Applications of Machine
Learning to the Game of Go

David Stern

Applied Games Group
Microsoft Research Cambridge

(working with Thore Graepel, Ralf Herbrich, David MacKay)

Contents

The Game of Go
Uncertainty in Go
Move Prediction

Territory Prediction
Monte Carlo Go

The Game of Go

Started about 4000 years ago in ancient China.
About 60 million players worldwide.
2 Players: Black and White.

Board: 19x19 grid.]
 Rules:
— Turn: One
— Capture.
ANT==E =!
| ‘ite =
t_ it] e
kTI i \ il

*MSMﬁﬁié%ﬁptadé@lL&

IF

urrounding it.

One eye = death

o 2

Two eyes = life

ses

Computer Go

5th November 1997
Gary Kasparov beaten by Deep Blue.

Fazparoy ponders his next mowve
CCMM)

Best Go programs cannot beat amateurs.
Go recognised as grand challenge for Al.

Muller, M. (2002). Computer Go. Atrtificial Intelligence,
134.

Computer Go

Minimax

* Minimax search defeated. m
lookahead

— NN

 High Branching Factor. |~
— Go: ~200 Evaluation

 Complex Position Evaluation.
— Stone’s value derived from configuration of
surrounding stones.

Use of Knowledge in Computer Go

« Trade off between search and knowledge.

« Most current Go programs use hand-coded

knowledge.
1. Slow knowledge acquisition.
2. Tuning hand-crafted heuristics difficult.

* Previous approaches to automated knowledge
acquisition:
— Neural Networks (Erik van der Werf et al., 2002).
— Exact pattern matching (Frank de Groot, 2005), (Bouzy, 2002)

Uncertainty in Go

Go is game of perfect information.

Complexity of game tree +
limited computer speed — uncertainty.

=% ‘aji’ = ‘taste’.
Represent uncertainty using probabilities.

Move Prediction
Learning from Expert Game Records

Pattern Matching
for Move Prediction

* Move associated with a set of patterns.
— Exact arrangement of stones.
— Centred on proposed move.

» Sequence of nested templates.

Patterns

Patterns

Patterns

Patterns

Patterns

Patterns

Patterns

« 13 Pattern Sizes

— Smallest is vertex only.
— Biggest is full board.

Pattern Matching

Pattern information stored in hash table.
— Constant time access.
— No need to store patterns explicitly.

Need rapid incremental hash function.
— Commutative.
— Reversible.

64 bit random numbers for each template vertex:
One for each of {black, white, empty, off}.

Combine with XOR (Zobrist, 1970).

— Black at (-1,2) = 128379874091837
e———

[

A —
TS
Tﬁ\ Empty at (1,1) = 876542534789756

Pattern Hash Key

Pattern information stored in hash table.

Access in constant time.

No need to store patterns explicitly.
Need rapid incremental hash function.

Commutative.
Reversible.

64 bit random numbers fo
One for each of {black, w

Combine with XOR (Zobri

r each template vertex:
hite, empty, off}.

st, 1970).

Min of transformed patterns gives invariance.

:%%$ [j\\\\\\\\‘
TR >~

&0
MIN

—p | ransformation Invariant Key

OGO

/

| SRortE
\\u

Harvesting

Automatically Harvest from Game Records.

180,000 games x 250 moves x 13 pattern
sizes...

...gives 600 million potential patterns.

Need to limit number stored.
— Space.

— Generalisation.

Keep all patterns played more than n times.

Bloom filter:
Approximate test for set membership with
minimal memory footprint. (Bloom, 1970).

e ~ Smaller patterns matched

o ~later in game.

Relative Frequencies of Pattern Sizes

5 0 N
)
em D)
e
o O c
— O -
© . O
£ O =
o o s 2g o
N © v ¥ O q = O =1
o O O O O o o Q O
fouanbaly *ja. ol
M ©

phase of the game

Training

First Phase: Harvest

Second Phase: Training

Use same games for both.

