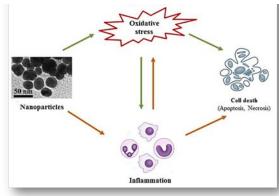

HOW TO BIOMONITOR EXPOSURE TO NANOPARTICLES IN WORKERS: A REVIEW

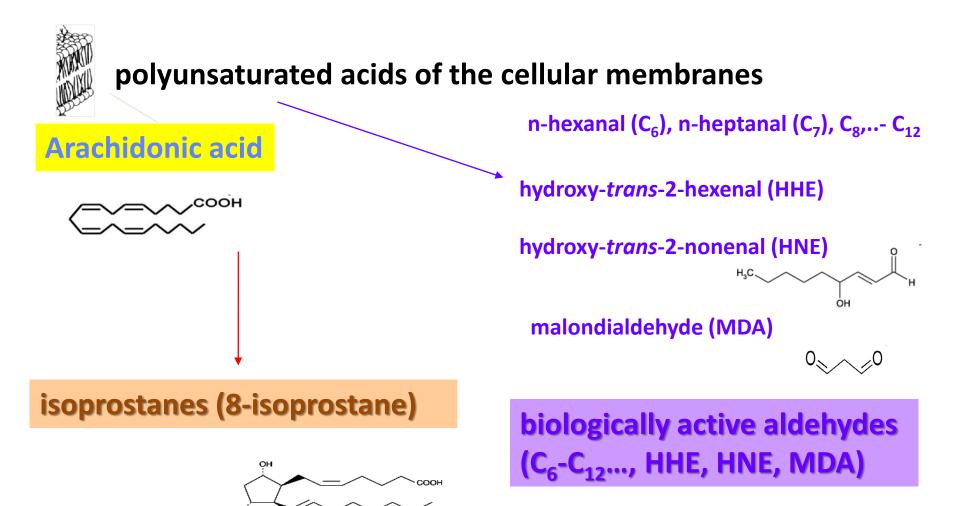
Daniela Pelclova, prof., MD, PhD, FEAPCCT

Charles University and General University Hospital in Prague, First Faculty of Medicine,

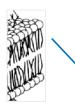

Department of Occupational Medicine, Prague, Czech Republic and Toxicological Information Centre for the Czech Republic

Nanoparticles

- The number of applications of nanomaterials increases enormously
- Workers and researchers are engaged in the development, and production of nano-enabled composites
- Limited data available on exposures and health effects
- **Experimental studies** oxidative stress, inflammation, lung fibrosis, cardiovascular disorders, cancer (*Huang 2017, Runa 2017*)
- Unique physical and chemical properties
- Higher reactivity and cytotoxicity
- What markers could be used in workers?

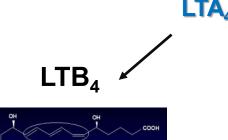


NANOPARTICLES


- Cause oxidative stress, inflammation and cell death
- Proteins, nucleic acids and lipids damage

Lipid peroxidation – direct (by ROS)

