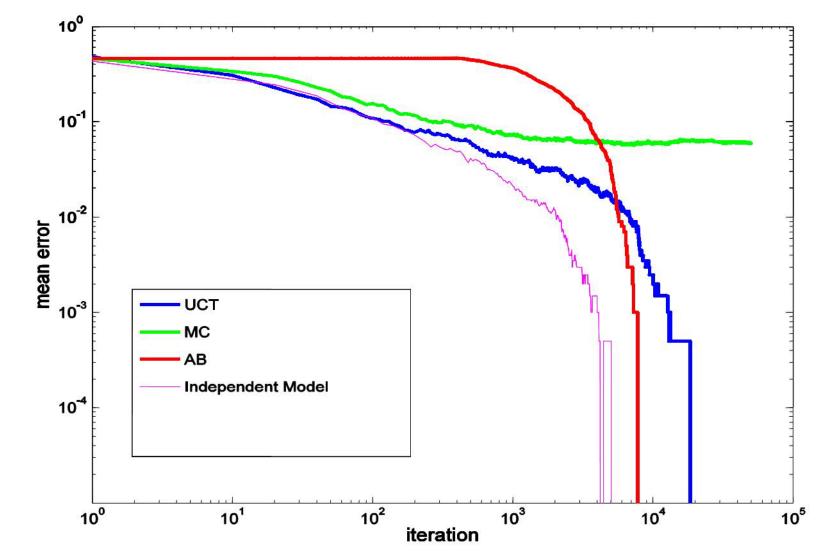
P-Game Trees

- Moves have numerical values
 - MAX moves drawn uniformly from [0,1]
 - MIN moves drawn uniformly from [-1,0]
- Value of leaf is sum of moves from root.
- If leaf value > 0 then win for MAX.
- If leaf value < 0 then loss for MAX.
- Assign win/loss to all nodes via Minimax.
- Qualitatively more like real Go game tree.
- Can simulate the addition of domain knowledge.

Monte Carlo Planning On P-Game Trees (B=2, D=20)

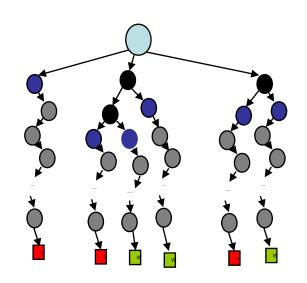


MC Planning on P-Game Trees (B=7,D=7)



Conclusions

- Areas addressed:
 - Move Prediction
 - Territory Prediction
 - Monte Carlo Go



- Probabilities good for modelling uncertainty in Go.
- Go is a good test bed for machine learning.
 - Wide range of sub-tasks.
 - Complex game yet simple rules.
 - Loads of training data.
 - Humans play the game well.