Represent move by largest pattern only.

Table

N4

N4

Matching Largest Pattern

Bayesian Ranking Model

 Pattern value: uy ~ N(uy; p1, 0%)

» Latent urgency: z1 ~ N(z1;u1,5%)
I ReC)

N (uy; p1,0%) N(x1;u1, 8%)

Bayesian Ranking Model

m o W

N (uy; p1,0%) N(x1;u1, 8%)

Bayesian Ranking Model

N (u1; p1,0%) N (z1; ug, 8%) ‘ [(x1 > x2)

N (ug; po, 03) N (z2; un, 82)

N (un; pin, 2) N (zn; un, B2)

. (1 > zp)

Training Example:
* Chosen move (pattern).
» Set of moves (patterns) not chosen.

Bayesian Ranking Model

N(uy; p1,0%)

N (ug; pp, 03)

N (un; pin, O'rrzp,)

N (z1;u1, 8%)

N (z2; un, 82)

N(fﬂn, uﬂa /82)

‘ [(x1 > xo)

. (x> xp)

p(u, x|move, position)

Bayesian Ranking Model

e

N (u1; p,0%) N (@1; u1, 8%) [(xq1 > xp)
N (uz; pin, 03) N (zo; up, B2)

I[(x1 > zn)
N (un; i, 02) N (&n; un, 32)

p(u|move, position) = /p(u,x|move, position)dx

Onlin

—h
3
fTI

line Lear

il e UIII

'E:
:1
(D
53
P

 Training Example:
— Chosen move (pattern).
— Set of moves (patterns) not chosen.

 Posterior:

p(u|move, position) = /p(u,x|move, position)dx

* Approximate (Gaussian) posterior determined by
Gaussian message passing.

* Online Learning (Assumed Density Filtering):

— After each training example we have new p;, and o;
for each pattern.

— Replace values and go to next position.

Message Passing

n

mp@) = [L my oy

vieneigh(f)\v

~ =
O

m’v—>f<v) — H mfj—w(v)
fieneigh(v)\ f

Marginal Calculation

p(v) =]I mp (@)

freneigh(v)

Gaussian Message Passing

All messages Gaussian!
Most factors Gaussian.

Messages from ‘ordering’ factors are approximated:
— Expectation propagation.
True Marginal Distribution:

p(vi) = my, oy, (Vi) - My, 1, (V;)
Approximation:

q(v;) = Mgy (V3) - My 1, (V1)
Moment Match:
MM [mfkevi(vi) ' mviefk(viﬂ

mfkevi(vi) — m, / (U)
i JENTT

Gaussian Message Passing

—()— (o
N (u1; p1,07) N (z1;u1, B?) » I(z1 > zo)
O =04
N (uz; po, 03) N (z2; us, 82)

E E [(x1 > xn)
RO, SO

N (un; pin, 02) N (@n; un, B2)

Gaussian Message Passing
— EP Approximation

—
() ‘\
[(xq1 > x2)

N (u1; p1,0%) N (z1;uq,8%)
(2)— (A
N (uz; po, 03) N (z2; uz, 52)

@ _»A//' I(x1 > xn)

N (un; pin, 02) N (@n; un, B2)

Gaussian Message Passing
- Posterior Calculation

=0= =0
N (u1; p1,0%) N (z1; ug, 8%) \ [(x1 > z2)
O =0

N (uo; 2, 05) N (z2; uz, %)
. E I(x1 > zn)
) T
N (un; pin, o) N (@n; un, %)
p(u;|move, position) = 11 Mgy, (U;)

feneigh(u;)

Move Prediction Performance

1 T T T T

o
o™

e
-reamt
wmym!