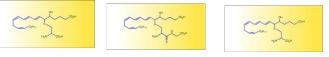
Lipid peroxidation – enzymatic


lipids of the membranes

Arachidonic acid

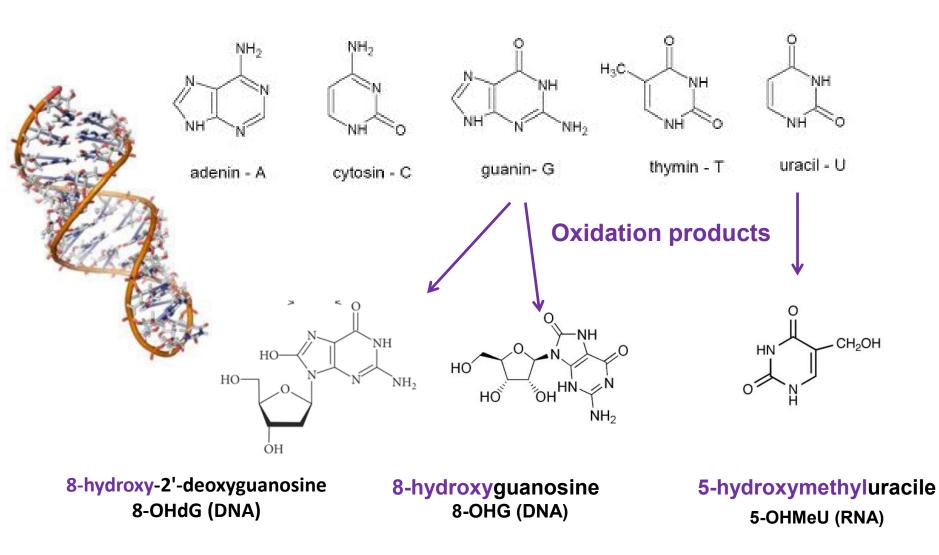
5-lipoxygenase

ALOX5 AP (FLAP) mediator

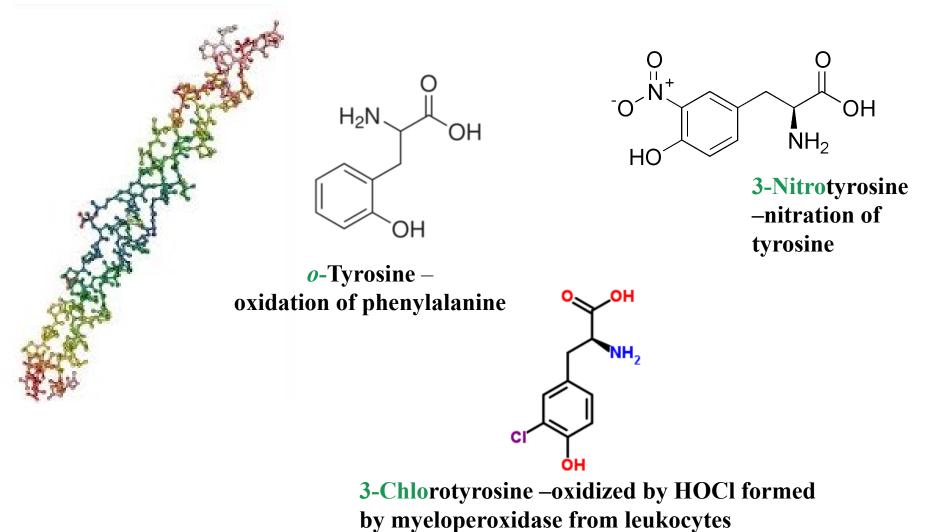

leukotrienes formed in leukocytes - MARKERS OF INFLAMMATION

MV=336 46

LTB₄ – target: neutrophils are activated and attracted into the lungs; COPD


cysteinyl - LTC₄, LTD₄, LTE₄

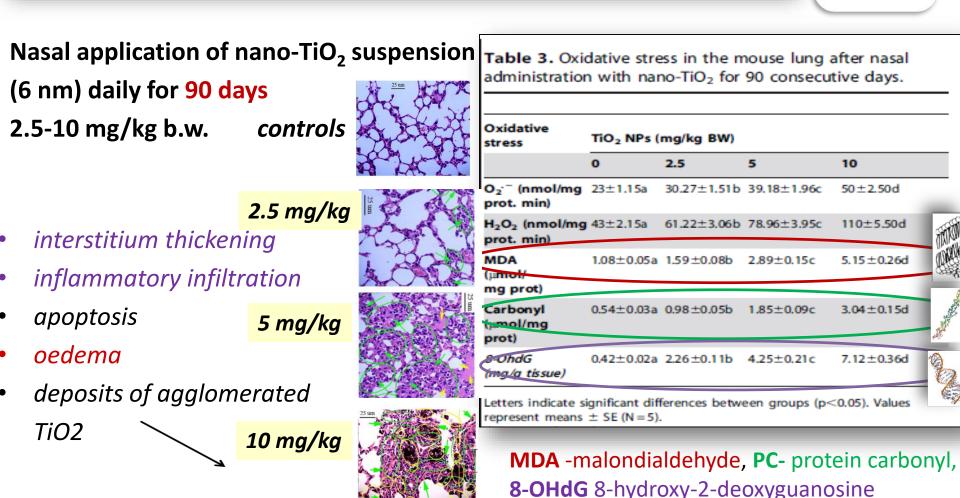
cys LT - targets:

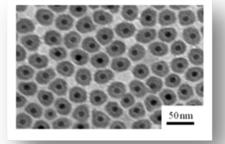

- bronchial muscles,
- vessels increase of permeability,
- acute and chronic inflammation, bronchial asthma, experimental lung fibrosis

Markers of oxidation of NUCLEIC ACIDS

Oxidation of PROTEINS

Biotransformation products





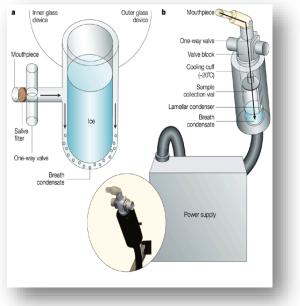
Li 2013

Molecular Mechanisms of Nanosized Titanium Dioxide-Induced Pulmonary Injury in Mice

Bing Li^{1®}, Yuguan Ze^{1®}, Qingqing Sun^{1®}, Ting Zhang^{2,3®}, Xuezi Sang¹, Yaling Cui¹, Xiaochun Wang¹, Suxin Gui¹, Danlin Tan¹, Min Zhu¹, Xiaoyang Zhao¹, Lei Sheng¹, Ling Wang¹, Fashui Hong¹*, Meng Tang^{2,3}*

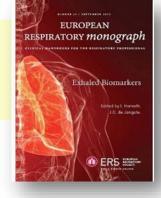
NANOPARTICLES

- 1 Workers exposed to nanoTiO₂ 2012, 2013
- 2 Office employees from nanoTiO₂ plant 2013
- 3 Workers exposed to nano Fe-oxides 2013
- 4 Researchers handling nanocomposites -2016-2020

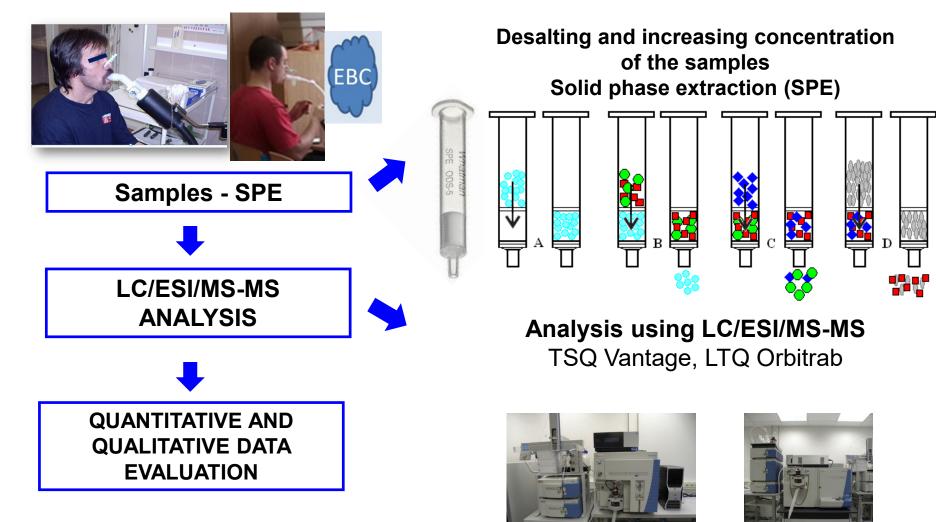


Exhaled breath condensate (EBC) collection Horváth et al. 2017

EcoScreen (Jaeger)



Research method – 90ies of the 20th century non-invasive collection (15 min) of substances from the respiratory system (120 L air) after cooling to -10° C.


