

Tackling class imbalance in radiomics

the COVID-19 use case

Jože M. Rožanec Jožef Stefan International Postgraduate School

> Blaž Fortuna Qlector d.o.o.

Tim Poštuvan École Polytechnique Fédérale de Lausanne (EPFL)

> Dunja Mladenić Jožef Stefan Institute

Radiomics for COVID-19 detection

- 1. Introduction
 - COVID-19 in radiomics
 - Challenges
- 2. Use case
- 3. Methodology
- 4. Results and analysis
- 5. Conclusions

INTRODUCTION

Radiomics for COVID-19 detection

- COVID-19 impact on respiratory system
 - Visible on medical images:
 - ground-glass opacities and consolidations
 - peripheral and basal sites

USE CASE

CONCLUSIONS

Radiomics for COVID-19 detection

Challenges

INTRODUCTION

- dataset sizes
- data sources: different image sources and protocols

METHODOLOGY

RESULTS AND ANALYSIS

• different labelling

USE CASE

• privacy concerns

CONCLUSIONS

Radiomics for COVID-19 detection

• Use case

- 7100 images from CT scan segmentations
 - 289 healthy persons and 66 COVID-19 patients
- score of pulmonary involvement with clinical staging of disease

METHODOLOGY

• <5%: non-COVID-19

USE CASE

• ≥10%: COVID-19

5-75+%%

RESULTS AND ANALYSIS

INTRODUCTION

INTRODUCTION

CONCLUSIONS

Radiomics for COVID-19 detection

Methodology

USE CASE

Algorithms: SVM, kNN, RF, CART, Gaussian Näive Bayes, Multi-layer Perceptron (MLP), GBM, and Isolation Forest (IF) **Imbalance mitigation strategies**: NONE (no augmentation), RANDOM (näive random sampler), SMOTE, ADASYN, CTGAN

RESULTS AND ANALYSIS

METHODOLOGY

INTRODUCTION

Radiomics for COVID-19 detection

Results and Analysis

USE CASE

Class Imbalance								
Mitigation	CART	IF	kNN	MLP	Naive Bayes	RF	SVM	GBM
Strategies								
NONE	0,6429	0,6802	0,8504	0,7879	0,6653	0,8601	0,8066	0,8555
RANDOM	0,6402	0,5215	0,7846	0,7993	0,6464	0,6691	0,6888	0,8150
SMOTE	0,6147	0,5607	0,6813	0,7663	0,6590	0,6660	0,6817	0,7826
ADASYN	0,6020	0,5863	0,6660	0,7655	0,6282	0,6435	0,6652	0,7787
CTGAN	0,7401↑	0,5340	0,8118	0,8419	0,6395	0,7090	0,6896	0,8871

RESULTS AND ANALYSIS

Average AUC ROC values obtained across the ten cross-validation folds. Best results are **bolded**, second-best results are *highlighted in italics*. Colour codes denote pairs of results without statistical significance at a p-value of 0.05. Up arrow \uparrow indicates whether the imbalance strategy outperformed NONE

METHODOLOGY

CONCLUSIONS

CONCLUSIONS

RESULTS AND ANALYSIS

Radiomics for COVID-19 detection

Conclusions

- New approach for class imbalance: CGAN on embeddings
 - Best results among strategies, further research required
- Best model: gradient boosted machines

• Future work

INTRODUCTION

• Enhance CTGAN approach

USE CASE

- why sometimes we get poor results?
- Explainable Artificial Intelligence on embeddings

METHODOLOGY

• translate feature relevance to image

This work was supported by the Slovenian Research Agency.

The authors acknowledge the Medical Physics Research Group at the University of Ljubljana (<u>https://medfiz.si</u>) for providing the image segmentation data as part of the RIS competition (<u>http://tiziano.fmf.uni-lj.si/</u>).