||||||

-
(LM
-
(1M
-
LM
-
b
-

o
N

o
o
I

o
(3]

o
'S

4 —Ranking Model
75N A Van der Werf et al. (2002)

cumulative density function
&
H
o
o
<
@)
<
(D
02
~~
n
(D
O
@)
-
o

o
)

o
-

O

10 15 20 25 30
expert move rank

o
3}

Rank Error vs Game Phase

10 I]
1 i
|
J]
-1 . : :
L10 W | I| o) b = 7
o
@
"
&
= =2 L
| I
10°F iy i -
- : &5 | .
T |
| i B
: A
i g -+
T s
i -+ _i_ I | I | I I L I
1 2 3 4 5 6 7 8 9 10 11

phase of the game

Rank Error vs Pattern Size

L X P B S T T T 7

- XX XU XX NOWE K XG00000DOOKX X Nrmrm mc mx mx ax mx |- ——

llllll - X - - - -
,,,,, - H -
o 1 | f--mmm- 4

o.nw 40 o_h.nlu

11 12 13 14

10

pattern size

Hierarchical Gaussian Model of
Move Values

* Use all patterns that match — not just
biggest.

— Evidence from larger pattern should dominate
small pattern at same location.

— However — big patterns seen less frequently.
 Hierarchical Model of move values.

Pattern Hierarchy

Hierarchical Gaussian Model

RPEP 9P AHNP

p(xloxoo @ @

= N(z10; Z00, 85)

p(zo0) = N (z0o; 1o, 78)

Move Prediction Performance

——max pattern
— hierarchical model

o o
~ (0]

o
o

o
~

cumulative density function
o o
w o

o
(M)

©
—_
T
|

0 ! ! ! ! !
5 10 15 20 25 30

expert move rank

Predictive Probability

-1.5

|
I N I
w 3 N

mean In(predictive probability)

|
w
[3)

—— max pattern
— hierarchical model

£ ,F/‘

1 2 3 4 5 6 7 8 9 10
phase of the game

11

Territory Prediction

Territory

1. Empty intersections surrounded.
2. The stones themselves (Chinese method)

Predicting Territory

Go Position Territory Hypothesis 1

Q , OUiTC

>

Predicting Territory

Territory Hypothesis 2

Lo

>

Predicting Territory

Territory Hypothesis 3

.

?

Predicting Territory

. Board Position: ¢ € {black, white, empty}*

- Territory Outcome: & € {41, —1}¥

» Model Distribution: P(s|c)

« Boltzmann Machine (CRF):

« E(Black Score) = Z (Sé)P(sm)
i

Territory Prediction Model

P(SlC) —_— 1 exp (Z E(%’J))

Z(c,0)

(1,5)

Boltzmann Machine (Ising model)

E(i,,f) (ﬂi: By Ciy CJ))

/ Biases |\ Jl/

e.g. h(black)

.
_

Couplings \

e.g. w{black, black)

Game Records

1,000,000 expert games.

— Some labelled with final territory outcome.
Training Data is pair of

game position, C, , + territory outcome, S..
Maximise Log-Likelihood:

Z In P(Si‘cia W)
(

Inference by Swendsen-Wang sampling

1000,000 Expert Games...

So Yokoku [6d] (black) —-VS- (white) [9d] Kato Masao

.

. o o

:‘—' ? o

c= ;: JRPPaR.

T :

| 1+: % "i
ROt

Final Position

Final Position + Territory

erritory Outcome

T

Final

Position + Final Territory
Train CRF by Maximum Likelihood

Position + Boltzmann Sample

(Generated by Swendsen-Wang)

Hypothesis:
Hypothesis: This area Is
These owned by
stones are «— white
Nnot
captured [I o I LT T L1 [[1 1 [\
Qs Hypothesis:
This side Is These
owned by stones are
black captured

Position + Boltzmann Sample

(Generated by Swendsen-Wang)

R2
7p]
)

e
]
@)
Q.
>

L

O
| -
%a
0 g
L c
= o
)
(7))

O
O
| -
)
o
Q.
@©
o

black
controls this

region

Shown

e
B Bonds link

ik regions of
| - common

fate

Boltzmann Machine — Expectation over
Swendsen-Wang Samples

No squares __4%#/ Size of
indicates . squares
Indicates

degree of
certainty

uncertainty

These
stones are
probably
going to be
captured

Position + Boltzmann Sample

(Generated by Swendsen-Wang)

N

0 ® st d i

lllegal!