EBC liquid contains:

- 1) condensed $H_2O 99\%$
- 2) water soluble particles
- 3) non-soluble particles from the droplets released from the bronchoalveolar lining fluid during expiration and contraction of respiratory bronchioles

Pelclová D et al. 8-isoprostane and leukotrienes in EBC in Czech subjects with silicosis. Ind Health. 2007 Pelclová D et al. Increased 8-isoprostane, marker of oxidative stress in EBC in asbestos exposure. Ind Health. 2008

ANALYSIS OF THE SAMPLES liquid chromatography- electrospray ionization - tandem mass spectrometry (LC/ESI/MS-MS)

Examination – workers + controls

- Questionnaire
- Occupational history years of exposure, daily exposure, PPE, latency since last shift,
- Personal history diseases, medication, smoking, alcohol intake, regular physical activity,
- Diet, last meal, last smoking.
- Family history
- Physical examination, temperature,
- Body mass index
- Blood pressure,
- Spirometry
- Monitoring local data of environmental pollution (SO₂, CO, NOx, $PM_{2.5}$, PM_{10})

Markers measured in EBC, urine, plasma (2016-2018) LC-ESI-MS/MS analysis EBC


- aldehydes C₆-C₁₂
- malondialdehyde (MDA)
- 4-hydroxy-trans-hexenal (HHE)
- 4-hydroxy-trans-nonenal (HNE)
- 8-isoProstaglandin $F_{2\alpha}$ (8-isoprostane)
- 8-hydroxy-2-deoxyguanosine (8-OHdG)
- 8-hydroxyguanosine (8-OHG)
- 5-hydroxymethyl uracil (5-OHMeU)
- o-tyrosine (o-Tyr)
- **3-chloro-tyrosine (3-Cl-Tyr)**
- nitrotyrosine (3-NO-Tyr)
- leukotrienes LTB₄, LTC₄, LTD₄, LTE₄
- tumor necrosis factor (TNF)
- FeNO fractional exhaled nitric oxide inflammation

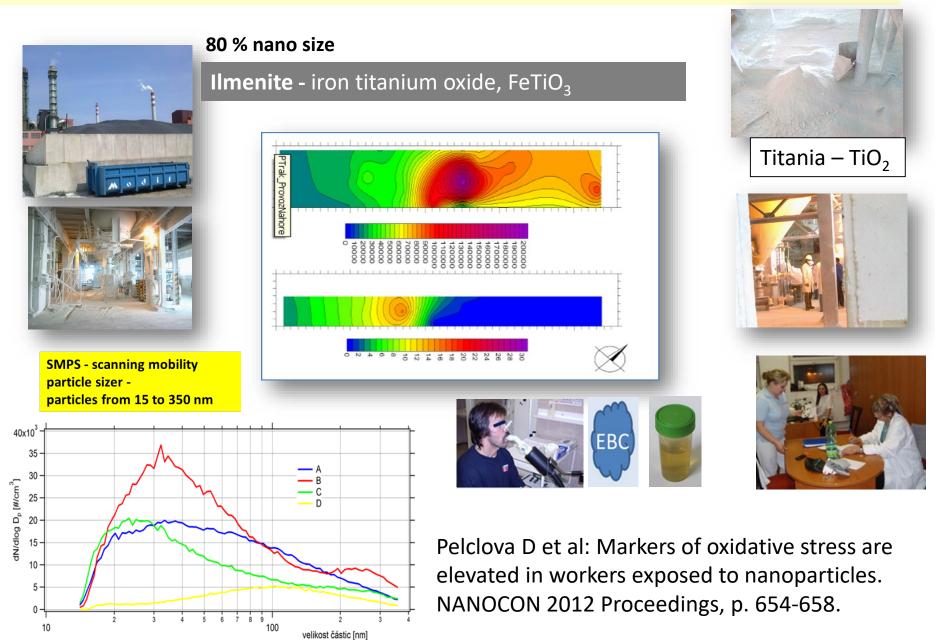
oxidation of lipids

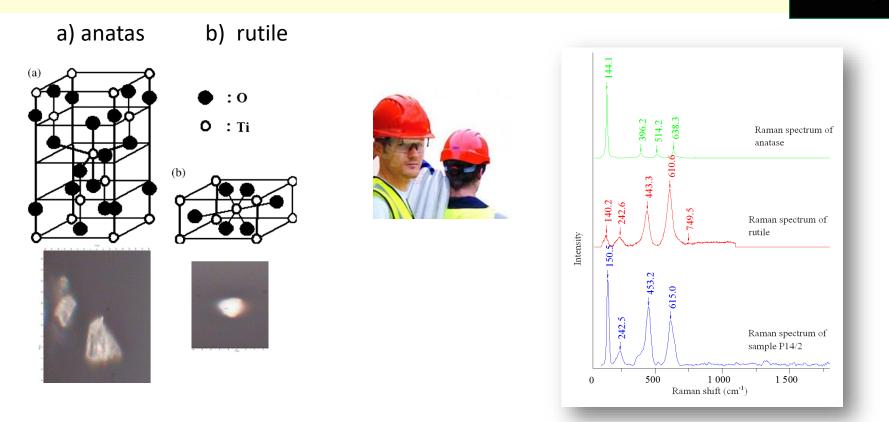
oxidation of nucleic acids

oxidation of proteins

markers of inflammation

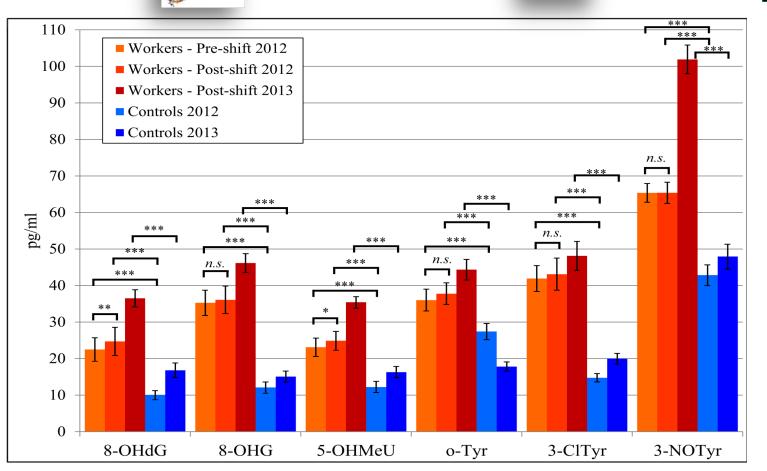
Aerosol Measurement at the workplace


- 3-8 hours shifts measurements, background measurements
- Berner Low-Pressure Cascade Impactor (BLPI) separation into the size fractions and chemical analysis,
- Scanning Mobility Particle Sizer (SMPS),
- Aerodynamic Particle Sizer (APS),
- Condensation Particle Counter (CPC)
- Optical Particle Sizer (OPS).
- Personal nanoparticle samplers (Pluto Technology Taiwan) 2019, 2020


Exposure and Groups of Workers

		N	Age	Proportion of nano particles	Exposure time/day	Median Mass Concentration mg/m³	Median Particles number /cm ³	
TiO ₂ 2012*		20	34±8	80%	7.5 h	0.65	19 800	
TiO ₂ 2013*		14	34±5	80%	7.5 h	0.40	23 200	
TiO ₂ 2013 office		22	44±4	80%	15 min	0.40	23 200	
Fe-oxides 2013		14	43±8	80%	7.5 h	0.083	66 800	
Nanocomposites 2016-2020		61	40±12	40-95%	3.0 h	0.12-1.84	48 000-540 000	
Controls 2012-2020		Comparable number, age and gender			No nano- exposure			

Group 1 WORKERS IN PRODUCTION of TiO₂ pigments 2012 pre-shift, post-shift and 2013 post-shift

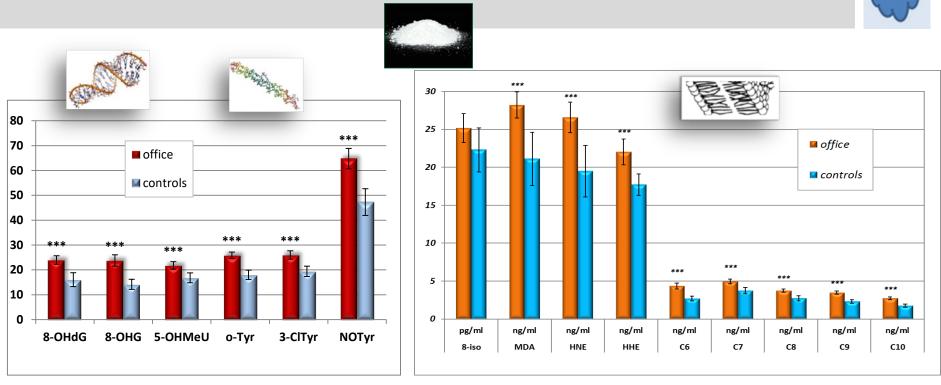

Raman microspectroscopy found TiO₂ in EBC 2012 pre-shift in 40 % workers post-shift in 70 % workers

Pelclova D, Barosova H, Kukutschova J, Zdimal V, Navratil T, Fenclova Z, Vlckova S, Schwarz J, Zikova N, Kacer P, Komarc M, Belacek J, Zakharov S.: Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO₂ particles: a crosssectional study. J Breath Research 2015

TiO₂ Production Workers 2012 and 2013 and Controls

EBC

Pelclova D, Zdimal V, Fenclova Z, Vlckova S, Turci F, Corazzari I, Kacer P, Schwarz J, Zikova N, Makes O, Syslova K, Komarc M, Belacek J, Navratil T, Machajova M, Zakharov S. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2(nano) particles. Occup Environ Medicine 2016


Multiple regression analysis – the job is the key (TiO₂)

	8-OHdG	8-OHG	5-OHMeU	o-Tyr	3-CITyr	3-NOTyr
	(pg/ml)	(pg/ml)	(pg/ml)	(pg/ml)	(pg/ml)	(pg/ml)
TiO ₂ Production exposure (Yes/No)	19.20*** (14.75, 23.66)	30.37*** (26.75, 34.00)	<mark>19.35***</mark> (16.30, 22.40)	28.95*** (25.51, 32.38)	28.43*** (23.71, 33.14)	<mark>51.68***</mark> (44.31, 59.04)
Age	0.02	-0.02	0.06	-0.02	0.13	-0.06
(years)	(-0.17, 0.21)	(-0.17, 0.13)	(-0.06, 0.19)	(-0.16, 0.13)	(-0.07, 0.32)	(-0.36, 0.25)
Smoking	-0.29	0.70	0.38	-0.46	-1.41	1.62
(Yes/No)	(-3.65, 3.07)	(-2.04, 3.43)	(-1.92, 2.69)	(-3.05, 2.14)	(-4.97, 2.14)	(-3.94, 7.17)
SO ₂ (μg/m ³) (CO _, NO _x) environmental	0.02 (-0.13, 0.17)	-0.02 (-0.14, 0.10)	-0.04 (-0.15, 0.06)	-0.13* (-0.24, -0.01)	-0.06 (-0.22, 0.10)	0.16 (-0.09, 0.41)