PSS RPFSPP

Monte Carlo Go
(work in progress)

Monte Carlo Go

Go Position

Territory Hypothesis

Monte Carlo Go

Go Position

Territory Hypothesis Territory Hypothesis

Monte Carlo Go

Go Position

Monte Carlo Go

* 'Rollout’ or ‘Playout’

— Complete game from current position to end.
— Not fill in own eyes.

— Score at final position easily calculated.
* 1 sample = 1 rollout
 Brugmann’s Monte Carlo Go (MC)

— For each available move m sample s rollouts.

AL -l

— ALl edlll pOleU” moves belebleu U”||U””|y d ra l‘d(‘)l“l
— Rollout Value: Xm,z' c {1,0} (win or loss)

— 1
— Move Value: X ., — — Z Xm,i
S =

Adaptive Monte Carlo Planning

/Q\ » Update values of all

‘ positions in rollout.

p — Store value (distribution) for
each node.

— Store tree in memory.
» Bootstrap policy.

— UCT.

— Strong Play on small boards
E.g. ' MoGo’ (Silvain Gelly)

Adaptive Monte Carlo Go

Adaptive Monte Carlo Go

Adaptive Monte Carlo Go

Adaptive Monte Carlo Go

o @

% ¢

*V:

%

'

!

3tm ‘
W 2/3tm N \
]?QC\(.

:

"

¢

Bayesian Model For Policy

@ Prior: p(mo) = N(«’EO; My 02)
@ p(yt|zt) = N (yt; 1, 72)
@ «—MBEnT MAteh GRUSHAR M8l FALSE)

p(w;ly;) = I((y; > 0) Aw;) + I((y; < 0) A —w;)

‘Bayesian’ Adaptive MC

p(zilzi—1) = N (@i 2p-1,7°)

‘Bayesian’ Adaptive MC (BMC)

* Policy:
— Sample from the distribution for each
available move.

— Pick best.

* Exploitation vs Exploration
— Automatically adapted.

Exploitation)vs Exploration

Exploitation vs(Exploration

P-Game Trees

Moves have numerical values
— MAX moves drawn uniformly from [0,1]
— MIN moves drawn uniformly from [-1,0]

Value of leaf is sum of moves from root.
If leaf value > 0 then win for MAX.

£ laaf vinhiin o N than lAace fAr NAAY

11 1Sdl vadlUutT =~ U LUICTI1 1UOSO 1Vl IVI/AV.
Assign win/loss to all nodes via Minimax.
Qualitatively more like real Go game tree.
Can simulate the addition of domain knowledge.

Monte Carlo Planning On P-Game
Trees (B=2, D=20)

10—

10" 3

N
Ol
N
T

mean error

-_—
On
w
T

L |—nB

| —Wo

10'4:— —— UCT
— BayesMC

0 I I IIIIII1 l l lIIUIZ l l llll“3 l — llll4 . l lll”lS
10 10 10 10 10 10
iteration

mean error

MC Planning on P-Game Trees

10° ¢
10"}
102}
: MC
i — AB
[—— Independent Model
-4
10 |
L P S S T S BT | " I M AT | " L P RS E A | ' P
10° 10’ 10° 10° 10* 10°

(B=7,D=7)

iteration

Conclusions

« Areas addressed:
— Move Prediction
— Territory Prediction
— Monte Carlo Go

* Probabilities good for modelling uncertainty in Go.

* Go is a good test bed for machine learning.
— Wide range of sub-tasks.
— Complex game yet simple rules.
— Loads of training data.
— Humans play the game well.