Pelclova D, Zdimal V, Fenclova Z, Vlckova S, Turci F, Corazzari I, Kacer P, Schwarz J, Zikova N, Makes O, Syslova K, Komarc M, Belacek J, Navratil T, Machajova M, Zakharov S. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2(nano) particles. *Occup Environ Medicine 2016*

Group 2 Office employees TiO₂ and Controls (2013)

FBC

Pelclova D, Zdimal V, Kacer P, Vlckova S, Fenclova Z, Navratil T, Komarc M, Schwarz J, Zikova N, Makes O, Zakharov S. Markers of nucleic acids and proteins oxidation among office workers exposed to air pollutants including (nano)TiO2 particles. *Neuro Endocrinol Lett.* 2016

Pelclova D, Zdimal V, Kacer P, Komarc M, Fenclova Z, Vlckova S, Zikova N, Schwarz J, Makes O, Navratil T, Zakharov S, Bello D. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. *Rev Environ Health 2017*

GROUP 3 Fe oxides (+nano) pigments production 2013

control room

dover

particle size (nn

calcination furnac

ilmenite FeTiO₃

360x10°

340 -

320

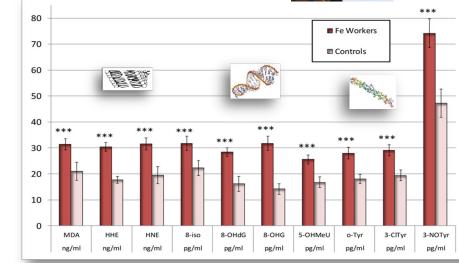
300 -

280

260 240

220 200

180 160


140 120 100

> 80 60

> 40

80% particles in nano size

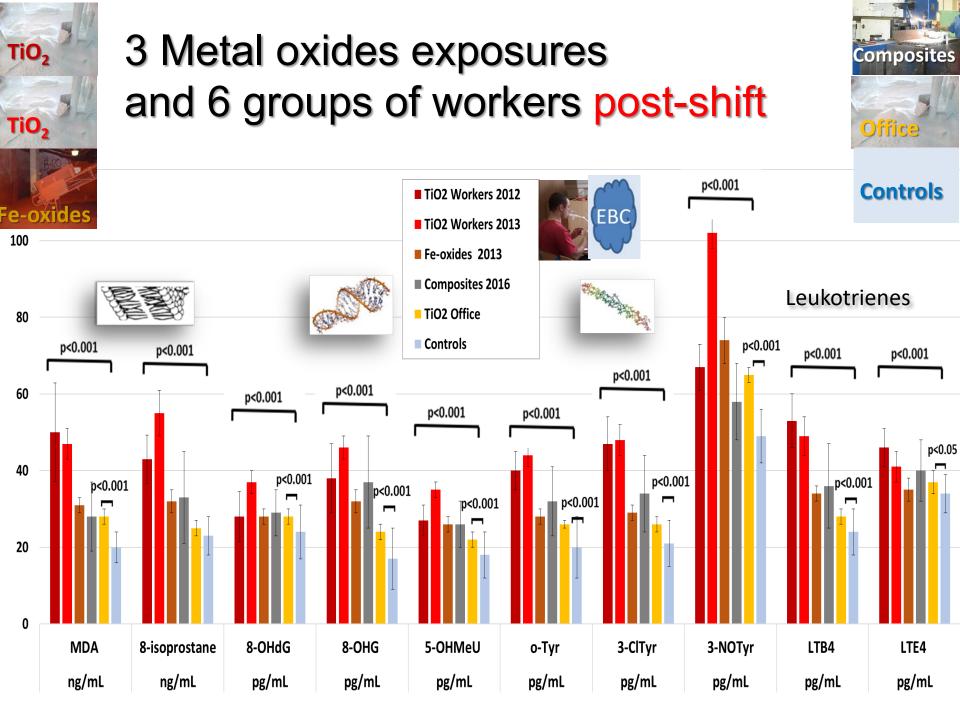
Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K, Navratil T, Schwarz J, Zikova N, Barosova H, Turci F, Komarc M, Pelcl T, Belacek J, Kukutschova J, Zakharov S. *J Breath Res.* 2016

Group 4 - NANOCOMPOSITES PRODUCING RESEARCH WORKERS IN 2016, 2017, 2018, 2019, 2020

Examination of 61 workers pre-shift and post-shift + 62 controls

Research plant for new resistant nanocomposites

- metals and geopolymers (nano SiO₂ filler) by welding and machining (grinding) technology.



3 hours' exposure

Proportion of nanoparticles at MACHINING up to 95 %

LUNG FUNCTIONS

Chronic bronchitis more frequent:

4 (20%) nanocomposites, 0 % controls p=0.033*

Duration of exposure (but not age) correlated negatively with FEV1/FVC (p<0.05)

* p<0.05

LUNG FUNCTIONS	%FVC	%VCIN	%FEV1	FEV1/FVC	%PEF
Pre-shift	94.7±13.3	92.2±13.0	102.2±13.5	0.89±0.06	110.2±14.3
Post-shift	95.0±11.6	93.1±11.0	↓99.0±12.0 [*]	↓0.86±0.06 [*]	106.8±15.2
Controls	100.8±13.6	98.7±13.0	106.1±14.0	0.89±0.06	111.8±20.2

Article

Three-Year Study of Markers of Oxidative Stress in Exhaled Breath Condensate in Workers Producing Nanocomposites, Extended by Plasma and Urine **Analysis in Last Two Years**

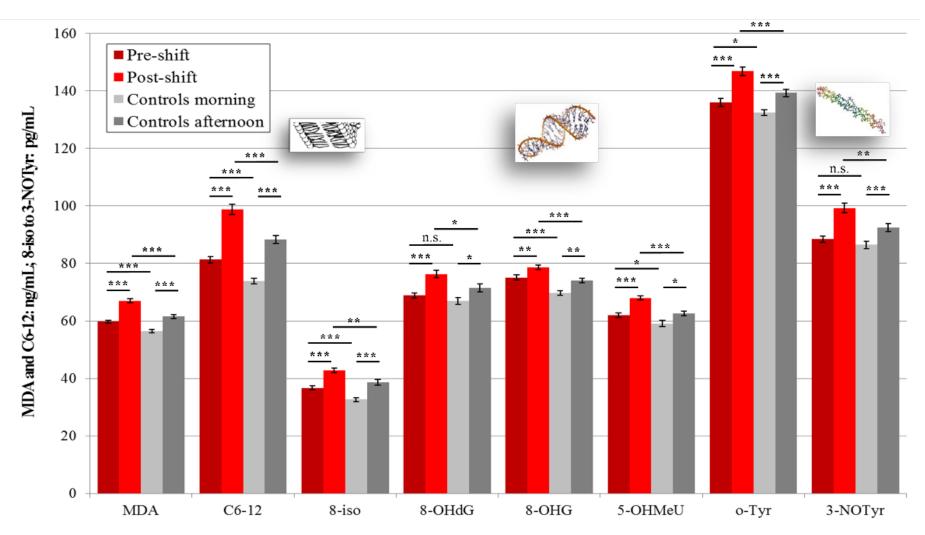
Daniela Pelclova ^{1,*}, Vladimir Zdimal ², Martin Komarc ^{3,4}, Jaroslav Schwarz ², Jakub Ondracek ², Lucie Ondrackova², Martin Kostejn², Stepanka Vlckova¹, Zdenka Fenclova¹, Stepanka Dvorackova⁵, Lucie Lischkova¹, Pavlina Klusackova¹, Viktoriia Kolesnikova¹, Andrea Rossnerova⁶ and Tomas Navratil⁷

2016, 2017, 2018

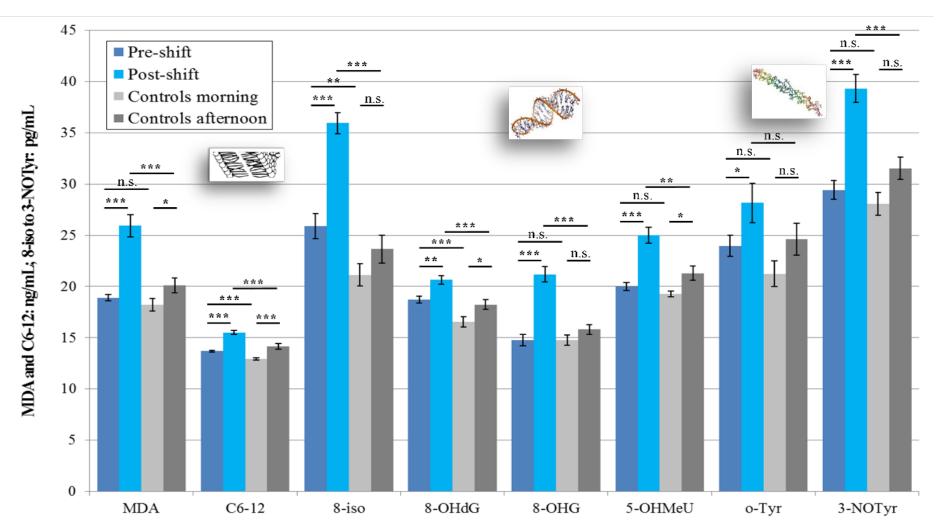
- EBC, urine and plasma samples
- in 2018 controls also examined twice morning and afternoon samples

WELDING

MACHINING


2020

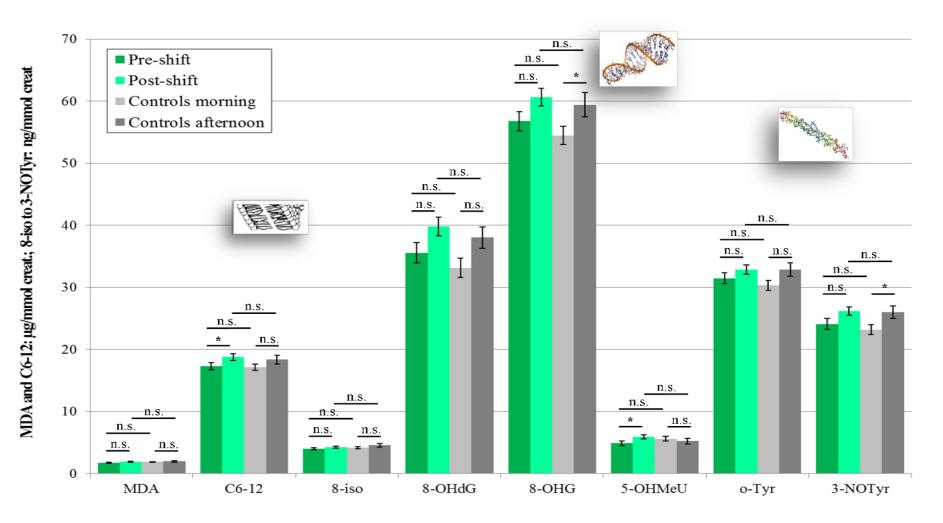
Plasma samples 2018


highest significance

75% pre-shift ↑ 100% shift effect ↑
100% postshift ↑ vs afternoon controls

EBC markers 2018 high significance

38% pre-shift ↑ 100% shift effect ↑ 88% postshift ↑ vs afternoon controls EBC



Urine samples 2018

same trends, less significance

0 pre-shift ↑ 0 shift effect ↑ 25% post 3h shift ↑ vs afternoon controls

J Nanopart Res. 2015 Oct;17:413. Epub 2015 Oct 19.

Assessing the first wave of epidemiological studies of nanomaterial workers.

Liou SH¹, Tsai CS², Pelclova D³, Schubauer-Berigan MK⁴, Schulte PA⁴.

Author information

¹National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan, ROC.

²Department of Environmental and Radiological Health Science, Colorado State University, Fort Collins, CO, USA.

³Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.

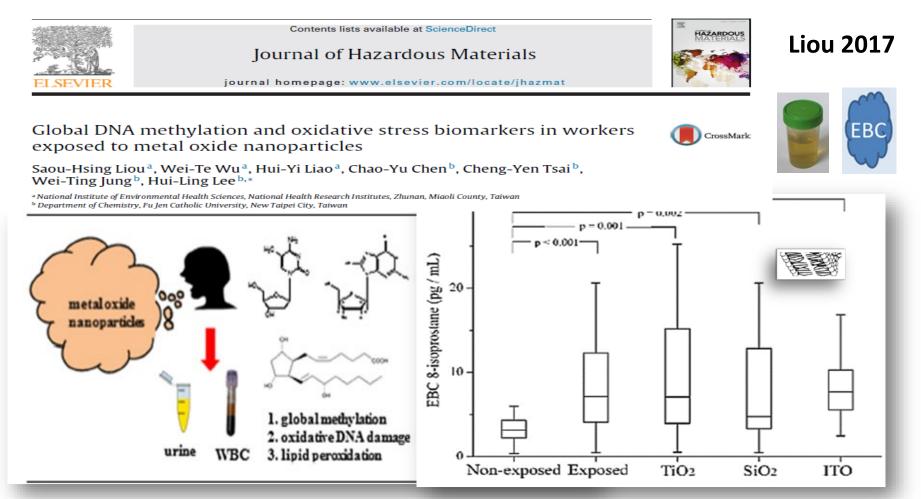
⁴National Institute for Occupational Safety and Health, Cincinnati, OH, USA.

- 1 682 commercial products with nanoparticles
- Price 10¹² (trillions) USD
- 2015 Only 6 published occupational studies + 11 conference proceedings EXPOSURES: Nanomaterials (Taiwan), TiO₂ (Czech Rep, China), carbon nanotubes (Russia, South Korea, Netherlands, Japan), Fe oxides (Czech Rep), CaCO₃ (China), nanoAg (Korea)
- SAMPLES: blood serum (Taiwan, Russia, Netherlands), sputum (China), induced sputum (Russia), urine, EBC (Czech Rep 2012, South Korea 2015)
- **2022 SEARCH in PubMed**
- key words: NANO EXPOSURE INHALATION WORKERS BIOMARKERS
- ACTUALLY 33 HUMAN STUDIES (NOT REVIEWS)

BIOMARKERS, 2016 http://dx.doi.org/10.3109/1354750K2016.1160432

Liou 2016

RESEARCH ARTICLE


Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers

Saou-Hsing Liou^a#, Yu-Cheng Chen^b, Hui-Yi Liao^a#, Chien-Jen Wang^a, Jhih-Sheng Chen^b and Hui-Ling Lee^b#

↑8-OHdG in plasma, ↑ 8-OHdG in urine, correlation between urine and plasma

130 workers 26xTiO₂, 31xSiO₂, 30xIndium Tin Oxide (*ITO* of display technologies, electroluminescent, and electro chromatic displays, touch screen technologies). DNA damage, lipids peroxidation,

 \uparrow 8-OHdG in urine, \uparrow 8-isoprostanes in exhaled breath condensate (EBC)

130 workers 26x TiO₂, 31x SiO₂, 30x Indium Tin Oxide DNA damage, lipids peroxidation, DNA hypomethylation, and genomic instability – oncogenesis,.... ORIGINAL ARTICLE

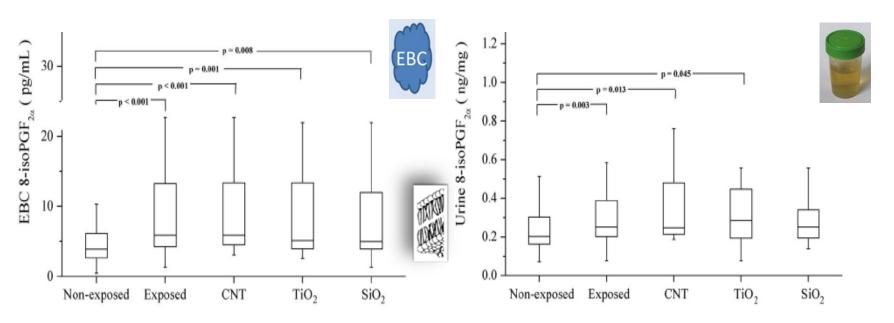
Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles

Lin Zhao^a, Yifang Zhu^b, Zhangjian Chen^a, Huadong Xu^a, Jingwen Zhou^c, Shichuan Tang^d, Zhizhen Xu^d, Fanling Kong^e, Xinwei Li^c, Yifei Zhang^f, Xianzuo Li^f, Ji Zhang^c and Guang Jia^a

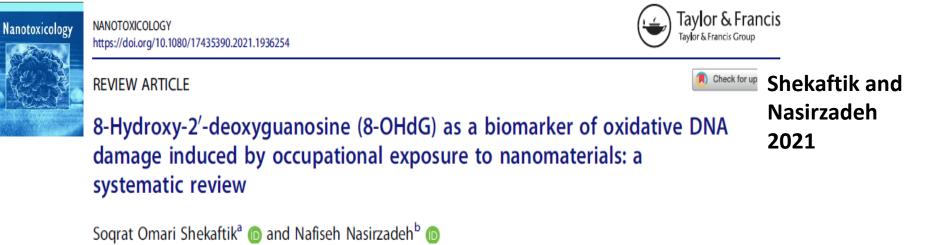
- TiO₂ production plant in China
- 85 TiO₂ packers 3.17 mg/m³, 39% nano TiO₂
- Blood malondialdehyde (MDA), TNF, IL-10,
- Cardiovascular disease markers (cell adhesion molecules VCAM, ICAM)
- Lung functions impaired (p< 0.05)
- X-ray 43% increased interstitial pattern in workers
- All markers associated with exposure to TiO₂

Zhao 2018

Check for updates



Lipid peroxidation metabolites associated with biomarkers of inflammation and oxidation stress in workers handling carbon nanotubes and metal oxide nanoparticles


WU et al. 2021

Wei-Te Wu, Wei-Ting Jung & Hui-Ling Lee

 Confirmed a higher sensitivity of EBC, than urine 8-isoprostane markers for nanoTiO₂ - EBC recommended for biomonitoring as most sensitive


69 Non-exposed controls 80 Exposed nanomaterials workers: 22 carbon nanotubes (CNT) 30 nano-TiO₂ 28 nano-SiO₂

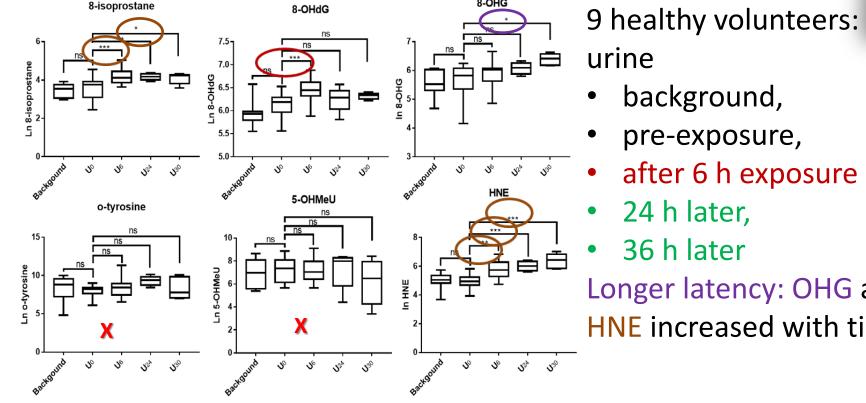
REVIEW

"biomarkers" + "occupational exposure" + "nanomaterials."

from 126 studies – 8 studies left (4 our studies)

but urinary 8-OHdG needs to be taken with caution.

Zhang, Bello et al. 2022



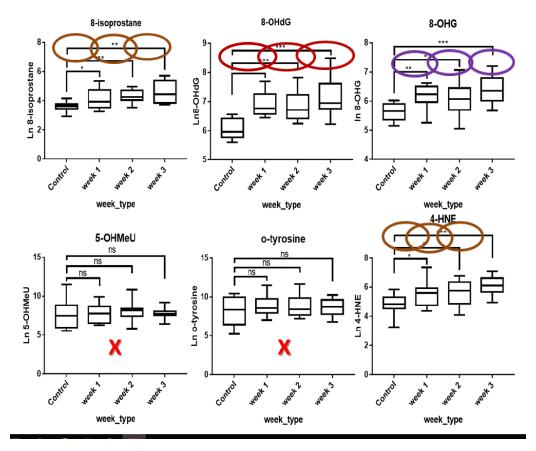
Article

Elevated Urinary Biomarkers of Oxidative Damage in Photocopier Operators following Acute and Chronic Exposures

Yipei Zhang¹, Anila Bello², David K. Ryan¹, Philip Demokritou³ and Dhimiter Bello^{3,4,*}

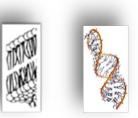
- **ACUTELY 6 h** in volunteers
- Nanoparticles from photocopiers induce systemic oxidative stress, lipid oxidation (8-isoprostanes, HNE),
- DNA (8-OHdG), RNA (OHG) in urine samples post exposure

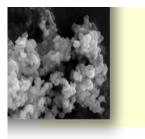
Longer latency: OHG and HNE increased with time



CHRONICALLY DURING 3 WEEKS IN OPERATORS

Zhang, Bello et al. 2022


8


Nanoparticles from photocopiers induce systemic oxidative stress, leading to lipid oxidation (8-isoprostanes, HNE), DNA (8-OHdG), RNA (OHG) in urine samples

6 Operators + 11 Controls repeated 3x: week 1, week 2, week 3

Stable results during weeks

Conclusions

- MONITORING IS NEEDED results are consistent with oxidative stress hypothesis and a lung injury at the molecular level
- Group test minimum 20 exposed workers
- Two body fluids from EBC, plasma, urine
- Several biomarkers from all groups
- Timing to reflect both chronic and acute effect
- EBC or plasma post-shift
- Urine post-shift at the end of the week
- Control group identical location identical time
- Post-shift **spirometry** after higher exposures
- X-ray after long-term intense exposure

EBC

Further plans

- FOLLOW-UP is recommended similarity of findings in EBC (8-isoprostane, MDA) in silicosis and asbestos-exposed patients
- 2019 and 2020 personal samplers also used PENs, individual exposure data available
- Nanoparticles in the samples 2019-2020 by Raman method to be correlated with the markers
- Antioxidant capacity measured: GSH, ferric reducing antioxidant power (FRAP)
- We are open to cooperation

Hvala za pozornost! Thank you

Charles University in Prague, Department of Occupational Medicine, and General University Hospital Prague, Czech Republic, Technical University in Liberec, Faculty of Mechanical Engineering, Department of Machining and Assembly, Department of Material Science Institute of Chemical Process Fundamentals of the CAS, v.v.i., Prague Heyrovsky Institute of Physical Chemistry of the CAS, v.v.i., Prague

Project of the Charles University in Prague daniela@pelclova.cz